
18.100A: Typed Lecture Notes

Lecture 8:
The Squeeze Theorem and Operations Involving Convergent Sequences

Facts About Limits

Theorem 1 (Squeeze Theorem)
Let {an}, {bn}, and {xn} be sequences such that ∀n ∈ N,

an ≤ xn ≤ bk.

Suppose that {an} and {bn} converge and

lim
n→∞

an = x = lim
n→∞

bn.

Therefore, {x} converges and limn→∞ xn = x.

Remark 2. We sometimes abbreviate the Squeeze Theorem to ST.

Proof : Let ε > 0. Since limn→∞ an = x, there exists an M0 ∈ N such that for all n ≥M0,

|an − x| < ε =⇒ x− ε < an.

Since limn→∞ bn = x, ∃M1 ∈ N such that ∀n ≥M1,

|bn − x| < ε =⇒ bn < x+ ε.

Choose M = max{M0,M1}. Then, if n ≥M , then

x− ε < an ≤ xn ≤ bn < x− ε =⇒ |xn − x| < ε.

Therefore, {xn} is convergent and limn→∞ xn = x.

Theorem 3
Another way to check that a sequence xn → x, is stated below:

lim
n→∞

xn = x ⇐⇒ lim
n→∞

|xn − x| = 0.

Hence, we can consider a sequence like the following:

Example 4
Show that

lim
n→∞

n2

n2 + n+ 1
= 1.
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Proof : We have ∣∣∣∣ n2

n2 + n+ 1
− 1

∣∣∣∣ = ∣∣∣∣ −n− 1

n2 + n+ 1

∣∣∣∣ = n+ 1

n2 + n+ 1
≤ n+ 1

n2 + n
=

1

n
.

Thus,

0 ≤
∣∣∣∣ n2

n2 + n+ 1
− 1

∣∣∣∣ ≤ 1

n
→ 0 =⇒ lim

n→∞

∣∣∣∣ n2

n2 + n+ 1
− 1

∣∣∣∣ = 0

by the Squeeze Theorem. �

Question 5. How do limits interact with ordering?

Theorem 6
Let {xn} and {yn} be sequences of real numbers. Then,

1. if {xn} and {yn} are convergent sequences and ∀n ∈ N xn ≤ yn, then
limn→∞ xn ≤ limn→∞ yn.

2. if {xn} is a convergent sequence and ∀n ∈ N x ≤ xn ≤ bn then a ≤ limn→∞ xn ≤ b.

Proof :

1. Let x = limn→∞ xn and y = limn→∞ yn. Suppose for the sake of contradiction that y < x. Then, ∃M0 ∈ N
such that ∀n ≥M0

|yn − y| <
x− y
2

And ∃M1 ∈ N such that for all n ≥M1,
|xn − x| <

x− y
2

.

Then, if M =M0 +M1 ≥ max{M0,M1},

yM <
x− y
2

+ y =
x+ y

2
= x− x− y

2
+ x < xM .

However, this would imply that yM < xM which contradicts ∀n ∈ Nxn ≤ yn.

2. Apply part 1 to proof part 2, by considering yn = a ≤ xn ≤ b = zn for all n ∈ N.

Question 7. How do limits interact with algebraic operations?

Theorem 8
Suppose limn→∞ xn = x and limn→∞ yn = y. Then,

1. {xy + yn}n is convergent and limn→∞(xn + yn) = x+ y.

2. ∀c ∈ R, {cxn}n is convergent and limn→∞ cxn = cx.

3. {xn · yn} is convergent and limn→∞ xnyn = xy.

4. If ∀n ∈ N, yn 6= 0 and y 6= 0, then {xn/yn}n is convergent and

lim
n→∞

xn
yn

=
x

y
.

Proof :
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1. Let ε > 0. Then, since xn → x, ∃M0 ∈ N such that ∀n ≥ M0, |xn − x| < ε
2 . Since yn → y, ∃M1 ∈ N such

that ∀n ≥M1, |yn − y| < ε
2 . Hence, letting M = max{M0,M1}, we get for all n ≥M ,

|xn + yn − (x+ y)| ≤ |xn − x|+ |yn − y| <
ε

2
+
ε

2
= ε.

2. Let ε > 0. Since xn → x, ∃M0 ∈ N such that ∀n ≥M0, |xn − x| < ε
|c|+1 . Let M =M0. Then, ∀n ≥M ,

|cxn − cx| = |c||xn − x| ≤
|c|
|c|+ 1

· ε < ε

since |c|
|c|+1 < 1.

3. Since yn → y, {yn} is bounded. In other words, ∃B ≥ 0 such that ∀n ∈ N, |yn| ≤ B. Then,

|xnyn − xy| = |(xn − x)yn + (yn − y)x|

≤ |xn − x||yn + |x||yn − y|

≤ B|xn − x|+ |x||yn − y|.

Therefore, 0 ≤ |xnyn − xy| ≤ B|xn − x| + |x||yn − y|. Since B|xn − x| + |x||yn − y| → 0, by the Squeeze
Theorem limn→∞ |xnyn − xy| = 0.

4. We prove 1
yn
→ 1

y . We first prove ∃b > 0 such that ∀n ∈ N, |yn| ≥ b. Since yn → y and y 6= 0, ∃M0 ∈ N such
that ∀n ≥M0,

|yn − y| <
|y|
2
.

By the Triangle Inequality, ∀n ≥M0,

|y| ≤ |yn − y|+ |yn| ≤
|y|
2

+ |yn| =⇒ |yn| ≥
|y|
2
.

Let b = min
{
|y1|, . . . , |yM0−1|,

|y|
2

}
. Then, ∀n ∈ N, |yn| ≥ b. Therefore,

0 ≤
∣∣∣∣ 1yn − 1

y

∣∣∣∣ = |yn − y||yn||y|
≤ 1

b|y|
|yn − y|.

By the Squeeze Theorem, limn→∞

∣∣∣ 1
yn
− 1

y

∣∣∣ = 0. Therefore, limn→∞
1
yn

= 1
y . Furthermore, by the proof

before this (3.), it follows that limn→∞

(
xn · 1

yn

)
= x

y .

Remark 9. By induction, one can prove that

lim
n→∞

(xn)
k = xk.

Theorem 10
If {xn} is a convergent sequence such that ∀n ∈ N, xn ≥ 0, then {√xn} is convergent and

lim
n→∞

√
xn =

√
lim
n→∞

xn.

Proof : Let x = limn→∞ xn.
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Case 1: x = 0. Let ε > 0. Then, since xn → 0, there exists an M0 ∈ N such that ∀n ≥M0, xn = |xn − 0| < ε2.
Choose M =M0. Then, ∀n ≥M ,

|
√
xn −

√
0| =

√
xn <

√
ε2 = ε.

Case 2: x > 0. We have ∀n ∈ N,

|
√
xn −

√
x| =

∣∣∣∣√xn −√x√
xn +

√
x
· (
√
xn +

√
x)

∣∣∣∣
=

1
√
xn +

√
x
|xn − x|

≤ 1√
x
|xn − x|.

Hence,

0 ≤ |
√
xn −

√
x| ≤ 1√

x
|xn − x|

∀n ∈ N. Hence, by the Squeeze Theorem,
lim
n→∞

|
√
xn −

√
x| = 0.

Remark 11. Why must we do casework in the above proof?

Theorem 12
If {xn} is convergent and limn→∞ xn = x, then {|xn|} is convergent and limn→∞ |xn| = |x|.

Proof : Firstly, note that ∀x ∈ R,
√
x2 = |x|. Then,

lim
n→∞

|xn| = lim
n→∞

√
x2n =

√
x2 = |x|

by the previous theorem.

Theorem 13
If c ∈ (0, 1), then limn→∞ cn = 0. If c > 1, then {cn} is unbounded.

Proof : If 0 < c < 1, we claim that ∀n ∈ N, 0 < cn+1 < cn < 1. We can prove this through induction. Firstly,
notice that 0 < c2 < c < 1 since c > 0 and c < 1. Now assume that 0 < cm+1 < cm. Then, multiply by c > 0 to
obtain

0 < cm+1 · c = c(m+1)+1 < cm · c = c(m+1).

By induction, our claim holds. Thus, {cn} is a monotone decreasing sequence and is bounded below. Thus, {cn}
is convergent. Let L = limn→∞ cn. We will prove that L = 0. Let ε > 0. Then, ∃M ∈ N such that ∀n ≥ M ,
|cn − L| < (1− c) ε2 . Therefore,

(1− c)|L| = |L− cL| = |L− cM+1 + cM+1 − cL|

≤ |L− cM+1|+ c|cM − L|

< (1− c) ε
2
+ c(1− c) ε

2
< (1− c)ε.

Therefore, ∀ε > 0, |L| < ε =⇒ L = 0.
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Now let c > 1. We have to show that ∀B ≥ 0, ∃n ∈ N such that cn > B. Let B ≥ 0. Choose n ∈ N such that
n > B

c−1 . Then,
cn = (1 + (1− c))n ≥ 1 + n(c− 1) ≥ n(c− 1) > B.

To see why this center inequality is true, see the last theorem shown in Lecture 1.
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