18.100A: Typed Lecture Notes

Lecture 17:

Uniform Continuity and the Definition of the Derivative

Uniform Continuity

Recall 1

Recall the definition of continuity: f : S — R is continuous on S if V¢ € S and Ve > 0, 30 = d(¢,¢) > 0 such
that Ve € S, |[xr —¢| <0 = |f(z) — f(o)| <.
Here, (¢, c¢) denotes the fact that 6 can depend on € and c.

Example 2

Consider the function f(z) = 1. f is continuous on (0,1).

Proof: Let € > 0. Choose § = min{%, %e} Suppose |z —c| < 6. Then, [z —c[ < § = |z|>c— |z —¢] > 5.

Thus, ﬁ < % Therefore,
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As shown in the previous example.  depended on both € and c.

Definition 3 (Uniformly Continuous)

Let f: S — R. Then, f is uniformly continuous on S if Ve > 0, 3§ = d(¢) > 0 such that Vz,c € S,

|z —cl <6 = [f(z) - fld)| <e

Remark 4. Thus, in the definition of uniform continuity, § only depends on €!

Example 5

The function f(x) = 22 is uniformly continuous on [0, 1].

Proof: Let € > 0. Choose § = 5. Then, if x,c € [0, 1] then |z — ¢| < ¢ implies that

2% — Pl =z + |z —c] <2z —c] <26 =



However, there are of course continuous functions that are not uniformly continuous. For example, we will show

that f(z) = 1 is not uniformly continuous on (0,1), but first we consider the negation of the definition.

Negation 6 (Not Uniformly Continuous)
Let f: S — R. Then, f is not uniformly continuous on S if 3¢y > 0, V§ > 0 such that Iz, c € S with

|z —¢| <é and |f(z)— f(c)] > eo.

Proof: Choose € = 2 (in fact, any €y > 0 will show that 1 is not uniformly continuous on (0,1)). Then, let § > 0.
Choose ¢ =min {4, } and x = §. Then, |z —c| = § < $ <6 and
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Theorem 7

Let f : [a,b] — R. Then, f is continuous if and only if f is uniformly continuous.

Proof: ( <) This direction is left as an exercise to the reader.
( = ) Suppose f is continuous and assume for the sake of contradiction that f is not uniformly continuous.
Then, ey > 0 such that for all n € N, 3z, ¢,, € [a, b] such that

|zn, — cnl| < % and |f(x,) — f(cn)| > €o-

By Bolzano-Weierstrass, 3 a subsequence {z,,} of {z,} and z € [a,b] such that limy_,o ©,,, = x. Similarly, by
Bolzano-Weierstrass, 3 a subsequence {c,, } of {¢,} and ¢ € [a, b] such that limj_, o ¢,, = ¢. Note that subsequence
{wnkj} of {x,, } satisfies lim;_, Tn,, = .

Then,

|x —¢| = lim |2, —cp, | < lim — —0.
J—o0 7 J Jj—o0 ’I’ij

Thus, z = c¢. But, since f is continuous at c,

0= 1£(0) = £(e)] = lim |f(n,) — Flew, )| > eo.

Jj—o0

This is a contradiction. O

Derivative

Definition 8
Let I be an interval, let f: I — R, and let ¢ € I. We say that f is differentiable at c if the limit

o @) = 1)

T—cC r—c

exists.




Notation 9

If f is differentiable at ¢, we write
fI(C) -— lim f((E) — f(C) )

T—cC xr—cC

Furthermore, if f is differentiable at every c € I, we write f’ or %ﬁ for the function f’(x).

Example 10
Consider the function f(z) = ax +b. Then, for all c € R, f/(¢) = a.

Proof: This follows as

_ b— b _
lim f(@) = fe) = lim ar + (ac+9) =a lim - lim a = a.
T—cC Tr—c T—c T —cC T—=c L — C T—c
Example 11 (The Power Rule)
For all n € N, if f(x) = ax™, then for all ¢ € R,
f'(c) = anc™ L.

Proof: We note that for all n € N,

n—1 n—1 n—1 ,

(x—c¢) Z p" I = Z el — Z L S AR

§=0 §=0 j=0
Letting £ = j + 1, we obtain

n—1 o n—1 o n

(x —¢) Z e = Z "I — Z vt
§=0 §=0 (=1
_ xn—oco P P
— " e
Therefore,
az™ — ac® ! o n! o
lim —— = alim Z 2" = Z 1Y = ane L.
T—cC xr—c T—cC o i



