
18.100A: Typed Lecture Notes

Lecture 11:
Absolute Convergence and the Comparison Test for Series

Recall 1
Last time we showed that if

∑
xn converges then limn→∞ xn = 0.

Question 2. Is the converse true? Does limn→∞ xn = 0 =⇒
∑
xn converges?

Theorem 3
The series

∑∞
n=1

1
n does not converge.

Proof : We will show that there exists a subsequence of sm =
∑m
n=1

1
n which is unbounded, which will imply the

series diverges. Consider, for ` ∈ N,

s2` =

2`∑
n=1

1

n
.

Then,

s2` = 1 +

(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+ . . .

(
1

2`−1 + 1
+ · · ·+ 1

2`

)

= 1 +
∑̀
λ=1

2λ∑
n=2λ−1+1

1

n

≥ 1 +
∑̀
λ=1

2λ∑
n=2λ−1+1

1

2λ

= 1 +
∑̀
λ=1

1

2λ
(2λ − (2λ−1 + 1) + 1)

= 1 +
∑̀
λ=1

2λ−1

2λ

= 1 +
`

2
.

Thus, {s2`}∞`=1 is unbounded which implies {s2`} does not converge.

Remark 4. The series
∑

1
n is called the harmonic series.

Theorem 5
Let α ∈ R and

∑
xn and

∑
yn be convergent series. Then the series

∑
(αxn + yn) converges and∑

(αxn + yn) = α
∑

xn +
∑

yn.
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Proof : The partial sums satisfy
m∑
n=1

(αxn + yn) = α

m∑
n=1

xn +

m∑
n=1

yn.

By linear properties of limits, it follows that

lim
m→∞

m∑
n=1

(αxn + yn) = α
∑

xn +
∑

yn.

Series with non-negative terms are easier to work with than general series as then {sn} is a monotone sequence.

Theorem 6
If ∀n ∈ N xn ≥ 0, then

∑
xn converges if and only if {sm} is bounded.

Proof : If xn ≥ 0 for all n ∈ N then

sm+1 =

m+1∑
n=1

xn =

m∑
n=1

xn + xm+1 = sm + xm+1 ≥ sm

Thus, {sm} is a monotone increasing sequence. Therefore, {sm} converges if and only if {sm} is bounded.

Definition 7∑
xn converges absolutely if

∑
|xn| converges.

Theorem 8
If
∑
xn converges absolutely then

∑
xn converges.

Proof : Suppose
∑
|xn| converges. We will then show that

∑
xn is Cauchy.

Claim: ∀m ≥ 2, |
∑m
n=1 xn| ≤

∑m
n=1 |xn|. We prove this claim by induction. For m = 2, this states that

|x1 + x2| ≤ |x1|+ |x2|, which follows by the Triangle Inequality. Suppose for all
∣∣∣∑`

n=1 xn

∣∣∣ ≤∑`
n=1 |xn|. Then,∣∣∣∣∣

`+1∑
n=1

xn

∣∣∣∣∣ ≤
∣∣∣∣∣∑̀
n=1

xn

∣∣∣∣∣+ |x`+1| ≤
∑̀
n=1

|xn|+ |x`+1| =
`+1∑
n=1

|xn|.

We now prove that
∑
xn is Cauchy. Let ε > 0. Since

∑
|xn| converges,

∑
|xn| is Cauchy. Therefore, there exists

an M0 ∈ N such that for all ` > m ≥M0, ∑̀
n=m+1

|xn| < ε.

Choose M =M0. Then, for all ` > m ≥M ,∣∣∣∣∣ ∑̀
n=m+1

xn

∣∣∣∣∣ ≤ ∑̀
n=m+1

|xn| < ε.

Hence,
∑
xn is Cauchy, and thus converges.

Remark 9. We will see that
∑∞
n=1

(−1)n
n is convergent but not absolutely convergent.

Notice that it is immediately clear that this series is not absolutely convergent as
∑∣∣∣ (−1)nn

∣∣∣ =
∑

1
n (the

harmonic series), which doesn’t converge.
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Convergence tests

Theorem 10 (Comparison Test)
Suppose for all n ∈ N 0 ≤ xn ≤ yn. Then,

1. if
∑
yn converges, then

∑
xn converges.

2. if
∑
xn diverges, then

∑
yn diverges.

Proof :

1. If
∑
yn converges, then {

∑m
n=1 yn}

∞
m=1

is bounded. In other words, there exists a B ≥ 0 such that for all
m ∈ N,

m∑
n=1

yn ≤ B.

Thus, for all m ∈ N,
∑m
n=1 xn ≤

∑m
n=1 yn ≤ B. Therefore, the partial sums of {xn} are bounded, which

implies
∑
xn converges.

2. If
∑
xn diverges, then {

∑m
n=1 xn}

∞
m=1

is unbounded. We now prove that{
m∑
n=1

yn

}∞
m=1

is also unbounded. Let B ≥ 0. Then, ∃m ∈ N such that

m∑
n=1

xn ≥ B.

Therefore,
∑m
n=1 yn ≥

∑m
n=1 xn ≥ B. Thus, {

∑m
n=1 yn}

∞
m=1

is unbounded, which implies
∑
yn diverges.

Remark 11. We will see that geometric series and the Comparison Test imply everything!

Theorem 12
For p ∈ R, the series

∑∞
n=1

1
np converges if and only if p > 1.

Proof : ( =⇒ ) We prove this direction through contradiction. Suppose
∑∞
n=1

1
np converges and p ≤ 1. Then,

1
np ≥

1
n , and

∑
1
n diverges. Therefore, by the Comparison Test,

∑
1
np also diverges. Hence, if

∑
1
np converges,

then p > 1.
(⇐= ) Suppose p > 1. We first prove that a subsequence of the partial series is bounded.

3



Claim 1: ∀k ∈ N, s2k ≤ 1 + 1
1−2−(p−1) . Proof:

s2k = 1 +

k∑
`=1

2`∑
n=2`−1+1

1

np

≤ 1 +

k∑
`=1

2`∑
n=2`−1+1

1

(2`−1 + 1)p

≤ 1 +

k∑
`=1

2−p(`−1)(2` − (2`−1 + 1) + 1)

= 1 +

k∑
`=1

2−(p−1)(`−1)

= 1 +

k−1∑
`=0

2−(p−1)`

≤ 1 +

∞∑
`=0

2−(p−1)`

= 1 +
1

1− 2−(p−1)

using the fact that p− 1 > 0, and using properties of geometric series. Thus, Claim 1 is proven.
Claim 2: {sm =

∑m
n=1

1
np } is bounded. Proof: Let m ∈ N. Since 2m > m, we have that

sm =

m∑
n=1

1

np
≤

2m∑
n=1

n−p ≤ 1 +
1

1− 2−(p−1)
.

Hence, the partial sums are bounded, which implies {sm} converges.
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