
18.100A: Typed Lecture Notes

Lecture 22:
The Fundamental Theorem of Calculus, Integration by Parts, and Change of Variable Formula

Theorem 1 (Additivity)
If f ∈ C([a, b]) and a < c < b, then ∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Proof : Let {(y(r), ζ(r))}r and {(z(r), η(r))}r be tagged partitions of [a, c] and [c, b] respectively such that ‖y(r)‖ →
0 and ‖z(r)‖ → 0. Define

x(r) = y(r) ∪ z(r)

ξ(r) = ζ(r) ∪ η(r),

a sequence of tagged partitions of [a, b]. Then,

‖x(r)‖ ≤ ‖y(r)‖+ ‖z(r)‖ → 0.

Thus, ∫ b

a

f = lim
t→∞

Sf (x(r), ξ(r))

= lim
r→∞

(Sf (y(r), ζ(r)) + Sf (z(r), η(r)))

=

∫ c

a

f +

∫ b

c

f.

Theorem 2
Let f ∈ C([a, b]), and

mf = inf{f(x) | x ∈ [a, b]} ∈ R

Mf = sup{f(x) | x ∈ [a, b]} ∈ R.

Then,

mf (b− a) ≤
∫ b

a

f ≤Mf (b− a).

Proof : Let {(x(r), ξ(r))}r be a sequence of tagged partitions with ‖x(r)‖ → 0. Then,

Sf (x(r), ξ(r)) =

n∑
k=1

f(ξk(r))(xk(r)− xk−1(r)) ≥ mf

n∑
k=1

(xk(r)− xk−1(r)) = mf (b− a).
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Similarly,

Sf (x(r), ξ(r)) =

n∑
k=1

f(ξk(r))(xk(r)− xk−1(r)) ≤Mf

n∑
k=1

(xk(r)− xk−1(r)) =Mf (b− a).

Therefore, for all r,

mf (b− a) ≤ Sf (x(r), ξ(r)) ≤Mf (b− a) =⇒ mf (b− a) ≤
∫ b

a

f ≤Mf (b− a).

Theorem 3
Suppose f ∈ C([a, b]) and g ∈ C([a, b]).

1. If ∀x ∈ [a, b] f(x) ≤ g(x), then ∫ b

a

f ≤
∫ b

a

g.

2. (Triangle Inequality for integrals): |
∫ b
a
f | ≤

∫ b
a
|f |.

Proof :

1. Let {(x(r), ξ(r)}r be a sequence of tagged partitions such that ‖x(r)‖ → 0. Then, for all r ∈ N,

Sf (x(r), ξ(r)) =

n∑
j=1

f(ξj(r))(xj(r)− xj−1(r))

≤
n∑
j=1

g(ξj(r))(xj(r)− xj−1(r))

= Sg(x(r), ξ(r)).

Then, letting r →∞, we get that ∫ b

a

f ≤
∫ b

a

g.

2. Notice that ±f(x) ≤ |f(x)| for all x, and thus

±
∫ b

a

f ≤
∫ b

a

|f | =⇒ −
∫ b

a

f ≤
∫ b

a

f ≤
∫ b

a

|f |.

Therefore, |
∫ b
a
f | ≤

∫ b
a
|f |.

Remark 4. There are some conventions that are worth noting:

1.
∫ a
a
f := 0. This is consistent with our definitions and theorems thus far as limb→a |

∫ b
a
f | = 0.

2.
∫ b
a
f = −

∫ a
b
f.

Fundamental Theorem of Calculus
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Theorem 5 (Fundamental Theorem of Calculus)
Suppose f ∈ C([a, b]).

1. If F : [a, b]→ R is differentiable and F ′ = f , then∫ b

a

f = F (b)− F (a).

2. The function G(x) :=
∫ x
a
f is differentiable on [a, b] andG′ = f

G(a) = 0
.

Remark 6. We sometimes abbreviate the Fundamental Theorem of Calculus to FTC.

Proof :

1. Let {(x(r))}r be a sequence of partitions with ‖x‖ → 0. Then, by the Mean Value Theorem, ∀r∀j, there
exists a ξj(r) ∈ [xj−1(r), xj(r)] such that

F (xj(r))− F (xj−1(r)) = F ′(ξj(r))(xj(r)− xj−1(r)) = f(ξj(r))(xj(r)− xj−1(r)).

Thus,

∫ b

a

f = lim
r→∞

n(r)∑
j=1

f(ξj(r))(xj(r)− xj−1(r))

= lim
r→∞

n(r)∑
j=1

F (xj(r))− F (xj−1(r))

= lim
r→∞

(F (b)− F (a)) = F (b)− F (a).

2. Let c ∈ [a, b]. We wish to show that

lim
x→c

∫ x
a
f −

∫ c
a
f

x− c
= f(c).

Let ε > 0. Then, since f is continuous at c, ∃δ0 > 0 such that

|t− c| < δ0 =⇒ |f(t)− f(c)| < ε/2.

Choose δ = δ0. Suppose 0 < x− c < δ. If t ∈ [c, x], then

|t− c| ≤ |x− c| < δ = δ0.
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Thus, ∣∣∣∣ 1

x− c

∫ x

c

f(t) dt− f(c)
∣∣∣∣ = ∣∣∣∣ 1

x− c

∫ t

c

f(t) dt− 1

x− c

∫ c

x

f(c) dt

∣∣∣∣
=

1

x− c

∣∣∣∣∫ x

c

(f(t)− f(c)) dt
∣∣∣∣

≤ 1

x− c

∫ x

c

|f(t)− f(c)|dt

≤ 1

x− c

∫ x

c

ε/2 dt

=
1

x− c
· ε
2
(x− c) = ε

2
.

A similar argument holds for 0 < c− x < δ. Thus,

0 < |x− c| < δ =⇒

∣∣∣∣∣
∫ x
a
f −

∫ c
a
f

x− c
− f(c)

∣∣∣∣∣ ≤ ε

2
< ε.

Theorem 7 (Integration by Parts)
Suppose f, g ∈ C([a, b]) and f ′, g′ ∈ C([a, b]). Then,∫ b

a

f ′g = (f(b)g(b)− f(a)g(a))− intbafg′.

Proof : We have
(fg)′ = f ′g + fg′.

Therefore, by the Fundamental Theorem of Calculus,

f(b)g(b)− f(a)g(a) =
∫ b

a

f ′g +

∫ b

a

fg′.

Remark 8. We sometimes abbreviate Integration By Parts as IBP.

Lemma 9 (Riemann-Lebesgue)
Suppose f ∈ C([−π, π]) and f ′ ∈ C([−π, π]) with f 2π-periodic with f(−π) = f(π). For n ∈ N ∪ {0}, let

an =
1

π

∫ π

−π
f(x) sin(nx) dx

bn =
1

π

∫ π

−π
f(x) cos(nx) dx.

Then,
lim
n→∞

an = lim
n→∞

bn = 0.

Definition 10 (Fourier Coefficients)
The an, bn defined in the above lemma are referred to as the Fourier coefficients of f .
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Proof : Using IBP, we have

|bn| =
1

π

∣∣∣∣∫ π

−π
f(x) cos(nx) dx

∣∣∣∣
=

1

π

∣∣∣∣∫ π

−π
(
1

n
sin(nx))′f(x) dx

∣∣∣∣
=

∣∣∣∣ 1n (f(π) sin(nπ)− f(−pi) sin(n(−π)))− 1

n

∫ π

−π
sin(nx)f ′(x) dx

∣∣∣∣ .
Notice that sin(nπ) = sin(n(−π)) = 0 for all n ∈ N. Hence,

|bn| ≤
1

n

∫ π

−π
| sin(nx)||f ′(x)|dx

≤ 1

n

∫ π

−π
|f ′| → 0.

By the Squeeze Theorem, |bn| → 0. A similar arguments works for an.

Theorem 11 (Change of Variables)
Let ϕ : [a, b]→ [c, d] be continuously differentiable with ϕ′ > 0 on [a, b], ϕ(a) = c, and ϕ(b) = d. Then,∫ d

c

f(u) du =

∫ b

a

f(ϕ(x))ϕ′(x) dx.

Proof : Let F : [a, b]→ R such that F ′ = f . Then,

F (ϕ(x))′ = f(ϕ(x)).

Hence, by the FTC, ∫ b

a

f(ϕ(x))ϕ′(x) dx =

∫ b

a

F (ϕ(x))′ dx

= F (ϕ(b))− F (ϕ(a))

= F (d)− F (c).

Furthermore, by the FTC, ∫ d

c

f(u) du =

∫ d

c

F (u)′ du = F (d)− F (c).
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