
18.100A: Typed Lecture Notes

Lecture 1:
Sets, Set Operations, and Mathematical Induction

For this class, we will be using the book Introduction to Real Analysis, Volume I by Jĭrí Lebl [L]. I will use �

to end proofs of examples, and to end proofs of theorems.

Basic Set Theory
Remark 1. There are two main goals of this class:

1. Gain experience with proofs.

2. Prove statements about real numbers, functions, and limits.

Sets
A set is a collection of objects called elements or members of that set. The empty set (denoted ∅) is the

set with no elements. There are a few symbols that are super helpful to know as a shorthand, and will be used
throughout the course. Let S be a set. Then

• a ∈ S means that "a is an element in S."

• a /∈ S means that "a is not an element in S."

• ∀ means "for all."

• := means "define."

• ∃ means "there exists."

• ∃! means "there exists a unique."

• =⇒ means "implies."

• ⇐⇒ means "if and only if."

Definition 2 (Set Relations)
We want to relate different sets, and thus we get the following notation/definitions:

1. A set A is a subset of B, A ⊂ B, if every element of A is in B. Given A ⊂ B, if a ∈ A =⇒ a ∈ B.

2. Two sets A and B are equal, A = B, if A ⊂ B and B ⊂ A.

3. A set A is a proper subset of B, A ( B if A ⊂ B and A 6= B.

One way we can describe a set is using "set building notation". We write

{x ∈ A | P (x)} or {x | P (x)}

to mean "all x ∈ A that satisfies property P (x)". One example of this would be {x | x is an even number}. There
are a few key sets that we will use throughout this class:

1. The set of natural numbers: N = {1, 2, 3, 4, . . . }.

2. The set of integers: Z = {0, 1,−1, 2,−2, 3,−3, . . . }.
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3. The set of rational numbers: Q = {mn | m,n ∈ Z and n 6= 0}.

4. The set of real numbers: R.

It follows that
N ⊂ Z ⊂ Q ⊂ R.

The fourth item on this list brings us to an important question, and the first goal of our course:

Problem 3
How do we describe R?

We will answer this question in Lectures 3 and 4. In the meantime, let’s continue our study of sets and proof
methods. Given sets A and B, we have the following definitions:

1. The union of A and B is the set A ∪B = {x | x ∈ A or x ∈ B}.

2. The intersection of A and B is the set A ∩B = {x | x ∈ A and x ∈ B}.

3. The set difference of A and B is the set A \B = {x ∈ A | x /∈ B}.

4. The complement of A is the set Ac = {x | x /∈ A}.

5. A and B are disjoint if A ∩B = ∅.

Theorem 4 (De Morgan’s Laws)
If A,B,C are sets then

1. (B ∪ C)c = Bc ∩ Cc,

2. (B ∩ C)c = Bc ∪ Cc,

3. A \ (B ∪ C) = (A \B) ∩ (A \ C),

4. and A \ (B ∩ C) = (A \B) ∪ (A \ C).

We will prove the first statement to give an example of how such a proof would go, but the rest will be left to you.
Proof : Let B,C be sets. We must prove that

(B ∪ C)c ⊂ Bc ∩ Cc and Bc ∩ Cc ⊂ (B ∪ C)c.

If x ∈ (B ∪ C)c =⇒ x /∈ B ∪ C =⇒ x /∈ B and x /∈ C. Hence, x ∈ Bc and x ∈ Cc =⇒ x ∈ Bc ∩ Cc. Thus,
(B ∪ C)c ⊂ Bc ∩ Cc.
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If x ∈ Bc ∩ Cc then x ∈ Bc and x ∈ Cc =⇒ x /∈ B and x /∈ C. Hence, x /∈ B ∪ C =⇒ x ∈ (B ∪ C)c. Thus,
Bc ∩ Cc ⊂ (B ∪ C)c.

Mathematical Induction
We will now talk about some of the biggest proof methods there are. Firstly, note that N = {1, 2, 3, . . . } has an

ordering (as 1 < 2 < 3 < . . . ).

Axiom 5 (Well-ordering property)
The well-ordering property of N states that if S ⊂ N then there exists an x ∈ S such that x ≤ y for all y ∈ S.
In other words, there is always a smallest element.

Note that this is an axiom, and thus we have to assume this without proof.

Theorem 6 (Induction)
This concept was invented by Pascal in 1665. Let P (n) be a statement depending on n ∈ N. Assume that

1. (Base case) P (1) is true and

2. (Inductive step) if P (m) is true then P (m+ 1) is true.

Then, P (n) is true for all n ∈ N.

Proof : Let S = {n ∈ N | P (n) is not true}. We wish to show that S = ∅. We will prove this by contradiction.

Remark 7. When we prove something by contradiction, we assume the conclusion we want is false, and then show
that we will reach a false statement. Rules of logic thus imply that the initial statement must be false. Thus in this
case, we will assume S 6= ∅ and derive a false statement.

Suppose that S 6= ∅. Then, by the well-ordering property of N, S has a least element m ∈ S. Since P (1) is
true, m 6= 1, i.e. m > 1. Since m is a least element, m − 1 /∈ S =⇒ P (m − 1) is true. This implies that P (m)

is true =⇒ m /∈ S by assumption. But then m ∈ S and m /∈ S. This is a contradiction. Thus S = ∅ and hence
P (n) is true for all n ∈ N.

Let’s see an example of induction in action.

Theorem 8
For all c 6= 1 in the real numbers, and for all n ∈ N,

1 + c+ c2 + · · ·+ cn =
1− cn+1

1− c
.

Proof : We will prove this by induction. First, we prove the base case (n = 1). The left hand side of the
equation is 1+ c for n = 1. The right hand side is 1−c2

1−c = (1−c)(1+c)
1−c = 1+ c. Hence, the base case has been shown.

Assume that the equation is true for k ∈ N, in other words

1 + c+ c2 + · · ·+ ck =
1− ck+1

1− c
.
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Thus,

=⇒ 1 + c+ c2 + · · ·+ ck + ck+1 = (1 + c+ c2 + · · ·+ ck) + ck+1

=
1− ck+1

1− c
+ ck+1

=
1− ck+1 + ck+1(1− c)

(1− c)

=
1− c(k+1)+1

1− c
.

Therefore, our proof is complete.
Let’s do another example:

Theorem 9
For all c ≥ −1, (1 + c)n ≥ 1 + nc for all n ∈ N.

Proof : We prove this through induction. In the base case, we have: (1+ c)1 = 1+1 · c. For the inductive step,
suppose that

(1 + c)m ≥ 1 +mc.

Then,

(1 + c)m+1 = (1 + c)m · (1 + c).

By assumption,

≥ (1 +mc) · (1 + c)

= 1 + (m+ 1)c+mc2

≥ 1 + (m+ 1)c.

By induction, our proof is complete.
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