
18.100A: Typed Lecture Notes

Lecture 17:
Uniform Continuity and the Definition of the Derivative

Uniform Continuity

Recall 1
Recall the definition of continuity: f : S → R is continuous on S if ∀c ∈ S and ∀ε > 0, ∃δ = δ(ε, c) > 0 such
that ∀x ∈ S, |x− c| < δ =⇒ |f(x)− f(c)| < ε.

Here, δ(ε, c) denotes the fact that δ can depend on ε and c.

Example 2
Consider the function f(x) = 1

x . f is continuous on (0, 1).

Proof : Let ε > 0. Choose δ = min
{
c
2 ,

c2

2 ε
}
. Suppose |x − c| < δ. Then, |x − c| < c

2 =⇒ |x| > c − |x − c| > c
2 .

Thus, 1
|x| <

2
c . Therefore, ∣∣∣∣ 1x − 1

c

∣∣∣∣ = |x− c||xc|

<
δ

|x||c|

<
2

c2
δ

≤ 2

c2
c2ε

2
= ε.
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As shown in the previous example. δ depended on both ε and c.

Definition 3 (Uniformly Continuous)
Let f : S → R. Then, f is uniformly continuous on S if ∀ε > 0, ∃δ = δ(ε) > 0 such that ∀x, c ∈ S,

|x− c| < δ =⇒ |f(x)− f(c)| < ε.

Remark 4. Thus, in the definition of uniform continuity, δ only depends on ε!

Example 5
The function f(x) = x2 is uniformly continuous on [0, 1].

Proof : Let ε > 0. Choose δ = ε
2 . Then, if x, c ∈ [0, 1] then |x− c| < δ implies that

|x2 − c2| = |x+ c||x− c| ≤ 2|x− c| < 2δ = ε.
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However, there are of course continuous functions that are not uniformly continuous. For example, we will show
that f(x) = 1

x is not uniformly continuous on (0,1), but first we consider the negation of the definition.

Negation 6 (Not Uniformly Continuous)
Let f : S → R. Then, f is not uniformly continuous on S if ∃ε0 > 0, ∀δ > 0 such that ∃x, c ∈ S with

|x− c| < δ and |f(x)− f(c)| ≥ ε0.

Proof : Choose ε0 = 2 (in fact, any ε0 > 0 will show that 1
x is not uniformly continuous on (0, 1)). Then, let δ > 0.

Choose c = min
{
δ, 12
}
and x = c

2 . Then, |x− c| =
c
2 ≤

δ
2 < δ and∣∣∣∣ 1x − 1

c

∣∣∣∣ = ∣∣∣∣2c − 1

c

∣∣∣∣ = 1

c
≥ 1

1
2

= 2.

Theorem 7
Let f : [a, b]→ R. Then, f is continuous if and only if f is uniformly continuous.

Proof : (⇐= ) This direction is left as an exercise to the reader.
( =⇒ ) Suppose f is continuous and assume for the sake of contradiction that f is not uniformly continuous.

Then, ∃ε0 > 0 such that for all n ∈ N, ∃xn, cn ∈ [a, b] such that

|xn − cn| <
1

n
and |f(xn)− f(cn)| > ε0.

By Bolzano-Weierstrass, ∃ a subsequence {xnk
} of {xn} and x ∈ [a, b] such that limk→∞ xnk

= x. Similarly, by
Bolzano-Weierstrass, ∃ a subsequence {cnk

} of {cn} and c ∈ [a, b] such that limk→∞ cnk
= c. Note that subsequence

{xnkj
} of {xnk

} satisfies limj→∞ xnkj
= x.

Then,

|x− c| = lim
j→∞

|xnkj
− cnkj

| ≤ lim
j→∞

1

nkj
− 0.

Thus, x = c. But, since f is continuous at c,

0 = |f(c)− f(c)| = lim
j→∞

|f(xnkj
)− f(cnkj

)| ≥ ε0.

This is a contradiction.
Derivative

Definition 8
Let I be an interval, let f : I → R, and let c ∈ I. We say that f is differentiable at c if the limit

lim
x→c

f(x)− f(c)
x− c

exists.
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Notation 9
If f is differentiable at c, we write

f ′(c) := lim
x→c

f(x)− f(c)
x− c

.

Furthermore, if f is differentiable at every c ∈ I, we write f ′ or df
dx for the function f ′(x).

Example 10
Consider the function f(x) = ax+ b. Then, for all c ∈ R, f ′(c) = a.

Proof : This follows as

lim
x→c

f(x)− f(c)
x− c

= lim
x→c

ax+ b− (ac+ b)

x− c
= a lim

x→c

x− c
x− c

= lim
x→c

a = a.
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Example 11 (The Power Rule)
For all n ∈ N, if f(x) = αxn, then for all c ∈ R,

f ′(c) = αncn−1.

Proof : We note that for all n ∈ N,

(x− c)
n−1∑
j=0

xn−1−jcj =

n−1∑
j=0

xn−jcj −
n−1∑
j=0

xn−1−jcj+1.

Letting ` = j + 1, we obtain

(x− c)
n−1∑
j=0

xn−1−jcj =

n−1∑
j=0

xn−jcj −
n∑
`=1

xn−`c`

= xn−0c0 − xn−ncn

= xn − cn.

Therefore,

lim
x→c

αxn − αcn

x− c
= α lim

x→c

n−1∑
j=0

xn−1−jcj = α

n−1∑
j=0

cn−1−jcj = αncn−1.
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