
18.100A: Typed Lecture Notes

Lecture 10:
The Completeness of the Real Numbers and Basic Properties of Infinite Series

Cauchy Sequences

Definition 1
Cauchy A sequence {xn} is Cauchy if ∀ε > 0 ∃M ∈ N such that for all n, k ≥M ,

|xn − xk| < ε.

Example 2
Show the sequence xn = 1

n is Cauchy.

Proof : Let ε > 0 and choose M ∈ N such that 1
M < ε

2 . Then, if n, k ≥M , then∣∣∣∣ 1n − 1

k

∣∣∣∣ ≤ 1

n
+

1

k
≤ 2

M
< ε.

�

Negation 3 (Not Cauchy)
By the negation of the definition, a sequence {xn} is not Cauchy if ∃ε0 > 0 such that for allM ∈ N, ∃n, k ≥M
such that |xn − xk| ≥ ε0.

Example 4
Show the sequence xn = (−1)n is not Cauchy.

Proof : Choose ε = 1 and let M ∈ N. Choose n =M and k =M + 1. Then,

|(−1)n − (−1)k| = 2 ≥ 1.

�

Theorem 5
If {xn} is Cauchy, then {xn} is bounded.

Proof : If {xn} is Cauchy then ∃M ∈ N such that for all n, k ≥M ,

|xn − xk| < 1.
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Then, for all n ≥M , |xn − xM | < 1. Hence,

|xn| ≤ |xn − xM |+ |xM | < |xM |+ 1.

Let B = |x1|+ · · ·+ |xM |+ 1. Then, for all n ∈ N, |xn| ≤ B.

Theorem 6
If {xn} is Cauchy and a subsequence {xnk

} converges, then {xn} converges.

Proof : Suppose that {xnk
} is a subsequence of {xn} such that limk→∞ xnk

= x. We claim that xn → x. Let
ε > 0. Since xnk

→ x, there exists M0 ∈ N such that ∀k ≥M0,

|xnk
− x| < ε

2
.

Since {xn} is Cauchy, there exists an M1 ∈ N such that for all n ≥M1 and m ≥M1,

|xn − xm| <
ε

2
.

Choose M =M0 +M1. If n ≥M , then nM ≥M ≥M0 and n≥M1. Therefore,

|xn − x| ≤ |xn − xnM
|+ |xnM

− x| < ε

2
+
ε

2
= ε.

Theorem 7
A sequence of real numbers {xn} is Cauchy if and only if {xn} is convergent.

Proof : ( =⇒ ) If {xn} is Cauchy, then {xn} is bounded. Therefore, {xn} has a convergent subsequence by
Bolzano-Weierstrass. By the previous theorem, we thus have that {xn} is convergent.

( ⇐= ) Suppose that {xn} is convergent and x = limn→∞ xn. Let ε > 0. Since xn → x, ∃M0 ∈ N such that
∀n ≥M0,

|xn − x| <
ε

2
.

Choose M =M0. Then, if n, k ≥M ,

|xn − xk| ≤ |xn − x|+ |xk − x| <
ε

2
+
ε

2
= ε.

Therefore, {xn} is Cauchy.
Series

Remark 8. Series were the original motivation for analysis.

Definition 9
Given {xn}, the symbol

∑∞
n=1 xn or

∑
xn is the series associated to {xn}. We say

∑
xn converges if the

sequence {
sm =

m∑
n=1

xn

}∞
m=1

converges. We call the terms of {sm} the partial sums. If limm→∞ sm = s, we write s =
∑
xn and treat∑

xn as a number.
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Remark 10. A series need not start at n = 1.

Example 11∑∞
n=1

1
n(n+1) converges.

Proof : We may do show this directly by consider the partial sums:

sm =

m∑
n=1

1

n(n+ 1)
=

m∑
n=1

1

n
− 1

n+ 1

=

(
1 +

1

2
+ · · ·+ 1

m

)
−
(
1

2
+ . . .

1

m
+

1

m+ 1

)
= 1− 1

m+ 1
.

Thus, sm = 1− 1
m+1 → 1. Hence, the partial sums converge and thus the series converges. �

Theorem 12
If |r| < 1 then

∑∞
n=0 r

n converges and
∞∑
n=0

rn =
1

1− r
.

Proof : We have ∀m ∈ N,

sm =

m∑
n=0

rn =
1− rm+1

1− r

by induction. Since |r| < 1, limm→∞ |r|m+1 = 0. Therefore,

lim
m→∞

sm =
1− 0

1− r
=

1

1− r
.

Remark 13. Series of the form
∑∞
n=0 α(r)

n for α ∈ R and r ∈ R are called geometric series.

Theorem 14
Let {xn} be a sequence and let M ∈ N. Then,

∑∞
n=1 xn converges if and only if

∑∞
n=M xn converges.

Proof : The partial sums satisfy, for all m ∈ N,

m∑
n=1

xn =

m∑
n=M

xn +

M∑
n=1

xn.

Definition 15∑
xn is Cauchy if the sequence of partial sums is Cauchy.

Theorem 16∑
xn is Cauchy ⇐⇒

∑
xn is convergent.
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Proof : This follows by the analogous theorem for regular sequences of real numbers proven earlier.

Theorem 17∑
xn is Cauchy if and only if ∀ε > 0, ∃M ∈ N such that for all m ≥M and ` > m,∣∣∣∣∣ ∑̀

n=m+1

xn

∣∣∣∣∣ < ε.

Proof : ( =⇒ ) Suppose
∑
xn is Cauchy. Let ε > 0. Then, ∃M0 ∈ N such that ∀m, ` ≥M0,

|sm − s`| < ε.

Choose M =M0. Then, if m ≥M and ` > m, then∣∣∣∣∣ ∑̀
n=m+1

xn

∣∣∣∣∣ = |s` − sm| < ε.

The other direction is left as an exercise.

Theorem 18
If
∑
xn converges then limn→∞ xn = 0.

Proof : Suppose
∑
xn converges. Then,

∑
xn is Cauchy. Let ε > 0. Since

∑
xn is Cauchy, ∃M0 ∈ N such taht for

all ` > m ≥M0, ∣∣∣∣∣ ∑̀
n=m+1

xn

∣∣∣∣∣ < ε.

Choose M =M0 + 1. Then, if m ≥M =⇒ m− 1 ≥M0. Therefore,

|xm| =

∣∣∣∣∣
m∑

n=m

xn

∣∣∣∣∣ < ε

by taking ` = m.

Theorem 19
If |r| ≥ 1, then

∑∞
n=0 r

n diverges.

Proof : If |r| ≥ 1, then limm→∞ rm 6= 0. Therefore,
∑∞
n=0 r

n diverges, as if this wasn’t the case then
limm→∞ rm = 0 by the previous theorem which is a contradiction.

Corollary 20
The series

∑∞
n=0 α(r)

n converges if and only if |r| < 1.
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