
18.100A: Typed Lecture Notes

Lecture 12:
The Ratio, Root, and Alternating Series Tests

We continue our study of convergence tests.

Theorem 1 (Ratio test)
Suppose xn 6= 0 for all n and

L = lim
n→∞

|xn+1|
|xn|

exists. Then,

1. if L < 1 then
∑
xn converges absolutely.

2. if L > 1 then
∑
xn diverges.

Proof : We will first prove the second part of this theorem.

2) Suppose L > 1 and α ∈ (1, L). Then, there exists M0 ∈ N such that for all N ≥ M0,
|xn+1|
|xn| ≥ α ≥ 1. Thus,

for all n ≥M0,
|xn+1| ≥ |xn| =⇒ lim

n→∞
|xn| 6= 0.

Therefore,
∑
xn diverges.

1) Now suppose that L < 1. Let α ∈ (L, 1). Then, there exists M0 ∈ N such that ∀n ≥ M0,
|xn+1|
|xn| < α.

Therefore,∀n ≥M0, |xn+1| ≤ α|xn|. In other words, for all n ≥M0,

|xn| ≤ α|xn−1| ≤ α2|xn−2| ≤ · · · ≤ αn−M0 |xM0
|.

Let m ∈ N. Then,

m∑
n=1

|xn| =
M0−1∑
n=1

|xn|+
m∑

n=M0

|xn|

≤
M0−1∑
n=1

|xn|+ |xM0 |
m∑

n=M0

αn−M0

≤
M0−1∑
n=1

|xn|+ |xM0 |
∞∑
`=0

α`

=

M0−1∑
n=1

|xn|+
|xM0

|
1− α

.

Therefore, {
∑m
n=1 |xn|}

∞
m=1

is bounded, and thus
∑
|xn| converges. Hence, xn is absolutely convergent.

Let’s consider two examples where we can use the Ratio test.
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Example 2
Show the series

∑∞
n=1

(−1)n
n2+1 converges absolutely.

Proof : Notice ∣∣∣∣ (−1)nn2 + 1

∣∣∣∣ ≤ 1

n2 + 1
<

1

n2
,

and hence

lim
n→∞

∣∣∣∣∣∣
(−1)n+1

(n+1)2+1

(−1)n
n2+1

∣∣∣∣∣∣ < lim
n→∞

n2

(n+ 1)2
= 1.

�

Example 3
Show that ∀x ∈ R,

∑∞
n=0

xn

n! converges absolutely.

Proof : This immediately follows from the Ratio test, noting that

lim
n→∞

|x|n+1

(n+ 1)!
· n!
|x|n

= lim
n→∞

|x|
n+ 1

= 0.

�

Remark 4. As seen above, the Ratio test can be really helpful to use when we have a (−1)n or a factorial in the
argument. Also note that if L = 1 then we the test doesn’t apply.

Theorem 5 (Root test)
Let

∑
xn be a series and suppose that

L = lim
n→∞

|xn|1/n

exists. Then,

1. if L < 1 then
∑
xn converges absolutely.

2. if L > 1 then
∑
xn diverges.

Proof :

1. Suppose L < 1. Let L < r < 1. Then, since |xn|1/n → L, ∃M ∈ N such that ∀n ≥M , |xn|1/n < r. Therefore,
for all n ≥M , |xn| ≤ rn. Thus, for all m ∈ N,

m∑
n=1

|xn| =
M−1∑
n=1

|xn|+
m∑

n=M

|xn|

≤
M−1∑
n=1

|xn|+
m∑

n=M

rn

≤
M−1∑
n=1

|xn|+
∞∑

n=M

rn

=

M−1∑
n=1

|xn|+
rM

1− r
.

Thus, {
∑m
n=1 |xn|}

∞
m=1

is bounded, and thus
∑
|xn| converges.
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2. Suppose L > 1. Then, since |xn|1/n → L > 1, there exists an M ∈ N such that for all n ≥ M , |xn|1/n > 1.
In other words, for all n ≥M , |xn| > 1. Therefore, limn→∞ xn 6= 0, and thus

∑
xn diverges.

Remark 6. Again, note that if L = 1 then the test doesn’t apply.

Theorem 7 (Alternating Series test)
Let {xn} be a monotone decreasing sequence such that xn → 0. Then,

∑
(−1)nxn converges.

Proof : Let sm =
∑m
n=1(−1)nxn. Then,

s2k =

2k∑
n=1

(−1)nxn

= (x2 − x1) + (x4 − x3) + · · ·+ (x2k − x2k−1)

≥ (x2 − x1) + · · ·+ (x2k − x2k−1) + (x2k+2 − x2k+1)

= s2(k+1)

as {xn} is a monotone decreasing sequence. Thus, {s2k}∞k=1 is monotone decreasing. Furthermore,

s2k = −x1 + (x2 − x3) + (x4 − x5) + · · ·+ (x2k−2 − x2k−1) + x2k ≥ −x1.

In other words, {s2k} is a bounded below monotone decreasing sequence. Thus, {s2k}∞k=1 converges. Let s =

limk→∞ s2k. We now prove {sm}∞m=1 converges to s.
Let ε > 0. Since s2k → s, ∃M0 ∈ N such that for all k ≥M0,

|s2k − s| <
ε

2
.

Since xn → 0, ∃M1 ∈ N such that ∀n ≥M1,
|xn| <

ε

2
.

Choose M = max{2M+0 + 1,M1}. Suppose m ≥M . If m is even, then m
2 ≥M0 + 1/2 ≥M0. Therefore,

|sm − s| = |s2·m2 − s| <
ε

2
< ε.

If m is odd, let k = m−1
2 so m = 2k + 1. Then, m ≥M =⇒ k ≥M0 and m ≥M1. Then,

|sm − s| = |sm−1 + xm − s|

≤ |s2k − s+ xm|

≤ |s2k − s|+ |xm| <
ε

2
+
ε

2
= ε.

Thus, sm → s, and thus
∑

(−1)nxn converges.

Corollary 8
We already showed that

∑ (−1)n
n does not absolutely converge. However,

∑ (−1)n
n converges.

Proof : This follows immediately from the Alternating Series test.
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Theorem 9
Suppose

∑
xn converges absolutely and

∑
xn = x. Let σ : N → N be a bijective function. Then,

∑
xσ(n)

is absolutely convergent and
∑
xσ(n) = x. In other words, absolute convergence implies if we rearrange the

sequence the new series will still converge to the same value of the original series.

Proof : We first show
∑
|xσ(n)| converges, which is equivalent to showing the partial sums

∑m
n=1 |xσ(n)| is bounded.

Since
∑
xn converges, ∃B ≥ 0 such that for all ` ∈ N,

∑̀
n=1

|xn| ≤ B.

Let m ∈ N. Then, σ({1, . . . ,m}) is a finite subset of N. Thus, there exists an ` ∈ N such that

σ({1, . . . ,m}) ⊂ {1, . . . , `}.

Thus,
m∑
n=1

|xσ(n)| =
∑

n∈σ({1,...,m})

|xn| ≤
∑̀
n=1

|xn| ≤ B.

Therefore,
∑
|xσ(n)| converges. Let x =

∑∞
n=1 xn, and let ε > 0. Then, ∃M0 ∈ N such that ∀m ≥M0,∣∣∣∣∣

m∑
n=1

xn − x

∣∣∣∣∣ < ε

2
.

Since
∑
|xn| converges, ∃M1 ∈ N such that for all ` > m ≥M1,

∑̀
n=m+1

|xn| <
ε

2
.

Let M2 = max{M0,M1}. Then, ∀` > m ≥M2,∣∣∣∣∣
m∑
n=1

xn − x

∣∣∣∣∣ < ε

2
and

∑̀
n=m+1

|xn| <
ε

2
.

Since σ−1({1, . . . ,M2}) is a finite set, ∃M3 ∈ N such that

{1, . . . ,M2} ⊂ σ({1, . . . ,M3}).
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Choose M =M3. Thus, if m′ ≥M ,∣∣∣∣∣∣
m′∑
n′=1

xσ(n′) − x

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∑
n∈σ({1,...,m′})

xn − x

∣∣∣∣∣∣
=

∣∣∣∣∣∣
M∑
n=1

xn − x+
∑

n∈σ({1,...,m′})\{1,...,M}

xn

∣∣∣∣∣∣
≤

∣∣∣∣∣
M∑
n=1

xn − x

∣∣∣∣∣+
maxσ({1,...,m′})∑

n=M+1

|xn|

≤

∣∣∣∣∣
M∑
n=1

xn − x

∣∣∣∣∣+ ∑̀
n=M+1

|xn|

<
ε

2
+
ε

2
= ε.
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