
18.100A: Typed Lecture Notes

Lecture 7:
Convergent Sequences of Real Numbers

We will do another example of limits that converge:

Example 1
limn→∞

1
n2+2n+100 = 0.

Proof : Let ε > 0 and choose M ∈ N such that M > ε−1

2 . Then, ∀n ≥M ,∣∣∣∣ 1

n2 + 2m+ 100
− 0

∣∣∣∣ ≤ 1

n2 + 2m+ 100
≤ 1

2n
≤ 1

2M
< ε.

�

The fact that we can go from a complicated rational function to one that works for our purposes (namely to
prove the sequence converges to 0) is awesome.

Example 2
Consider the sequence xn = (−1)n. This sequence is divergent.

Proof : Let x ∈ R. We claim limn→∞(−1)n 6= x. To prove this, we simply need find an epsilon that stops the
sequence from converging. For instance, consider ε0 = 1

2 . Then, for M ∈ N,

1 = |(−1)M − (−1)M+1| ≤ |(−1)M − x|+ |(−1)M+1 − x|.

Thus, either |(−1)M − x| ≥ 1
2 or |(−1)M+1 − x| ≥ 1

2 . In either case, this shows that the limit cannot converge to
x. �

Theorem 3
If {xn} is convergent, then {xn} is bounded.

Before we start the proof, let’s first talk about the idea of the proof. Let ε = 1 such that |xn−x| < 1 for all n ≤M
for some M ∈ N. Then, there are finitely many elements not in the interval (x − 1, x + 1). We use this to our
advantage.

Proof : Suppose that limn→∞ xn = x. Thus, there exists an M ∈ N such that |xn − x| < 1 for all n ≥M . Let

B = max{|x1|, |x2|, . . . , |xM−1|, |x|+ 1}.

If n < M , then |xn| ≤ B by construction. If n ≥M , then

|xn| ≤ |xn − x|+ |x| < 1 + |x| ≤ B.
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Definition 4 (Monotone)
A sequence {xn} is monotone increasing if ∀n ∈ N, xn ≤ xn+1. A sequence {xn} is monotone decreasing
if ∀n ∈ N, xn ≥ xn+1. If {xn} is either monotone increasing or monotone decreasing, we say {xn} ismonotone
or monotonic.

Example 5
For example, xn = 1

n is monotone, yn = − 1
n is monotone increasing, and (−1)n is neither.

Theorem 6
Let {xn} be a monotone increasing sequence. Then, {xn} is convergent if and only if {xn} is bounded.
Moreover, limn→∞ xn = sup{xn | n ∈ N}.

Proof : Firstly, we know that if {xn} is convergent then it is bounded by the previous theorem, Now assume that
{xn} is bounded. Then, x := sup{xn | n ∈ N} exists in R by the lowest upper bound property of R. We now prove
that

lim
n→∞

xn = x.

Let ε > 0. Then, ∃M0 ∈ N such that
x− ε < xM0

< x

since x is the supremum of the set. Let M =M0. Then, ∀n ≥M , we have

x− ε < xM0
= xM ≤ xn ≤ x < x+ ε.

Therefore, |xn| < |x+ ε|. Therefore, xn → x.

Theorem 7
Let {xn} be a monotone decreasing function. Then, {xn} is convergent if and only if {xn} is bounded.
Moreover,

lim
n→∞

xn = inf{xn | n ∈ N}

The proof of this is similar to the previous theorem and is thus omitted.

Definition 8 (Subsequence)
Informally, a subsequence is a sequence with entries coming from another given sequence. In other words, let
{xn} be a sequence and let {nk} be a strictly increasing sequence of natural numbers. Then the sequence

{xnk
}∞k=1

is called a subsequence of {xn}.

Consider the sequence {xn} = n – in other words, the sequence 1, 2, 3, 4, . . . . Then, the following are subse-
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quences of xn :

1, 3, 5, 7, 9, 11, . . .

2, 4, 6, 8, 10, . . .

2, 3, 5, 7, 11, 13, . . . .

The first two are described by xnk
= x2k and xnk

= x2k−1 respectively.

Question 9. How would we describe the third?

Continuing to let {xn = n}n, the following are not subsequences:

1, 1, 1, 1, 1, 1, . . .

1, 1, 3, 3, 5, 5, . . . .

Now consider the sequence {(−1)n}. Then we have the subsequences

xnk
= x2k−1 → −1,−1,−1, . . .

ynk
= x2k → 1, 1, 1, . . . .

Theorem 10
If {xn} converges to x, then any subsequence of xn will converge to x.

Proof : Suppose limn→∞ xn = x. Let ε > 0. Then, ∃M0 ∈ N such that ∀n ≥M0,

|xn − x| < ε.

Choose M = M0. If k ≥ M , then nk ≥ k ≥ M = M0. Hence, for all ε > 0 there exists an M such that for all
nk > M ,

|xn−k − x| < ε.

Remark 11. Notice that this also implies that the sequence {(−1)n}n is divergent.

Notation 12 (DNC)
We can denote the statement "a sequence does not converge"/"a sequence is divergent" as "the sequence DNC".
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