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Compact Sets in Rn

Today, we will first discuss another useful concept tangentially related to metrics (norms), which will then motivate

an important concept: compact sets.

Have you heard of a norm in other contexts before? A classic place to first hear of a "norm" is in 18.02 with the

Euclidean norm, which defines the length of a vector in Rn. How does this definition fundamentally work? One way

to understand the idea of a Euclidean norm, is to visualize it as the distance between a point in Rn and the origin.

This gives a direct relationship between this word "norm" in this context, to a metric. Given this, we define a norm

in a more general context.

We first define a vector space.

Definition 1 (Vector Space)

A vector space V over a field k is a set of vectors which come with addition (+ : V × V → V ) and scalar

multiplication (· : k × V → V ) along with some classic axioms: commutativity, associativity, identity, and inverse

of addition, identity of multiplication, and distributivity.

For our purposes in this class, we will only study vector spaces over the field R. In essence, when we add two

elements in the vector space, we stay in the vector space, and you can multiply an element in the space by a constant

and stay in the space. The three key examples of a vector space, for our purposes, are Rn, Cn, and C0([a, b]) (or more

generally, Cn([a, b])). We can now define a norm:

Definition 2 (Norm)

A norm on a vector space V over the real numbers is a function ∥·∥ : V → [0,∞) satisfying the following three

properties:

1. Positive Definite: ∥v∥ ≥ 0 and ∥v∥ = 0 ⇐⇒ v = 0.

2. Homogeneity: ∥λv∥ = |λ|∥v∥ for all v ∈ V and λ ∈ R.

3. Triangle Inequality: ∥x + y∥ ≤ ∥x∥+ ∥y∥.

A vector space with a norm on it is defined as a normed space.

1



Remark 3. In a vector space V , 0 is always in V (why?). In PSET 2, you will directly show how the norm can relate

to metrics.

We can thus view some of the metrics we have defined thus far in the class to be analogous to norms.

Example 4 (Norm on Continuous Functions)

Show that ∥·∥ : C0([0, 1])→ [0,∞) defined by

∥f ∥ = sup
x∈[0,1]

|f (x)|

is a norm.

Proof: Most of this proof will follow directly from the proof given by Example 10 in Lecture 1, but I will write the

proof fully nonetheless.

1. It is clear that ∥f ∥ ≥ 0 for all f ∈ C0([0, 1]) as absolute values are always non-negative, and ∥f ∥ = 0 if and only

if ∀x ∈ [0, 1], f (x) = 0.

2. Let λ ∈ R. Then,

∥λf ∥ = sup
x∈[0,1]

|λf (x)| = sup
x∈[0,1]

|λ||f (x)| = |λ| sup
x∈[0,1]

|f (x)| = |λ|∥f ∥.

3. Let f , g ∈ C0([0, 1]). Then,

∥f + g∥ = sup
x∈[0,1]

|f (x) + g(x)| ≤ sup
x∈[0,1]

|f (x)|+ sup
x∈[0,1]

|g(x)| = ∥f ∥+ ∥g∥

by the triangle inequality we proved for the metric on the space of continuous functions.

Example 5

Show that ∥·∥ : C0([0, 1])→ [0,∞) defined by

∥f ∥ =
∫ 1
0

|f (x)| dx

is a norm.

Proof: This example is related to Example 20 in Lecture 1.

1. It is clear that ∥f ∥ ≥ 0 for all f ∈ C0([0, 1]) as absolute values are always non-negative. Additionally, notice that

|f ∥ = I1(f , 0) where I1 which we discussed in that example. Hence, since d is positive definite, I1(f , 0) = ∥f ∥ = 0
if and only if f = 0, which implies the norm is positive definite.

2. Let λ ∈ R. Then,

∥λf ∥ =
∫ 1
0

|λf (x)| dx =
∫ 1
0

|λ||f (x)| dx = |λ|
∫ 1
0

|f (x)| dx = |λ|∥f ∥

using the linearity of the integral.

3. The triangle inequality we proved for the metric I1 proves the triangle inequality here.

2



Given that the concept of a norm is very clearly analogous to metrics in some respects, you may wonder why we

study norms in particular. A few key remarks about this: firstly, 18.102 explores this concept much further. In essence,

norms help us understand vector spaces better, and 18.102 studies infinite dimensional vector spaces. (Conceptually:

infinite dimensional linear algebra.) Secondly, proving a given function is a norm is a similar process to proving a given

function is a metric, which is a useful skill.

Finally, norms give us an intuition behind magnitude. In R, the magnitude is again related to absolute values, the

very thing we used to motive metrics. In our last example, we could consider a function f to be large if ∥f ∥ is large

(this is not official terminology, just conceptual). What, then, does ∥f ′∥ convey? This would measure "how large"

or "how much change" f goes through over the interval [0, 1]. One could ask the question: How does ∥f ′∥ relate to

∥f ∥? This is a very interesting question, and becomes even more interesting in higher dimensions, but I digress.

Question 6. Why have we been studying metrics/norms on the space of continuous functions over intervals, [a, b] or

[0, 1], and not over R?

Notice, that we want both norms and metrics to be finite. However, scattered throughout our proofs, we have been

using the fact that continuous functions on bounded intervals are themselves bounded (the Extreme Value Theorem).

What condition would we need to impose on the space of continuous functions to get the metrics and norms to be

finite?

Let f ∈ C0(R). When will
∫∞
−∞ |f (x)| dx be finite? It will be finite if outside of some bounded interval, f = 0. This

space of functions is very useful to study, and even has its own name:

Definition 7 (Compact Support)

A function f ∈ C0(R) has compact support if f = 0 outside of some interval [−n, n] for a finite n.

Remark 8. The support of a function f ∈ C0(R) is the closure of the set

{x ∈ R | f (x) ̸= 0}.

A more general definition states that a function is compactly supported if it is zero outside of a compact set.
Before we study compact sets, I want to quickly bring up three small lemmas to serve as a starting point. If you

asked an analyst what intuition there is behind "compactness", many would say that compactness is a generalization

of finiteness. Compact sets are to continuous functions as finite sets are to functions in general. Hence, recall the

following three lemmas regarding finite sets.

Recall 9

Let A be a finite set of a metric space (X, d). Then,

• Every sequence in A has a convergent subsequence.

• A is closed and bounded.

• Given any function f : A→ R, f achieves a maximum and minimum on A, and f is bounded.

Proof:

1. Let {xn} be a sequence in A. Then, there are only finitely many values xi can take on, as A is finite. However,

given that a sequence is infinitely long, there must exist some element x ∈ A that is in the sequence {xn}
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infinitely many times. If this wasn’t the case, the sequence {xn} wouldn’t be infinitely long. Thus, take xnk = xi
for i ∈ I = {n ∈ N | xn = x}. Then, xnk → x as xnk = x for all k by construction.

2. Well firstly, we know that A is closed in X by the previous lecture. Furthermore, we know that A is bounded, as

we can simply fix an x ∈ A, and let B = maxi{d(xi , x)} for xi ∈ A.

3. To find the maximum and minimum, simply look at the image of A under f . There are only finitely many

elements in A, and then we can simply let

B1 = max
i
{f (xi) | xi ∈ A} and B2 = min

i
{f (xi) | xi ∈ A}.

We know B1 and B2 are achieved as there are only finitely many terms in A. It is then immediate to see then

that every function is bounded.

These are extremely nice properties! We will shortly see analogs of these lemmas with regards to compact sets,

but first:

Definition 10 (Covers)

Let A ⊂ X where X is a metric space. Then, {Ui}i∈I is an open cover of A if A =
⋃
i∈I Ui and Ui is open for

each i . A subcover of an open cover is a subcollection of the sets Ui that still cover A. A finite subcover of an

open cover is a finite subcollection of the sets Ui that still cover A.

Definition 11 (Compactness)

Let (X, d) be a metric space. A set A ⊂ X is sequentially compact if and only if every sequence in A has a

convergent subsequence in A. A set A ⊂ X is compact or topologically compact if every open cover of A has a

finite subcover.

Remark 12. Notice that the definition of sequential continuity is the same as the first lemma regarding finite sets we

talked about a second ago.

Conceptually, this idea can be kind of confusing, but let’s look at some examples.

Example 13

R is not a compact subset of R.

To see this, consider the open sets Uj = (−j, j) for j ∈ N. It is clear that the union of all the Uj will cover R. However,

is there a finite subcover? Assume for the sake of contradiction that there was a finite subcover. Then,

R =
n⋃
k=1

Ujk . = (−jk , jk).

However, notice jk ∈ R but jk /∈ (−jk , jk). Hence, we have found an open cover of R that does not have a finite

subcover.

Example 14

(0,1] is not compact or sequentially compact in R.
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Similarly, consider Uj = (1/j, 2) for j ∈ N. To see why sequential compactness fails, consider the subsequences of the

sequence
{
1
n

}
.

Example 15

[0, 1] is a compact subset of R.

Proof: We will prove this directly, though it will take some work. Ultimately, we will develop more theorems about

compact sets that will make similar examples like this easier. Take an open cover of [0, 1]

[0, 1] ⊆
⋃
i∈I
Ui .

Then, for every x ∈ [0, 1], we have that

[0, x ] ⊆
⋃
i∈I
Ui .

Hence, let

c = sup{x ∈ [0, 1] | [0, x ] is covered by finitely many elements in the open cover}.

Clearly, 0 ≤ c < 1, as the closed interval [0, 0] = {0} must be contained in one Ui . Hence, we want to show that

c = 1, in order to show that [0, 1] has a finite subcover. Assume for the sake of contradiction that c < 1]. Then, it

follows that c is contained in some open set, and thus contained in some open interval Ui . This implies that there is

an element c ′ such that c ′ > c and c ′ ∈ Ui . Thus, [0, c ′] is covered by finitely many open sets from the cover, which

is a contradiction. Therefore, c = 1.

Remark 16. Notice, that a similar proof will show that [a, b] is compact in R. Also note, that a similar proof can show

that [a, b]× [c, d ] is compact in R2, and so on and so forth. This will be useful for an optional problem on PSET 2.

We now want to prove some more general theorems regarding compact sets. Today, we will focus on compact sets

in Rn, and next time we will discuss compact subsets of general metric spaces.

By the previous few examples, we have some insight as to what compact sets in R might look like.

Theorem 17

Compacts sets in R are closed and bounded.

Proof: Assume that A ⋐ R. We want to take an open cover of A that shows its bounded. Pick an arbitrary p ∈ A.

Then,

A ⊂
∞⋃
i=1

B(p, i) = R.

Given that A is compact, and the right hand side is an open cover, there exists a finite subcover. Hence,

A ⊂
n⋃
k=1

B(p, ik) = B(p, in).

Therefore, A is bounded, as given any x ∈ A, d(x, p) ≤ in <∞.

We now prove closure. To do so, we want to show that X \ A is open. Let p ∈ X \ A. For arbitrary q ∈ A, define

Vq = B

(
p,
d(p, q)

2

)
and Wq = B

(
q,
d(p, q)

2

)
.
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Notice that Vq ∩Wq = ∅ for all q ∈ A. Furthermore, A ⊂
⋃
q∈AWq. Therefore, there exists a finite subcover of A,

given by A ⊂
⋃n
k=1Wqk .

Thus, consider the sets Vq1 , . . . , Vqk . Given that there are finitely many open sets, the intersection of them all

is open. Furthermore, by construction, for all qk ,Wqk ̸⊆ Vqk . Therefore,
⋂n
k=1 Vqk is a neighborhood of p, and⋂n

k=1 Vqk ∩K = ∅. We know this last intersection is the emptyset, as if it weren’t, then there would exist an element

in A in the intersection of the Vqs, and thus an element in a Wqj such that Wqj ∩ Vqj ̸= ∅, which is a contradiction.

Therefore, there exists a neighborhood of p contained in X \ A. Thus, X \K is open, and hence A is closed.

Notice that this proof does not rely on the fact that we are looking at R. In fact,

Lemma 18

A compact set in a metric space (X, d) is closed and bounded.

Is the converse true? To see why it is true in the case of R, we show a quick lemma.

Lemma 19

Let K be a compact set in a metric space (X, d), and let F be a closed subset of K. Then, F is a compact set.

Proof: Given that F is closed, F c is open. Hence, let {Ui}i∈I be an open cover of F . Then,

F ⊂ K ⊂ F c ∪
⋃
i∈I
Ui .

Therefore, given K is compact, there exists a finite subcover of K. Hence, there is a finite open subcover of F .

Theorem 20 (Heine-Borel)

Let K be a subset of R. Then, K is compact if and only if K is closed and bounded.

Proof: We know that compact implies closed and bounded, and we thus need to prove the other direction! Let K be

a closed and bounded subset of R. Then, given K is bounded, K is contained in some closed interval [a, b], which we

have shown to be compact. Hence, K is a closed subset of a compact set, and thus K is compact.

Remark 21. The Heine-Borel theorem does not carry over to an arbitrary metric space. Here, we used the fact that

[a, b] is compact in R. A metric space is said to have the Heine-Borel property if every closed and bounded set in X

is compact.

At this point, you may be wondering why we mention the idea of sequential compactness, and how this actually

relates to the idea of topological compactness. Firstly, recall the following theorem:

Theorem 22 (Bolzano-Weierstrass)

Every bounded sequence in Rn has a convergent subsequence.

Lemma 23

Consider A ⊂ Rn such that A is closed and bounded. Then, A is sequentially compact.
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Proof: Let {xn} be a sequence in A. Then {xn} is bounded as A is bounded, and thus by Bolzano-Weierstrass, there

exists a convergent subsequence of {xn}. How do we know that {xn} converges in A? This uses the fact that A is

closed. Therefore, every sequence in A has a convergent subsequence in A.

Is the converse true? Yes!

Theorem 24 (Bolzano-Weierstrass)

Let K be s subset of R. Show that K is sequentially compact if and only if K is closed and bounded.

Proof: We have shown the backwards direction, and we now show the forward direction. Let K ⊂ R be sequentialy

compact. Let {xn} be a sequence in K that converges to arbitrary x ∈ R. Then, every subsequence of {xn} converges

to x . Therefore, x ∈ K. Hence, K contains all of its limit points, and is thus closed.

Suppose for the sake of contradiction that K is unbounded. Then, there is a sequence {xn} in K such that

|xn| → ∞ as n → ∞. Therefore, every subsequence of {xn} is unbounded and diverges, and thus {xn} has no

convergent subsequence. This is a contradiction as K is sequentially compact.

Remark 25. You can generalize this proof to Rn; try to do so!

Corollary 26

Given A ⊂ R, A is sequentially compact if and only if A is topologically compact.

In our next lecture, we will show this is true for all metric spaces! However, the proof will need to be different, as a

closed and bounded set is not necessarily compact in a general metric space.
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