18.S097: Introduction to Metric Spaces

Lecturer: Paige Dote

IAP 2022

4 January 13, 2022

Compact Metric Spaces

Last time, we showed that a set in \mathbb{R}^{n} is sequentially compact if and only if it is topologically compact, by showing

$$
\text { sequentially compact } \Longleftrightarrow \text { closed and bounded } \stackrel{\text { Heine-Borel }}{\Longleftrightarrow} \text { topologically compact. }
$$

However, by the previous remark, we don't have Heine-Borel for arbitrary metric spaces. Which begs the question: is sequentially compact the same as topologically compact in metric spaces? The answer is yes. To prove this, we first show a handful of preliminary results.

Lemma 1 (Lebesgue Number Lemma)

Let (X, d) be a sequentially compact metric space and $\left\{U_{i}\right\}_{i \in \prime}$ be an open cover of X. Then, there exists an $r>0$ such that for each $x \in X, B_{r}(x) \subseteq U_{i}$ for some $i \in I$.

Proof: Before proving this, try to visualize the result!
We prove this lemma through contradiction. Assume that for some $r>0$ there exists an $x \in X$ (possibly depending on r) such that for each $i \in I, B_{r}(x) \nsubseteq U_{i}$. Consider the sequence $\left\{x_{n}\right\}_{n}$ in X such that $B_{1 / n}\left(x_{n}\right) \nsubseteq U_{i}$ for all $i \in I$.

Given that X is sequentially compact, $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}_{k}$. Let $x_{n_{k}} \rightarrow x \in X$. Given that $\left\{U_{i}\right\}$ is an open cover of X, there exists a $U_{i 0}$ such that $x \in U_{i_{0}}$. Given $U_{i_{0}}$ is open, it also follows that there exists an r_{0} such that $B_{r_{0}}(x) \subseteq U_{i_{0}}$. Hence, choose N large enough such that $d\left(x, x_{N}\right)<\frac{r_{0}}{2}$ and $\frac{1}{N}<\frac{r_{0}}{2}$. Then, if $y \in B_{1 / N}\left(x_{N}\right)$, then

$$
d(x, y) \leq d\left(x, x_{N}\right)+d\left(x_{N}, y\right)<r_{0} .
$$

Therefore, $y \in B_{r_{0}}(x) \subseteq U_{i_{0}}$. Hence,

$$
B_{1 / N}\left(x_{N}\right) \subseteq B_{r_{0}}(x) \subseteq U_{i_{0}}
$$

which is a contradiction.
We call this r the Lebesgue number of the open cover of X, which is useful in other applications.

Definition 2

A metric space X it totally bounded if, for every $\epsilon>0$, there exists $x_{1}, x_{2}, \ldots, x_{k} \in X$ with k finite such that $\left\{B_{\epsilon}\left(x_{i}\right) \mid 1 \leq i \leq k\right\}$ is an open cover of X.

Lemma 3

A metric space X is sequentially compact implies that X is totally bounded.

Proof: Assume that X is sequentially compact and not totally bounded. Therefore, there exists an $\epsilon>0$ such that X cannot be covered by a collection of open sets of only finitely many ϵ-balls. Hence, let $x_{1} \in X, x_{2} \in X \backslash B_{\epsilon}\left(x_{1}\right)$, then $x_{3} \in X \backslash B_{\epsilon}\left(x_{1}\right) \backslash B_{\epsilon}\left(x_{2}\right)$ and so on. We know that there exists such x_{i} by the previous statement. Hence, for all $i \neq j, d\left(x_{i}, x_{j}\right) \geq \epsilon$. Therefore, $\left\{x_{n}\right\}_{n}$ has no convergent subsequence as if there was a convergent subsequence it would be Cauchy, and the previous line shows that no subsequence of $\left\{x_{n}\right\}$ will be Cauchy. This is a contradiction to X being sequentially compact.

Theorem 4

A metric space X is (topologically) compact if and only if X is sequentially compact.

Proof: We first show that topologically compact implies sequentially compact. Assume for the sake of contradiction there there exists a sequence $\left\{x_{n}\right\}_{n}$ in X with no convergent subsequence. Notice that no term in the sequence can appear infinitely many times, as otherwise there would be a trivial subsequence of $\left\{x_{n}\right\}$. Hence, we assume without loss of generality that $x_{i} \neq x_{j}$ if $i \neq j$. Furthermore, notice then that for every n there exists an $\epsilon_{n}>0$ such that $B_{\epsilon_{n}}\left(x_{n}\right)$ contains no other terms in the sequence. If this wasn't the case, then there would again be a convergent subsequence of $\left\{x_{n}\right\}_{n}$. Therefore, for each i, there exists an open ball U_{i} centered at x_{i} such that $x_{j} \notin U_{i}$ for all $i \neq j$.

Additionally, consider $U_{0}=X \backslash\left\{x_{n} \mid n \in \mathbb{N}\right\}$. U_{0} is open, as $U_{0}^{c}=\left\{x_{n} \mid n \in \mathbb{N}\right\}$ is closed (it contains all of it's limit points). Hence,

$$
U_{0} \cup\left\{U_{n} \mid n \in \mathbb{N}\right\}
$$

is an open cover of X. However, this open cover has no finite subcover as any finite collection of the cover will fail to include infinitely many terms from the sequence $\left\{x_{n}\right\}_{n}$. This is a contradiction, and thus topologically compact implies sequentially compact.

We now prove the other direction. Let X be sequentially compact and let $\left\{U_{i}\right\}_{i \in I}$ be an open cover of X. By the Lebesgue number lemma, there exists an $r>0$ such that for each $x \in X, B_{r}(x) \subset U_{i}$ for some $i \in I$. Furthermore, by Lemma $5, X$ is totally bounded. Hence, there exists $y_{1}, \ldots, y_{k} \in X$ such that

$$
X \subset B_{r}\left(y_{1}\right) \cup \cdots \cup B_{r}\left(y_{k}\right)
$$

However, for each $i \in I$, we have $B_{r}\left(y_{i}\right) \subset U_{j(i)}$ for some $j(i) \in I$. (This notation just means for each i, there exists a $j \in I$ which depends on i such that $\left.B_{r}\left(y_{i}\right) \subseteq U_{j}\right)$. Thus, $\left\{U_{j(1)}, \ldots, U_{j(k)}\right\}$ is a finite subcover for X. Therefore, every open cover of X has a finite subcover, and thus sequentially compact implies topologically compact.

Remark 5. Notice that we technically could've used this proof in the previous lecture, but the Heine-Borel Theorem is so vastly important that I decided to do that proof before today's lecture.

We will now start to look at some illuminating applications of compact sets to reach an even more powerful theorem.

Recall 6

Let X, Y be metric spaces and $f: X \rightarrow Y$ be a continuous function. Then, for all U open in $Y, f^{-1}(U)$ is open in X.

Theorem 7

Let X, Y be metric spaces and $f: X \rightarrow Y$ be continuous. Given $K \Subset X, f(K) \subset Y$ is compact.

Proof: Let $\left\{U_{i}\right\}_{i \in I}$ be an open cover of $f(K)$. Then, define $V_{i}=\left\{f^{-1}\left(U_{i}\right)\right\}_{i \in I}$, which is open as f is continuous. Therefore, $\left\{f^{-1}\left(U_{i}\right)\right\}_{i \in I}$ is an open cover of K. Hence, there exists a finite subcover $\left\{V_{i_{1}}, \ldots V_{i_{k}}\right\}$ of K as K is compact. Thus, $\left\{U_{i_{1}}, \ldots U_{i_{k}}\right\}=\left\{f\left(V_{i_{1}}\right), \ldots, f\left(V_{i_{k}}\right)\right\}$ is a finite subcover of $f(K)$. Therefore, $f(K)$ is compact.

Corollary 8

Let X be a metric space and $K \Subset X$. Then, given a continuous function $f: X \rightarrow \mathbb{R}, f$ obtains a maximum and minimum finite value on K.

Proof: The proof follows from the previous theorem, and Problem 5.(a) on PSET 2.

Corollary 9

Sometimes in particular we want to study bounded continuous functions, and the previous corollary gives us a nice property. Given a compact metric space X, every continuous function on f is bounded.

Proof: Follows immediately.

Theorem 10 (Cantor's Intersection Theorem)

If $K_{1} \supset K_{2} \supset K_{3} \supset \ldots$ is a decreasing sequence of nonempty sequentially compact subsets of \mathbb{R}^{n}, then $\cap_{i \geq 1} K_{i}$ is non-empty.

Proof: Choose a sequence $\left\{a_{n}\right\}_{n}$ such that $a_{n} \in K_{n}$ for each n. We know that there exists such an a_{n} as each K_{n} is nonempty. Then, $\left\{a_{n}\right\}_{n}$ is a sequence in K_{1}, and thus there exists a convergent subsequence $\left\{a_{n_{k}}\right\}_{k}$ such that $a_{n_{k}} \rightarrow a \in K_{1}$. Furthermore, $\left\{a_{n}\right\}_{n=2}^{\infty}$ is a sequence in K_{2}, and thus contains a a convergent subsequence. Therefore, $a \in K_{2}$. Continuing this process, we get that $a \in K_{i}$ for all i. Thus, $a \in \cap_{i \geq 1} K_{i}$.

Definition 11 (Finite Intersection Property)

A collection of closed sets $\left\{C_{i}\right\}_{i}$ has the finite intersection property if every finite subcollection has a nonempty intersection.

Given Lemma 5 and the Cantor Intersection Theorem, it is clear that there are some relations between compact sets, nonempty intersections of sets, and totally bounded sets. We hence show the following theorem.

Theorem 12

Given a metric space (X, d), the following are equivalent.
(1) X is compact.
(2) X is sequentially compact.
(3) X is Cauchy complete and totally bounded.
(4) Every collection of closed subsets of X with the finite intersection property has a non-empty intersection.

We have shown $(1) \Longleftrightarrow(2)$, and thus we show $(1) \Longleftrightarrow$ (4) and $(2) \Longleftrightarrow$ (3) to finish the proof.
Proof: $(1) \Longrightarrow(4)$: Assume for the sake of contradiction that there exists a collection of closed subsets $\left\{C_{i}\right\}_{i \in I}$ with the finite intersection property such that $\cap_{i \in I} C_{i}=$. Given C_{i} is closed in X for all $i, U_{i}=C_{i}^{c}$ is open in X for each i. Then,

$$
\bigcup_{i \in I} U_{i}=\bigcup_{i \in I} C_{i}^{c}=\left(\bigcap_{i \in I} C_{i}\right)^{c}=\emptyset^{c}=X
$$

Hence, the U_{i} cover X. Given X is compact, there exists a finite subcover $\left\{U_{i_{1}}, \ldots, U_{i_{k}}\right\}$ of X. Thus,

$$
X=\bigcup_{n=1}^{k} U_{i_{n}}=\left(\bigcap_{n=1}^{k} U_{i_{n}}^{c}\right)^{c}=\left(\bigcap_{n=1}^{k} C_{i_{n}}\right)^{c}
$$

Therefore, $\bigcap_{n=1}^{k} C_{i_{n}}=\emptyset$ which is a contradiction with the finite intersection property.
$(4) \Longrightarrow(1)$: Suppose that $\left\{U_{i}\right\}_{i \in I}$ is an open cover of X, and let $C_{i}=U_{i}^{c}$ for each $i \in I$. Assume for the sake of contradiction that no finite subset of the U_{i} covers X. We show that C_{i} has the finite intersection property. Assume for the sake of contradiction that $\left\{C_{n_{1}}, \ldots, C_{n_{k}}\right\}$ satisfies $C_{n_{1}} \cap \cdots \cap C_{n_{k}}=\emptyset$. Then,

$$
\bigcup_{i=1}^{k} U_{n_{i}}=\left(\bigcap_{i=1}^{k} U_{n_{i}}^{c}\right)^{c}=\left(\bigcap_{i=1}^{k} C_{i_{k}}\right)^{c}=\emptyset^{c}=X
$$

This is a contradiction with the assumption that no subset of the U_{i} covers X. Hence, $\left\{C_{i}\right\}_{i \in I}$ satisfies the finite intersection property. Therefore, $\left\{C_{i}\right\}_{i \in I}$ has non-empty intersection; i.e. $\bigcap_{i \in I} C_{i} \neq \emptyset$. Then, $\bigcup_{i \in I} U_{i} \neq X$, which is a contradiction to the U_{i} being an open cover for X. Thus, every open cover of X has a finite open subcover.
$(2) \Longrightarrow(3):$ We have already shown that X being sequentially compact implies totally bounded, and hence we only need show that sequentially compact implies Cauchy complete. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in X. Given $\left\{x_{n}\right\}$ is a sequence in X, there exists a convergent subsequence $\left\{x_{n_{k}}\right\}$ in X such that $x_{n_{k}} \rightarrow x \in X$. Let $\epsilon>0$, and choose N such that $d\left(x_{i}, x_{j}\right)<\epsilon / 2$ whenever $i, j \geq N$. Next, choose $n_{k}>N$ such that $d\left(x_{n_{k}}, x\right)<\epsilon / 2$. Then,

$$
d\left(x, x_{N}\right) \leq d\left(x, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{N}\right)<\epsilon
$$

Thus, $x_{n} \rightarrow x \in X$ as $n \rightarrow \infty$. Therefore, every Cauchy sequence in X converges to a point in X. Hence, X is Cauchy complete.
(3) \Longrightarrow (2): This part of the proof is quite difficult. Consider a sequence $\left\{x_{n}\right\}_{n}$ in X. Given X is totally bounded, for every $n \in \mathbb{N}$, there exists a finite set of points $\left\{y_{1}^{(n)}, \ldots, y_{r(n)}^{(n)}\right\}$ such that $X \subset B_{\frac{1}{n}}\left(y_{1}^{(n)}\right) \cup \cdots \cup B_{\frac{1}{n}}\left(y_{r(n)}^{(n)}\right)$. Define

$$
S_{n}=\left\{y_{1}^{(n)}, \ldots, y_{r(n)}^{(n)}\right\} .
$$

We want to find a convergent subsequence of $\left\{x_{n}\right\}_{n}$. We do so by construction. Given S_{1} is finite, there exists a $y_{n(1)}^{(1)} \in S_{1}$ such that $B_{1}\left(y_{n(1)}^{(1)}\right)$ contains infinitely many points from $\left\{x_{n}\right\}_{n}$. Choose z_{1} from this ball. Then, given S_{2} is finite, there is a $y_{n(2)}^{(2)}$ such that infinitely many points from $\left\{x_{n}\right\}_{n}$ are in $B_{1}\left(y_{n(1)}^{(1)}\right) \cap B_{1 / 2}\left(y_{n(2)}^{(2)}\right)$. Choose z_{2} from this set. Continue this procedure for each $k>1$, selecting a z_{k} from $\bigcap_{i=1}^{k} B_{\frac{1}{k}}\left(y_{n(k)}^{(k)}\right)$. Then, we show $\left\{z_{n}\right\}_{n}$ is Cauchy. Let $\epsilon>0$. Then, there exists an $N \in \mathbb{N}$ such that $\frac{1}{N}<\epsilon$. Hence, for all $n, m \geq N$,

$$
d\left(z_{n}, z_{m}\right)<\frac{1}{N}<\epsilon
$$

Therefore, by the Cauchy completeness of $X,\left\{z_{n}\right\}$ converges to a point in X.
Remark 13. Where do we use the fact that each ball has infinitely many points? We do in fact use this property in
the proof. Try to figure out how!

