18.100A: Typed Lecture Notes

Lecture 25:

Power Series and the Weierstrass Approximation Theorem

Last time, we asked three questions about interchanging limits:
Question 1. Hence, we ask three questions about interchanging limits:
1. If fr, : S = R, f, continuous and f, — f pointwise or uniform, then is f continuous?
2. If f : [a,b] = R, f, differentiable, and f, — [ with f] — g, then is f differentiable and does g = f'?

3. If frn i [a,b] = R, with f, and f continuous such that f,, — f, then does

[roef

The answer to the above questions are all no, if the convergence is pointwise as seen by the following coun-

terexamples:
. : . 0 zel0,1) .
1. Let fn(z) = 2™ on [0, 1] is continuous Vn. As we noted earlier, f,(x) — f(z) = . Notice that
1 =1

f is not continuous.

2. Let fo(z) = j::ll on [0,1]. Then, f,, — 0 pointwise on [0, 1]. However,
0 z€][0,1)
fu(@) = glx) = :
1 z=1
Thus, g(x) # (0) =0 at = 1.
3. Consider the functions
1
An’x T e [0, %}
fo(x)=<C4dn —4n2z z € [2%, %]
0 ve L]

as described in the previous lecture. Then, f,(xz) — 0 pointwise on [0,1] as we showed last time. However,
1 1 1 1
/0 fn = 5 (base) (hight) = 520 = 15 /0

We now prove that the answer to the three questions above is yes if convergence is uniform.

Theorem 2

If f, : S — R is continuous for all n, f: S — R, and f,, — f uniformly, then f is continuous.

Proof: Let c € S and let € > 0. Since f,, — f uniformly, 3IM € N such that Vn > M, Vy € S,

Falv) ~ F)] < 5



Since fypr : S — R is continuous, 3§y > 0 such that V|z — ¢| < dy,
far() = far(e)] < 5.
Choose § = y. If |# — ¢| < 8, then
(@) = £ < 17 @) + Far@)] + 1 as(€) = £+ () = Faa(e)

<€+E+€_
373737 ¢

Theorem 3
If f,, : [a,b] = R is continuous for all n, f : [a,b] — R and f, — f uniformly, then

LW%%LV.

Proof: Let € > 0. Since f,, — f uniform, M,y € N such that ¥Yn > My, Vz € [a, b],

€

b—a

< [n< [ 7o =e

|fn(2) = f(@)] <

Then, for all n > M = M,, we have

b b
/ fn - / f
Remark 4. Notationally, this states that

b b b
n—roo a a n—roo a

Theorem 5

If f,, : [a,b] = R is continuously differentiable, f : [a,b] = R, g : [a,b] — R, and

fn — f pointwise,

fl — g uniformly,

then f is continuously differentiable and g = f’.

Proof: By the FTC, VnVz € [a,b],
fulo) = fule) = [ 11

Thus, by the previous two theorems,
f(.l?) - f(a) = (f7z<x) - .f’rb(a))

= lim f!

lim
n— o0

I
Q\a
<



Therefore, f(z) = f(a) + f; g. Thus, by the FTC, f is differentiable and f' = (fax 9) =g. O
We now return back to our study of power series, answering some questions we asked at the beginning of Lecture
23.

Theorem 6
Let 3222 a;j(z— 70)? be a power series of radius of convergence p € (0, oc]. Then, Vr € (0,p), > o aj(z— x0)’

converges uniformly on [zg — 7, z¢ + 7].

Proof: Let 7 € [0,p). Then, Vj € NU{0}, Vz € [zg — r, ¢ + 7],

|aj(z — x0)’| < |aj|r! =: M.

Now,
, , T p<o
limj — coM 7 = lim la;|Yir =P P
! Jroe 0 p=o
since p~! = lim;_, o |a;|*/7. Since r < p, we have
. o0
lim Mjl/J <l = ZM]- converges.
j—oo ,
7=0
By the Weierstrass M-test, it follows that Y 7% a;(z — 70)? converges uniformly on [zg — 7,20 + 7]. O

Theorem 7

Let Y 72 aj(z — xz0)’ be a power series with radius of convergence p € (0, oc]. Then,

1. Ve € (xg — p,xo + p), Z;io aj(x — x0) is differentiable at ¢ and
d 0o ' o .
T Zaj(a: —x)! = Zja,j(x )
7=0 3=0

2. Va,b such that zp —p<a <b<zg+p,

b oo 00 1 j+1
5 4 (b= 20} (o a0y
aj(x—x9) de = g aj< 3 - . .
/a = J+1 J+1

Jj=0

Remark 8. Since

)(j+1)/j

lim (7 + 1)]aj1])"// = lim (((j +1)aja YUY = lim |ax|"* = p,
J—reo J—0 k—00

1. implies Y aj(x — o)’ is infinitely differentiable and

d* .
klap = (dsck Zaj(x — x0)3> |$:w0.

Weierstrass Approximation Theorem

Remark 9. This theorem essentially states: "Every continuous function on |a,b] is almost a polynomial."



Theorem 10 (Weierstrass Approximation Theorem)

If f € C([a,b]), there exists a sequence of polynomials {P,} such that

P, — f uniformly on [a,b].

The idea of the proof is to choose a suitable sequence of polynomials {@Q,, }, such that @Q,, behaves like a ‘Dirac

delta function’ as ntooco. Then, the sequence of polynomials P, (z) = fol Qn(x — t)f(t)dt converges to f(x) as

n — co. We will prove this momentarily, but first we need to do the ground work.

Notice that we only need to consider a = 0 and b = 1, with f(0) = f(1) = 0. If we prove this case, then for a

general f € C ([0,1]), 3 a sequence of polynomials

Py(w) = f(z) = f(0) = 2(f(1) = f(0)) uniformly.

Hence,

Pu(x) = Pu(@) + J(0) + 2(f(1) - f(0) > f(z) uniformly.

Theorem 11
Let ¢, := (f1,(1 — 22)"dz)~" > 0, and let
Qn(2) = cp(1 — 2?)™.
Then,
1. vn, [1,Q,=1.
2. Vn, Qn(z) >0 on [—1,1], and

3. V6 € (0,1), @n — 0 uniformly on § < |z| < 1.

Before we prove this, here is a picture of @,:

'Pl(k\n!JL g Q\’\ 1< ll\‘l— (o DL{I‘Q thbjrlw\ LS

—_—

Proof:
2. Immediately clear.
L. f,ll Qn = cn fil(l — 22)"dx = 1 by definition of ¢,,.

3. We first estimate ¢,,. We have for all n € N and Vz € [-1,1],

(1—2*)">1—na’

waK

We proved this way earlier in the course by induction, but it also follows from the calculus we have proven as

g(z) = (1-2*)" = (1 - na?)



satisfies g(0) = 0, and
Jd@)=n-22(1-(1—-2H)"1) >0

in [0,1]. Thus, g(x) > 0 by the MVT.
Then,

1 /1(1 2)nd
— = —x x
Cn -1
1
:2/ (1—2*)"dz
0
/v
>2/ (1—2*)"dz
0
1/
22/ (1—nx2)dac
0
_of L _m s
- (ﬁ 3" )
4

Therefore, ¢, < y/n.
Let 6 > 0. We note lim,, o, v/1(1 — 62)" = 0. Then,
lim (v/n(1 —6%)™)Y™ = lim (n'/™)1/2(1 - 62)
n— 00 n—o0
=1-46<1
Therefore,

lim /n(1—6%)" = 0.

n—oo

Let € > 0, and choose M € N such that for all n > M,
Vn(l = 6" < e
Then, Vn > M and Vé < |z| <1,
len(1 — 22" < Vil —22)" < /a1l — 62" < e

O
We now prove the Weierstrass Approximation Theorem.
Proof: Suppose f € C(]0,1]), f(0) = f(1) = 0. We extend f to an element of C'(R) by setting f(z) = 0 for all
x ¢ [0,1]. We furthermore define

Py(x) = / FOQu(t — ) dt

= [ fen = = ar

Note that P, (z) is in fact a polynomial.



Furthermore, observe that for z € [0, 1],
1
Pa(@) = [ 10@u(t - 2)di
0
11—z
- [ Flo+ 0)Qu(t)dt

1
- [ faroauoa

The second equality is true by a change of variable, and the last equality is true as f(x +1¢) =0 for ¢ ¢ [—z,1 — z].

We now prove P,, — f uniformly on [0,1]. Let € > 0. Since f is uniformly continuous on [0, 1], 36 > 0 such
that Y|z —y| <0, |f(z) — f(y)| < §. Let C = sup{f(z) | = € [0,1]}, which exists by the Min/Max theorem i.e. the

EVT. ChOOSG M S N SuCh that V1 > M?
176 n -

Thus, Vn > M,Vz € [0,1], by the previous theorem,
1
\Pa(a) — £(2)] = ] [ =0 - 5@ dt'
- 1

< / 1= = F@lQu(at

sﬁggﬂx_w—ﬂ@QMom+/‘ e —1) — F(@)|Qu(t)dt

s<|tl<1

<5 [ @uarrvaa-gy [ ec
2 Ji<s Is<fel<1

< % +4C/n(1 = 6*)"

S
2 2 = €.

In the last minute of the course, Casey Rodriguez stated: "This was quite an experience; teaching to an empty

room. I hope you did get something out of this class. Unfortunately I wasn’t able to meet a lot of you, and that’s

one of the best parts of teaching...."



