
18.100A: Typed Lecture Notes

Lecture 3:
Cantor’s Remarkable Theorem

and the Rationals’ Lack of the Least Upper Bound Property

Question 1. Is anything bigger than N?

If A is a set then P(A) = {B | B ⊂ A}. Here are a few examples:

1. A = ∅ then P(A) = {∅}.

2. A = {1}, then P(A) = {∅, {1}}.

3. A = {1, 2}, then P(A) = {∅, {1}, {2}, {1, 2}}.

In general, if |A| = n then |P(A)| = 2n. This is why we call P(A) the power set of A.

Theorem 2 (Cantor)
If A is a set, then |A| < |P(A)|.

Remark 3. Therefore,
N < |P(N)| < |P(P(N))| < . . . .

Hence, there are an infinite number of infinite sets.

Proof : Define the function f : A → P(A) by f(x) = {x}. Then, f is 1-1– as if {x} = {y} =⇒ x = y.
Thus, |A| ≤ |P(A)|. To finish the proof now all we need to show is that |A| 6= |P(A)|. We will do so through
contradiction. Suppose that |A| = |P(A)|. Then, there exists a surjection g : A→ P(A). Let

B := {x ∈ A | x /∈ g(x)} ∈ P(A).

Since g is surjective, there exists a b ∈ A such that g(b) = B. There are two cases:

1. b ∈ B. If this is the case, then b /∈ g(b) = B =⇒ b /∈ B.

2. b /∈ B. If this is the case, then b /∈ g(b) = B =⇒ b ∈ B.

In either case we obtain a contradiction. Thus, g is not surjective =⇒ |A| 6= |P(A)|.

Remark 4. This is another proof method: casework. If the conclusion for every case is true, then the conclusion
must be true.

Corollary 5
For all n ∈ N ∪ {0}, n < 2n.

Remark 6. This can also be shown by induction, see Assignment 1.
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Real Numbers
Remark 7. In a sense, to be made precise, the set of real numbers is the unique set with all of the algebraic and
ordering properties of the rational numbers, but none of the holes.

Problem 8
Now let’s try to precisely describe R.

We will start by stating what our end result will be, and then we will derive it:

Theorem 9 (Real Numbers (R))
There exists a unique ordered field containing Q with the least upper bound property. We denote this
field by R.

Ordered Sets & Fields

Definition 10 (Ordered set)
An ordered set is a set S with a relation < called an "ordering" such that

1. ∀x, y ∈ S either x < y, y < x, or x = y.

2. If x < y and y < z then x < z.

Here are a few examples and one non-example:

• Z is an ordered set, with the relation that m > n ⇐⇒ m− n ∈ N.

• Q is an ordered set, with the relation that p > q ⇐⇒ ∃m,n ∈ N such that p− q = m
n .

• Q×Q is an ordered set with the relation (q, r) > (s, t) ⇐⇒ q > s or q = s and r > t.

• Consider the set P(N). Let A,B ∈ P(N) and let A ≺ B if A ⊂ B. This is NOT an ordered set– it doesn’t
satisfy the first property of an ordered set.

Definition 11 (Bounded Above/Below)
Let S be an ordered set and let E ⊂ S. Then,

1. If there exists a b ∈ S such that x ≤ b for all x ∈ E, then E is bounded above and b is an vocab of E.

2. If ∃c ∈ S such that x ≥ c for all x ∈ E, then E is bounded below and c is a lower bound of E.

From here, there are some very important definitions in real analysis. We say that b0 is the least upper
bound, or the supremum of E if

A) b0 is an upper bound for E and

B) if b is an upper bound for E then b0 ≤ b.

We denote this as b0 = supE. Similarly, we say that c0 is the greatest lower bound, or the infinimum of E if

A) c0 is a lower bound for E and

B) if c is a lower bound for E then c < c0.

We denote this as c0 = inf E.
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Example 12
Here are a few examples of infimums and supremums:

• S = Z and E = {−2,−1, 0, 1, 2}. Then, inf E = −2 and supE = 2.

• But, note that the supremum nor the infimum need to be in E. Consider the sets S = Q and

E = {q ∈ Q | 0 ≤ q < 1}.

Then, inf E = 0 ∈ E, but supE = 1 /∈ E.

• Furthermore, neither the supremum nor the infimum need exist. Consider the sets S = Z and E = N.
Then, inf E = 1, but supE does not exist as there is not an integer greater than all natural numbers.

Definition 13 (Least Upper Bound Property)
An ordered set S has the least upper bound property if every E ⊂ S which is nonempty and bounded
above has a supremum in S.

One example of such a set is
−N = {−1,−2.− 3. . . . }.

Then, E ⊂ S is bounded above if and only if −E ⊂ N is bounded below. By the well-ordering principle, −E has a
least element x ∈ −E, and thus −x = supE.

We will now show that Q does not have the least upper bound property.

Theorem 14
If x ∈ Q and

x = sup{q ∈ Q | q > 0, q2 < 2}

then x > 0 and x2 = 2.

Proof : Let E equal the set on the right hand side, and suppose x ∈ Q such that x = supE. Then, since 1 ∈ E

and x is an upper bound for E, 1 ≤ x =⇒ x > 0.
We now prove that x2 ≥ 2. Suppose that x2 < 2. Define h = min

{
1
2 ,

2−x2

2(2x+1)

}
< 1. Then, if x2 < 2 then h > 0.

We now prove that x+ h ∈ E. Indeed,

(x+ h)2 = x2 + 2xh+ h2

< x2 + h(2x+ 1)

as h < 1. Hence

(x+ h)2 ≤ x2 + (2− x2) · 2x+ 1

2(2x+ 1)

= x2 +
2− x2

2

< 2 +
2− 2

2

= 2.

Therefore, x + h ∈ E and x + h > x =⇒ x is not an upper bound for E. Therefore, x 6= supE which is a
contradiction. Hence, x2 ≥ 2.
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We now prove that x2 ≤ 2. Suppose x2 > 2. Let h = x2−2
2x . Hence, if x2 > 2 then h > 0 and x− h > 0. We will

show that x− h is an upper bound for E. We have

(x− h)2 = x2 − 2xh+ h2

= x2 − (x2 − 2) + h2

= 2 + h2

> 2.

Let q ∈ E. Then, q2 < 2 < (x− h)2 =⇒ (x− h)2 − q2 > 0. Hence,

((x− h) + q)((x− h) + q) > 0 =⇒ (x− h)− q > 0.

Thus, for all q ∈ E, q < x− h < x =⇒ x 6= supE. This is a contradiction. Therefore, x2 = 2.

Theorem 15
The set E = {q ∈ Q | q > 0 and q2 < 2} does not have a supremum in Q.

Proof : Suppose there exists an x ∈ Q such that x = supE. Then, by our previous theorem, x2 = 2. In particular,
note that x > 1 as otherwise x ≤ 1 =⇒ 2 = x2 < 12. Thus, ∃m,n ∈ N such that m > n and x = m

n . Therefore,
∃n ∈ N such that nx ∈ N. Let

S = {k ∈ N | kx ∈ N}.

Then, S 6= ∅ since n ∈ S. By the well-ordering property of N, S has a least element k0 ∈ S. Let k1 = k0x− k0 ∈ Z.
Then, k1 = k0(x − 1) > 0 since k0 ∈ N and x > 1. Therefore, k1 ∈ N. Now x2 = 2 =⇒ x < 2, as otherwise
x2 > 4 > 2. Thus, k1 = k0(x− 1) < k0(2− 1) = k0. So, k1 ∈ N and k1 < k0 =⇒ k1 /∈ S as k0 is the least element
of S. But,

xk1 = k0x
2 − xk0 = 2k0 − xk0 = k0 − k1 ∈ N =⇒ k1 ∈ S.

This is a contradiction. Thus, 6 ∃x ∈ Q such that x = supE.
Q is an example of a field, which we will start to discuss in the next lecture.
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