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Introduction
At MIT, our real analysis class is split into four sections: 18.100A, 18.100B, 18.100P, and 18.100Q. The key differences

can be summarized using the following diagram:

Rn Abstract
Non-Communication Intensive 18.100A 18.100B
Communication Intensive 18.100P 18.100Q

The goal of this class is to illuminate the key differences between studying the Euclidean space Rn and studying

more abstract spaces. This is particularly done through the use of metric spaces.

1 January 4, 2022

Motivation, Intuition, and Examples
In today’s lecture, I will give the definition of a metric space, give many many examples, and then relate this new

concept back to vocabulary we use throughout 18.100A. Let’s start with a key example that we use throughout

18.100A: the Euclidean distance.

Example 1 (Euclidean Distance)

We define the Euclidean distance (or metric) between two points x, y ∈ Rn as(
n∑
i=1

|xi − yi |2
)1/2

.

Conceptually, this is the magnitude of the shortest line segment connecting x and y . We most commonly study this

in R (where n = 1). Then, the metric is defined as |x−y | (as there is only one coordinate, and (|x−y |2)1/2 = |x−y |).
What are the most important features of the absolute value bars? Given x, y , z ∈ R we have the following properties:

1. Positive definite: |x − y | ≥ 0, and |x − y | = 0 ⇐⇒ x = y .

2. Symmetric: |x − y | = |y − x |.

3. Triangle Inequality: |x − z | ≤ |x − y |+ |y − z |.
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To some extent, these properties may feel inherent at this point as this concept of absolute values is taught to us in

elementary school. We are taught how to define a distance between two natural numbers, often times before we are

taught what negative numbers are. But notice, we use absolute values to define nearly every term we use in 18.100A.

Our goal is to define our "real analysis" vocabulary (which we will get to later) more abstractly. To do so, we define

a metric space.

Definition 2 (Metric Space)

A metric space is a set X with a metric d : X × X → [0,∞) such that ∀x, y , z ∈ X, d satisfies the following

properties:

1. Positive definite: d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y .

2. Symmetric: d(x, y) = d(y , x).

3. Triangle Inequality: d(x, z) ≤ d(x, y) + d(y , z).

We notice that these properties are exactly the same with how the absolute value bars, which to some extent should

make sense. We want to understand the distance between things (whether that be vectors or functions or weirder

objects), and this idea of a distance comes with these properties. We don’t talk about distances being negative, and

it makes sense for the distance between me and you to be the same distance between you and I. Yet nonetheless, this

new concept of metric spaces allows us to study more abstract concepts (which comes down to the idea that our set

X can be weirder).

Here is the outline for the rest of the lecture:

• We will define other metrics on Rn.

• We will redefine the terminology we use in 18.100A.

• Then, we will discuss metrics on weirder spaces!

Example 3 (Supremum Metric)

Consider the following function: d∞ : Rn × Rn → [0,∞),

d∞(x, y) = max
1≤i≤n

|xi − yi |.

This metric is often called the supremum metric or supremum norm. We check that this is in fact a metric.

Proof:

1. Positive definite: It is clear that d∞(x, y) ≥ 0 as |x − y | ≥ 0 for all x, y ∈ R. If x = y , then xi − yi = 0 for all i ,

and thus d(x, y) = 0. If d(x, y) = 0, then we want to show that x = y . Assume for the sake of contradiction

that x ̸= y . Then, there exists an i such that xi ̸= yi . Hence, |xi − yi | > 0. Therefore,

0 < |xi − yi | ≤ d∞(x, y) =⇒ 0 < d∞(x, y)

which is a contradiction.

2. Symmetric: d∞(x, y) = maxi |xi − yi | = maxi |yi − xi | = d∞(y , x). This uses the fact that absolute values are

symmetric.
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3. Triangle inequality: Often times, the triangle inequality is the hardest properties to prove. One common thing

to do, however, is to consider one term (sorry this advice is very general). Let x, y , z ∈ Rn. Then, consider an

arbitrary 1 ≤ i ≤ n. We know that

|xi − zi | ≤ |xi − yi |+ |yi − zi |

as absolute values satisfy the triangle inequality. Then, taking the maximum of both sides, we get that

d∞(x, z) = max
i
|xi − zi | ≤ max

i
|xi − yi |+max

i
|yi − zi | = d∞(x, y) + d∞(y , z).

Example 4 (ℓ1 metric)

Define d1 : Rn × Rn → [0,∞) such that

d1(x, y) =

n∑
i=1

|xi − yi |.

This is called the ℓ1 metric. We again check that this is a metric.

Proof:

1. Positive definite: it is clear that d1(x, y) ≥ 0 for all x, y ∈ Rn. Further, if x = y then d1(x, y) = 0 as xi = yi∀i .
If d1(x, y) = 0 then xi = yi∀i , and thus x = y .

2. Symmetric: d1(x, y) =
∑n
i=1 |xi − yi |

∑n
i=1 |yi − xi | = d1(y , x).

3. Triangle Inequality: This follows immediately from the triangle inequality for absolute values:

d1(x, z) =

n∑
i=1

|xi − zi | ≤
n∑
i=1

|xi − yi |+ |yi − zi | =
n∑
i=1

|xi − yi |+
n∑
i=1

|yi − zi | = d1(x, y) + d1(y , z).

Remark 5. Notice that the ℓ1 metric and the Euclidean metric take on the same form. In PSET 1, you will prove

that dp : Rn × Rn → [0,∞) given by

dp(x, y) = (|xi − yi |p)1/p

is a metric.

Now that we have went through three examples of metrics on a set, let’s relate this concept back to real analysis

(after all, that is why we are studying this). What are the key definitions we used in 18.100A? We had convergent

sequences, Cauchy sequences, and continuity. Let’s write down these definitions in terms of 18.100A:

• A sequence {an} in R converges to a ∈ R if and only if ∀ϵ > 0 there exists an N ∈ N such that ∀n ≥ N,

|an − a| ≤ ϵ.

• A sequence {an} in R is a Cauchy sequence if and only if ∀ϵ > 0 there exists an N ∈ N such that ∀n,m ≥ N,

|an − am| ≤ ϵ.

• A set A ⊂ Rn is open if and only if for all x ∈ A, there exists an ϵ > 0 such that B(x, ϵ) ⊂ A.
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• A function f : R ⊃ A→ R is continuous if and only if given x ∈ A, ∀ϵ > 0 there exists a δ > 0 such that

|x − y | ≤ δ =⇒ |f (x)− f (y)| ≤ ϵ.

We thus have these (almost immediate) definitions for Metric Spaces:

Definition 6 (Convergent sequence)

A sequence {xn} in a metric space (X, d) converges to x ∈ X if and only if ∀ϵ > 0 there exists an N ∈ N such

that ∀n ≥ N,

d(xn, x) ≤ ϵ.

Definition 7 (Cauchy sequence)

A sequence {xn} in (X, d) is a Cauchy sequence if and only if ∀ϵ > 0 there exists an N ∈ N such that ∀n,m ≥ N,

d(xn, xm) ≤ ϵ.

Definition 8 (Open Set)

A set in A ⊆ X is open if and only if ∀x ∈ A, there exists an ϵ > 0 such that

B(x, ϵ) := {y ∈ X | d(x, y) < ϵ} ⊂ A.

We say that B(x, ϵ) is a ball of radius epsilon centered at x .

Continuous functions however are a bit different. Normally, continuous functions map to R, but here we can let

them map to any other metric space, getting the following definition

Definition 9 (Continuous functions)

Let X and Y be metric spaces with metrics dX , dY respectively. Then, a function f : X ⊃ A → Y is continuous
if and only if given x ∈ A, ∀ϵ > 0 there exists a δ > 0 such that

dX(x, y) ≤ δ =⇒ dY (f (x), f (y)) ≤ ϵ.

The reason I bring these up now as opposed to later, is to point out how one-to-one the definitions between

18.100A and 18.100B are. All we are doing is making our definition a bit more general so we can study things other

than Rn. Speaking of which, lets consider some more metric spaces on sets that aren’t Rn. As we do so, I will bring

up useful examples of the above definitions that are great to picture/use as intuition.

Example 10 (Metric on Continuous Functions)

We define C0([a, b]) to be the set of functions (that map to the real numbers) that are continuous on the interval

[a, b]. Show that d : C0([0, 1])× C0([0, 1])→ [0,∞) defined by

d(f , g) = sup
x∈[0,1]

|f (x)− g(x)|

is a metric.
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Proof: I leave you to prove positive definiteness and symmetry, but as usual the hard part comes down to proving the

triangle inequality. Let f , g, h ∈ C0([0, 1]). First, lets evaluate what d(f , h) is in terms of this metric.

d(f , h) = sup
x∈[0,1]

|f (x)− h(x)|.

Let x0 be a point in the interval [0, 1] such that

d(f , h) = sup
x∈[0,1]

|f (x)− h(x)| = |f (x0)− h(x0)|.

Remark 11. Why does such a point exist?

Furthermore, note that for all x ∈ [0, 1],

|f (x)− g(x)| ≤ sup
x∈[0,1]

|f (x)− g(x)| and |g(x)− h(x)| ≤ sup
x∈[0,1]

|g(x)− h(x)|.

Thus,

d(f , h) = |f (x0)− h(x0)|

≤ |f (x0)− g(x0)|+ |g(x0)− h(x0)|

≤ sup
x∈[0,1]

|f (x)− g(x)|+ sup
x∈[0,1]

|g(x)− h(x)|

= d(f , g) + d(g, h).

Thus,

d(f , h) ≤ d(f , g) + d(g, h).

Question 12. Pick f ∈ C0([a, b]). What does B(f , ϵ) look like in C0([a, b]) (ϵ > 0)?

Example 13

We can take this one step further. Define C1([0, 1]) as the space of continuously differentiable functions. In other

words, functions that are continuous, and whose first derivative is continuous. Consider

d : C1([0, 1])× C1([0, 1])→ [0,∞) where

d(f , g) = sup
x∈[0,1]

|f (x)− g(x)|+ sup
x∈[0,1]

|f ′(x)− g′(x)|.

Show d is a metric on the space.

Proof: I leave you again to check positive definiteness and symmetry, but to prove the triangle inequality we can use a

nice trick. Firstly, note that if f , g, h ∈ C1([a, b]) then they are all continuous (i.e. they are all in C0([a, b]). Therefore,

sup
x∈[0,1]

|f (x)− h(x)| ≤ sup
x∈[0,1]

|f (x)− g(x)|+ sup
x∈[0,1]

|g(x)− h(x)|

as we proved in the previous example. Similarly, f ′, g′, h′ are continuous by assumption. Hence,

sup
x∈[0,1]

|f ′(x)− h′(x)| ≤ sup
x∈[0,1]

|f ′(x)− g′(x)|+ sup
x∈[0,1]

|g′(x)− h′(x)|.
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Adding these two inequalities together gives the desired inequality.

Question 14. Consider again C1([0, 1]). Is d(f , g) = supx∈[0,1] |f ′(x)− g′(x)| a metric on C1([0, 1])? You will answer

this on PSET 1.

While we will stop here with regards to continuous functions on a bounded interval, notice that we can easily

continue this argument, and we can in fact define a metric on functions that are infinitely differentiable. However, we

would have to be careful as we done want to take an infinite sum of things if the sum doesn’t converge. There will be

an optional problem discussing this on PSET 1.

Example 15

Show the map d
dx : C

1([a, b])→ C0([a, b]) is continuous.

Proof: Let f , g ∈ C1([a, b]). We want to show that given ϵ > 0 there exists a δ > 0 such that if dC1(f , g) < δ, then

dC0
(
d
dx f ,

d
dx g
)
< ϵ. To see this, calculate both equations:

dC1(f , g) = sup
x∈[a,b]

|f (x)− g(x)|+ sup
x∈[a,b]

|f ′(x)− g′(x)|.

dC0

(
d

dx
f ,
d

dx
g

)
= sup
x∈[a,b]

|f ′(x)− g′(x)|.

Hence, notice that dC0
(
d
dx f ,

d
dx g
)
≤ dC1(f , g). Thus, let δ = ϵ.

Remark 16. On PSET 1, you will show that integration is continuous.

So far, we have been studying metrics on vector spaces. (I.e. the sum of two vectors in Rn is in Rn, and the sum

of two continuous functions is continuous, etc etc.) We will discuss the notion of a vector space more in Lecture 3.

However, it is important to note that we don’t need the set to be a vector space in order to define a metric on it.

Consider the following two examples:

Example 17 (Geodesic)

Consider the unit ball in R3. We can define two metrics on it. The first, immediately follows from the Euclidean

metric on the ball. However, notice, that we can define a metric on the ball defined as the shortest "line segment"

between two points that lie on the sphere. This concept is loosely defined as a "geodesic".

Example 18 (Trivial Metric)

We define the trivial metric. Pick a set X. Then, define

d(x, y) =

1 x ̸= y

0 x = y
.

Show d is a metric.

Proof: It is clear that d is positive definite and symmetric. We prove the triangle inequality. Consider d(x, z). We

split this into four cases. If x = z , then d(x, z) = 0. If y = x = z , then d(x, z) = d(x, y) + d(y , z) = 0. If

y ̸= x and thus y ̸= z , then 0 = d(x, z) ≤ d(x, y) + d(y , z) = 2. If x ̸= z , then d(x, z) = 1. If x = y , then

1 = d(x, z) = d(x, y) + d(y , z) = 1. If y ̸= x and y ̸= z , then 1 = d(x, z) ≤ d(x, y) + d(y , z) = 2.
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Remark 19. On PSET 1, you will prove the British Railway metric is a metric (this is a similar example to the trivial

metric problem).

We finish with one last example for the day.

Example 20

Once again consider the space C0([0, 1]). Define the function I1 : C0([0, 1]× C0([0, 1])→ [0,∞) where

I1(f , g) =

∫ 1
0

|f (x)− g(x)| dx.

Show that I is a metric.

Proof: I leave you to prove positive definiteness and symmetry (note for positive definiteness, you need to use continuity

of f −g). However, the loose proof of the triangle inequality isn’t terribly bad this time! We simply notice that for all x ,

|f (x)−h(x)| ≤ |f (x)−g(x)|+ |g(x)−h(x)|. Hence, using properties of integration, we get (given f , g, h ∈ C0([0, 1]))

I1(f , h) =

∫ 1
0

|f (x)− h(x)| dx

≤
∫ 1
0

|f (x)− g(x)|+ |g(x)− h(x)| dx

=

∫ 1
0

|f (x)− g(x)| dx +
∫ 1
0

|g(x)− h(x)| dx

= I1(f , g) + I1(g, h).

We call this the L1 metric.

Remark 21. One can (similar to the proof of the ℓp metrics) prove that for 1 ≤ p <∞,

Ip(f , g) =

(∫ 1
0

|f (x)− g(x)|p dx
)1/p

defines a metric on C0([0, 1]).

2 January 6, 2022

General Theory
We now go into some of the general theory regarding metric spaces. Metric spaces are not only intuitively related to

our understanding of Rn, but they also behave similarly. For our purposes, we want to study metric spaces as they act

nicely, and we now show some ways in which they are "nice".

Remark 22. Not every space is as nice as a metric space! The fancy way to say this is "Not every space is metrizable."

18.901 explores weirder spaces like this, but we will not do so in this class.

Let’s start with convergent sequences, just like we did when we first started studying the real numbers.

7



Proposition 23

Let (X, d) be a metric space and let xn be a convergent sequence in X such that xn → x . This limit is unique.

Proof: Suppose there exists a y such that xn → y . We want to show that if this is the case, then x = y . What

property about metric spaces tells us when points are equal? In the real line, x = y ⇐⇒ |x − y | = 0, which is how

we proved this property in 18.100x. Here, we similarly have x = y ⇐⇒ d(x, y) = 0. Hence, we use that to our

advantage:

0 ≤ d(x, y) ≤ d(x, xn) + d(xn, y).

Given that xn → x and xn → y , we can make the right hand side arbitrarily small. More formally, let ϵ > 0. Then,

there exists an N such that for all n ≥ N,

0 ≤ d(x, y) ≤ d(x, xn) + d(xn, y) < ϵ.

This is true for all ϵ > 0, and thus d(x, y) = 0 =⇒ x = y .

Proposition 24

Let xn → x . Then, ∀y ∈ X, d(xn, y)→ d(x, y).

In other words, when you have a convergent sequence in a metric space, the distance also behaves how one would

expect. A similar way to think about this: fix y ∈ X. Then an = d(xn, y) is a convergent sequence in the real numbers.

Proof: Let y ∈ X. Firstly, note that given xn → x , d(xn, x)→ 0. Hence, let ϵ > 0. Then, there exists an N such

that for all n ≥ N,

d(xn, y) ≤ d(x, xn) + d(x, y) < ϵ+ d(x, y).

We now want a similar lower bound, which we obtain by the triangle inequality again:

d(x, y) ≤ d(x, xn) + d(xn, y) =⇒ d(x, y)− d(xn, x) ≤ d(xn, y).

For n ≥ N, we have d(x, y)− ϵ < d(xn, y). Therefore, given ϵ > 0, there exists an N such that for all n ≥ N,

d(x, y)− ϵ < d(xn, y) < d(x, y) + ϵ =⇒ |d(xn, y)− d(x, y)| < ϵ.

Therefore, d(xn, y)→ d(x, y).

Proposition 25

We can take this concept one step further, studying two convergent sequences at once. Let xn → x and yn → y .
Then, d(xn, yn)→ d(x, y).

This problem will be on your PSET!
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Definition 26 (Bounded)

A sequence {xn} in (X, d) is bounded if and only if there exists a p ∈ X and a B ∈ R such that

d(xn, p) ≤ B ∀n ∈ N.

Similarly, a subset A ⊆ X is bounded if and only if there exists a p ∈ X and a B ∈ R such that

d(x, p) ≤ B ∀x ∈ A.

Proposition 27

Every convergent sequence in a metric space is bounded.

Proof: Let xn → x and let ϵ = 1 > 0. Then, there exists an N such that for all n ≥ N, d(xn, x) < 1. Now this is

almost exactly our definition of bounded with p = x and B = 1, but the issue is that this isn’t true for all n, only for

all n ≥ N (which is still infinitely many!). We thus use a common and useful technique: Let

B = max{d(xn, x), 1 | 1 ≤ n < N}.

Is B finite? Yes; B is the maximum of finitely many finite elements and thus finite. Furthermore, we now have that

for all n ≥ N, d(xn, x) < 1 ≤ B, and for all n < N, d(xn, x) ≤ B. Hence, {xn} is bounded.

We will prove two more theorems about convergent sequences, and then we will shift our focus to open and closed

sets.

Proposition 28

Every convergent sequence is a Cauchy sequence.

Proof: Let xn → x , and let ϵ > 0. Then, there exists an N such that for all n ≥ N, d(xn, x) < ϵ
2 . Hence, for all

n,m ≥ N,

d(xn, xm) ≤ d(xn, x) + d(x, xm) <
ϵ

2
+
ϵ

2
= ϵ.

We showed this before for the real numbers! In fact, we showed that Cauchy sequences are convergent for the

real line. However, this isn’t always true. A space in which every Cauchy sequence is convergent, is called Cauchy
complete.

Remark 29. You will show on PSET 2 that C0([0, 1]) is Cauchy complete.

Proposition 30

Every subsequence of a convergent sequence is convergent.

Proof: This proof will help give an example of why Cauchy sequences are useful. Let xn → x , and consider the

subsequence xnk . We want to show that xnk is convergent, and to do so we will show that xnk → x . Firstly notice that

d(xnk , x) ≤ d(xnk , xn) + d(xn, x).
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We know that xn → x , and thus for ϵ > 0 there exists an N1 such that for all n ≥ N1, d(xn, x) < ϵ
2 . In other words,

we can make d(xn, x) arbitrarily small; but what can we do about d(xnk , xn)? Well we note that {xn} is a Cauchy

sequence. Thus, there exists an N2 such that for all n, nk ≥ N, d(xnk , xn) <
ϵ
2 . Hence, for all n ≥ max{N1, N2},

d(xnk , x) ≤ d(xnk , xn) + d(xn, x) <
ϵ

2
+
ϵ

2
= ϵ.

You may be wondering "Why don’t we have as many theorems for convergent sequences like we used to?" Well

notice, that metric spaces are much more general than R. For instance, we can’t show sums of convergent sequences

converge, because we don’t always have a notion of addition. Similarly, we don’t have a direct analog of the squeeze

theorem, as we don’t always have a notion of "ordering" (i.e. what it means for one element to be bigger than

another). Thus we have to study new tools, like open sets.

Recall (Open Set)

A set in A ⊂ X is open if and only if ∀x ∈ A, there exists an ϵ > 0 such that

B(x, ϵ) := {y ∈ X | d(x, y) < ϵ} ⊂ A.

We say that B(x, ϵ) is a ball of radius epsilon centered at x .

While it may seem out of left field, open sets prove very useful in understanding concepts of convergence and continuity.

We will show this connection today, but let’s start with some useful and powerful propositions.

Theorem 31 (Topological Properties of Open Sets)

Let X be a metric space, and let {Ai}i∈Λ be open sets in X. Then,

1. ∅ and X are open sets in X.

2.
⋃
i∈I Ai is open in X. (I.e., the arbitrary union of open sets is open.)

3.
⋂n
i=1 Ai is open in X. (I.e., the finite intersection of open sets is open.)

Proof: All we can use so far is the definition given to us.

1. Consider ∅. It is vacuously true that ∀x ∈ ∅, there exists an ϵ > 0 such that B(x, ϵ) ⊂ ∅, as there are no

elements in the empty set. Now consider X. Recall the definition of B(x, ϵ):

B(x, ϵ) = {y ∈ X | d(x, y) < ϵ}.

By definition, ∀x ∈ X and in fact for all ϵ > 0 (though we only need one), B(x, ϵ) ⊂ X. Thus, X is an open set.

2. Consider some x ∈
⋃
i∈I Ai . Then, by assumption, there exists a λ ∈ Λ such that x ∈ Aλ. Furthermore, Aλ is an

open set, and thus there exists an ϵ > 0 such that B(x, ϵ) ⊂ Aλ. Notice though, that Aλ ⊂
⋃
i∈I Ai , and thus

B(x, ϵ) ⊂
⋃
i∈I Ai . Hence, the arbitrary union of open sets is open.

3. The proof for the intersection will act similarly, but let’s see why we can only consider a finite intersection. Let

x ∈
⋂n
i=1 Ai . Then, for each 1 ≤ i ≤ n, x ∈ Ai . Therefore, there exists an ϵi such that B(x, ϵi) ⊂ Ai . The issue

though, is Ai is not automatically a subset of the intersection. However, we can take ϵ = min{ϵi} > 0. Thus,

B(x, ϵ) ⊆ B(x, ϵi) ⊂ Ai for every i . Hence, B(x, ϵ) ⊂
⋂n
i=1 Ai .
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Remark 32. These three properties can help us understand why open sets are so useful (at least conceptually). As we

will see, open sets are directly related to convergence and continuity, and are yet so much more general. In point-set

topology (18.901), you actually start with defining open sets abstractly using these three properties, and go from

there. It’s very interesting, and leads to very interesting examples! We will discuss this more in Lecture 6.

Theorem 33

An open subset U in a metric space (X, d) can be written as a union of open balls in X. This is an optional

problem on PSET 2.

Definition 34 (Closed Set)

Let A ⊂ X. We say that A is closed if X \ A := Ac is open in X. We call Ac the complement of A.

Theorem 35

Let X be a metric space, and let {Ai}i∈Λ be closed sets in X. Then,

1. ∅ and X are closed sets in X.

2.
⋂
i∈I Ai is closed in X. (I.e., the arbitrary intersection of closed sets is closed.)

3.
⋃n
i=1 Ai is closed in X. (I.e., the finite union of closed sets is closed.)

To prove this, we use DeMorgan’s Law in set theory (which is proven in Lebl’s Theorem 0.3.5).

Proposition 36 (DeMorgan’s Law)

Consider the sets {Ui}i∈Λ. Then,(⋃
i∈Λ
Ui

)c
=
⋂
i∈Λ
Uci and

(⋂
i∈Λ
Ui

)c
=
⋃
i∈Λ
Uci .

To put this into words, the complement of a union is the intersection of the complements, and the complement

of an intersection is the union of the complements.

Proof:

1. Well firstly, notice ∅c = X and Xc = ∅ in X. Hence, given ∅ and X are open sets, ∅ and X are closed sets.

2. Given Ai are closed, Aci is open. Hence, using DeMorgan’s Law,(⋂
i∈Λ
Ai

)c
=
⋃
i∈Λ
Aci ,

and the arbitrary union of open sets is open. Hence,
⋂
i∈Λ Ai is closed.

3. We use DeMorgan’s Law in exactly the same way to prove that the finite union of closed sets is closed.

Lets look at a useful examples:
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Example 37

Let (X, d) be a metric space, and let x ∈ X. Then, for any ϵ > 0, B(x, ϵ) is open in X. In fact, this ball is

sometimes referred to as an open ball.

Proof: Let y ∈ B(x, ϵ). If x = y then this is automatically true, just take ϵ′ = ϵ
2 . Suppose that y ̸= 0, and let

r = ϵ− d(x, y) > 0. We want to show that B(y , r) ⊂ B(x, ϵ). Let z ∈ B(y , r). Then d(x, z) ≤ d(x, y) + d(y , z) <
d(x, y) + r = ϵ. Therefore, B(y , r) ⊂ B(x, ϵ), and thus B(x, ϵ) is an open set.

Example 38

Let (X, d) be a metric space, and x ∈ X. Then, {x} is a closed set in X.

Proof: We want to show that for all y ∈ X \ {x}, there is an open ball around y such that x is not in the ball. Fix

y ∈ X \ {x}; then, y ̸= x and thus d(x, y) > 0. Let r = d(x,y)
2 . Hence, consider B(y , r). We know that x /∈ B(y , r)

as if this were the case, then d(x, y) < r < d(x, y) which is a contradiction. Hence, B(y , r) ⊂ X \ {x}. Therefore,

X \ {x} is an open set, and thus {x} is a closed set in X.

Remark 39. One can similarly prove that any finite set in a metric space is closed.

Let’s now see again how open sets relate to convergence and continuity. To do so, we first observe a fact about

convergent sequences in R.

Proposition 40

Let {xn} be a sequence in R. Then, {xn} is convergent (and converges to x) if and only if ∀ϵ > 0, all but finitely

many terms in {xn} are in (x − ϵ, x + ϵ).

Proof: Given xn → x , given ϵ > 0 there exists an N such that for all n ≥ N, |xn − x | < ϵ. Therefore, for all n ≥ N,

xn ∈ (x − ϵ, x + ϵ). For the other direction, fix arbitrary ϵ > 0 and consider (x − ϵ, x + ϵ). Given that all but finitely

many terms in {xn} are in (x − ϵ, x + ϵ), there exists an M such that for all n ≥ M, xn ∈ (x − ϵ, x + ϵ) = Bϵ(x).
Therefore, xn is convergent.

The same can be generally said for metric spaces.

Definition 41 (Neighborhood)

Suppose that x ∈ U and U is open in X. Then we can U a neighborhood of x .

Theorem 42

Let {xn} be a sequence in the metric space (X, d). Then, xn is convergent and converges to x if and only if for

every neighborhood of x , all but finitely many terms in {xn} are not in the neighborhood of x.

Proof: The proof is exactly the same as the proof of X = R, only changing to metric notation.

Remark 43. Every closed set has the property that every convergent sequence converges in the set. This will be

shown on PSET 2, and gives yet another connection between open/closed sets and convergence.

We now shift our focus to continuous functions.
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Recall (Continuous functions)

Let (X, dX) and (Y, dY ) be metric spaces. Then, a function f : X ⊃ A → Y is continuous if and only if given

x ∈ A, ∀ϵ > 0 there exists a δ > 0 such that

dX(x, y) ≤ δ =⇒ dY (f (x), f (y)) ≤ ϵ.

We will first show how continuity is related to convergence, and then how continuity is related to open sets.

Theorem 44

Let (X, dX) and (Y, dY ) be metric spaces. Then, f : X → Y is continuous at c ∈ X if and only if for every

sequence {xn} in X converging to c , f (xn)→ f (c).

Proof: Suppose that f is continuous at c . Let {xn} be a sequence in X converging to c . Given ϵ > 0, there exists

a δ > 0 such that dX(x, c) < δ =⇒ dY (f (x), f (c)) < ϵ. Given xn → c , there exists an N such that for all n ≥ N,

dX(xn, c) < δ. Therefore, dY (f (xn), f (c)) < ϵ. Thus, f (xn)→ f (c).
Suppose that f is not continuous at c . Let ϵ > 0. Then, for all n ∈ N, there exists an xn such that d(xn, c) < 1

n

but dY (f (xn), f (c)) ≥ ϵ. Then, xn → c} but f (xn) does not converge to f (c).

Lemma 45

Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is continuous at c ∈ X if and only if for every

open neighborhood U of f (c) in Y , the set f −1(U) contains an open neighborhood of c in X.

Proof: Suppose that f is continuous at c . Let U be an open neighborhood of f (c) in Y . Then, BY (f (c), ϵ) ⊂ U for

some ϵ > 0. By the continuity of f , there exists a δ > 0 such that dX(x, c) =⇒ dY (f (x), f (c)) < ϵ. Hence,

BX(c, δ) ⊂ f −1(BY (f (c), ϵ)) ⊂ f −1(U)

and BX(c, δ) is an open neighborhood of c .

For the other direction, let ϵ > 0. If f −1(BY (f (c), ϵ)) contains an open neighborhood V of c , then it contains a

ball BX(c, δ) such that

BX(c, δ) ⊂ W ⊂ f −1(BY (f (c), ϵ)).

Therefore, if dX(x, c) < δ =⇒ dY (f (x), f (c)) < ϵ. Hence, f is continuous at c .

Remark 46. In fact, one can show that a function f : X → Y is continuous if and only if given U ⊂ Y open, f −1(U)

is open in X. This is an optional problem on PSET 2. This idea is once again integral to 18.901.

3 January 11, 2022

Compact Sets in Rn

Today, we will first discuss another useful concept tangentially related to metrics (norms), which will then motivate

an important concept: compact sets.

13



Have you heard of a norm in other contexts before? A classic place to first hear of a "norm" is in 18.02 with the

Euclidean norm, which defines the length of a vector in Rn. How does this definition fundamentally work? One way

to understand the idea of a Euclidean norm, is to visualize it as the distance between a point in Rn and the origin.

This gives a direct relationship between this word "norm" in this context, to a metric. Given this, we define a norm

in a more general context.

We first define a vector space.

Definition 47 (Vector Space)

A vector space V over a field k is a set of vectors which come with addition (+ : V × V → V ) and scalar

multiplication (· : k × V → V ) along with some classic axioms: commutativity, associativity, identity, and inverse

of addition, identity of multiplication, and distributivity.

For our purposes in this class, we will only study vector spaces over the field R. In essence, when we add two

elements in the vector space, we stay in the vector space, and you can multiply an element in the space by a constant

and stay in the space. The three key examples of a vector space, for our purposes, are Rn, Cn, and C0([a, b]) (or more

generally, Cn([a, b])). We can now define a norm:

Definition 48 (Norm)

A norm on a vector space V over the real numbers is a function ∥·∥ : V → [0,∞) satisfying the following three

properties:

1. Positive Definite: ∥v∥ ≥ 0 and ∥v∥ = 0 ⇐⇒ v = 0.

2. Homogeneity: ∥λv∥ = |λ|∥v∥ for all v ∈ V and λ ∈ R.

3. Triangle Inequality: ∥x + y∥ ≤ ∥x∥+ ∥y∥.

A vector space with a norm on it is defined as a normed space.

Remark 49. In a vector space V , 0 is always in V (why?). In PSET 2, you will directly show how the norm can relate

to metrics.

We can thus view some of the metrics we have defined thus far in the class to be analogous to norms.

Example 50 (Norm on Continuous Functions)

Show that ∥·∥ : C0([0, 1])→ [0,∞) defined by

∥f ∥ = sup
x∈[0,1]

|f (x)|

is a norm.

Proof: Most of this proof will follow directly from the proof given by Example 10 in Lecture 1, but I will write the

proof fully nonetheless.

1. It is clear that ∥f ∥ ≥ 0 for all f ∈ C0([0, 1]) as absolute values are always non-negative, and ∥f ∥ = 0 if and only

if ∀x ∈ [0, 1], f (x) = 0.
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2. Let λ ∈ R. Then,

∥λf ∥ = sup
x∈[0,1]

|λf (x)| = sup
x∈[0,1]

|λ||f (x)| = |λ| sup
x∈[0,1]

|f (x)| = |λ|∥f ∥.

3. Let f , g ∈ C0([0, 1]). Then,

∥f + g∥ = sup
x∈[0,1]

|f (x) + g(x)| ≤ sup
x∈[0,1]

|f (x)|+ sup
x∈[0,1]

|g(x)| = ∥f ∥+ ∥g∥

by the triangle inequality we proved for the metric on the space of continuous functions.

Example 51

Show that ∥·∥ : C0([0, 1])→ [0,∞) defined by

∥f ∥ =
∫ 1
0

|f (x)| dx

is a norm.

Proof: This example is related to Example 20 in Lecture 1.

1. It is clear that ∥f ∥ ≥ 0 for all f ∈ C0([0, 1]) as absolute values are always non-negative. Additionally, notice that

|f ∥ = I1(f , 0) where I1 which we discussed in that example. Hence, since d is positive definite, I1(f , 0) = ∥f ∥ = 0
if and only if f = 0, which implies the norm is positive definite.

2. Let λ ∈ R. Then,

∥λf ∥ =
∫ 1
0

|λf (x)| dx =
∫ 1
0

|λ||f (x)| dx = |λ|
∫ 1
0

|f (x)| dx = |λ|∥f ∥

using the linearity of the integral.

3. The triangle inequality we proved for the metric I1 proves the triangle inequality here.

Given that the concept of a norm is very clearly analogous to metrics in some respects, you may wonder why we

study norms in particular. A few key remarks about this: firstly, 18.102 explores this concept much further. In essence,

norms help us understand vector spaces better, and 18.102 studies infinite dimensional vector spaces. (Conceptually:

infinite dimensional linear algebra.) Secondly, proving a given function is a norm is a similar process to proving a given

function is a metric, which is a useful skill.

Finally, norms give us an intuition behind magnitude. In R, the magnitude is again related to absolute values, the

very thing we used to motive metrics. In our last example, we could consider a function f to be large if ∥f ∥ is large

(this is not official terminology, just conceptual). What, then, does ∥f ′∥ convey? This would measure "how large"

or "how much change" f goes through over the interval [0, 1]. One could ask the question: How does ∥f ′∥ relate to

∥f ∥? This is a very interesting question, and becomes even more interesting in higher dimensions, but I digress.

Question 52. Why have we been studying metrics/norms on the space of continuous functions over intervals, [a, b]

or [0, 1], and not over R?

Notice, that we want both norms and metrics to be finite. However, scattered throughout our proofs, we have been

using the fact that continuous functions on bounded intervals are themselves bounded (the Extreme Value Theorem).
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What condition would we need to impose on the space of continuous functions to get the metrics and norms to be

finite?

Let f ∈ C0(R). When will
∫∞
−∞ |f (x)| dx be finite? It will be finite if outside of some bounded interval, f = 0. This

space of functions is very useful to study, and even has its own name:

Definition 53 (Compact Support)

A function f ∈ C0(R) has compact support if f = 0 outside of some interval [−n, n] for a finite n.

Remark 54. The support of a function f ∈ C0(R) is the closure of the set

{x ∈ R | f (x) ̸= 0}.

A more general definition states that a function is compactly supported if it is zero outside of a compact set.
Before we study compact sets, I want to quickly bring up three small lemmas to serve as a starting point. If you

asked an analyst what intuition there is behind "compactness", many would say that compactness is a generalization

of finiteness. Compact sets are to continuous functions as finite sets are to functions in general. Hence, recall the

following three lemmas regarding finite sets.

Recall 55

Let A be a finite set of a metric space (X, d). Then,

• Every sequence in A has a convergent subsequence.

• A is closed and bounded.

• Given any function f : A→ R, f achieves a maximum and minimum on A, and f is bounded.

Proof:

1. Let {xn} be a sequence in A. Then, there are only finitely many values xi can take on, as A is finite. However,

given that a sequence is infinitely long, there must exist some element x ∈ A that is in the sequence {xn}
infinitely many times. If this wasn’t the case, the sequence {xn} wouldn’t be infinitely long. Thus, take xnk = xi
for i ∈ I = {n ∈ N | xn = x}. Then, xnk → x as xnk = x for all k by construction.

2. Well firstly, we know that A is closed in X by the previous lecture. Furthermore, we know that A is bounded, as

we can simply fix an x ∈ A, and let B = maxi{d(xi , x)} for xi ∈ A.

3. To find the maximum and minimum, simply look at the image of A under f . There are only finitely many

elements in A, and then we can simply let

B1 = max
i
{f (xi) | xi ∈ A} and B2 = min

i
{f (xi) | xi ∈ A}.

We know B1 and B2 are achieved as there are only finitely many terms in A. It is then immediate to see then

that every function is bounded.

These are extremely nice properties! We will shortly see analogs of these lemmas with regards to compact sets,

but first:
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Definition 56 (Covers)

Let A ⊂ X where X is a metric space. Then, {Ui}i∈I is an open cover of A if A =
⋃
i∈I Ui and Ui is open for

each i . A subcover of an open cover is a subcollection of the sets Ui that still cover A. A finite subcover of an

open cover is a finite subcollection of the sets Ui that still cover A.

Definition 57 (Compactness)

Let (X, d) be a metric space. A set A ⊂ X is sequentially compact if and only if every sequence in A has a

convergent subsequence in A. A set A ⊂ X is compact or topologically compact if every open cover of A has a

finite subcover.

Remark 58. Notice that the definition of sequential continuity is the same as the first lemma regarding finite sets we

talked about a second ago.

Conceptually, this idea can be kind of confusing, but let’s look at some examples.

Example 59

R is not a compact subset of R.

To see this, consider the open sets Uj = (−j, j) for j ∈ N. It is clear that the union of all the Uj will cover R. However,

is there a finite subcover? Assume for the sake of contradiction that there was a finite subcover. Then,

R =
n⋃
k=1

Ujk . = (−jk , jk).

However, notice jk ∈ R but jk /∈ (−jk , jk). Hence, we have found an open cover of R that does not have a finite

subcover.

Example 60

(0,1] is not compact or sequentially compact in R.

Similarly, consider Uj = (1/j, 2) for j ∈ N. To see why sequential compactness fails, consider the subsequences of the

sequence
{
1
n

}
.

Example 61

[0, 1] is a compact subset of R.

Proof: We will prove this directly, though it will take some work. Ultimately, we will develop more theorems about

compact sets that will make similar examples like this easier. Take an open cover of [0, 1]

[0, 1] ⊆
⋃
i∈I
Ui .

Then, for every x ∈ [0, 1], we have that

[0, x ] ⊆
⋃
i∈I
Ui .
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Hence, let

c = sup{x ∈ [0, 1] | [0, x ] is covered by finitely many elements in the open cover}.

Clearly, 0 ≤ c < 1, as the closed interval [0, 0] = {0} must be contained in one Ui . Hence, we want to show that

c = 1, in order to show that [0, 1] has a finite subcover. Assume for the sake of contradiction that c < 1]. Then, it

follows that c is contained in some open set, and thus contained in some open interval Ui . This implies that there is

an element c ′ such that c ′ > c and c ′ ∈ Ui . Thus, [0, c ′] is covered by finitely many open sets from the cover, which

is a contradiction. Therefore, c = 1.

Remark 62. Notice, that a similar proof will show that [a, b] is compact in R. Also note, that a similar proof can show

that [a, b]× [c, d ] is compact in R2, and so on and so forth. This will be useful for an optional problem on PSET 2.

We now want to prove some more general theorems regarding compact sets. Today, we will focus on compact sets

in Rn, and next time we will discuss compact subsets of general metric spaces.

By the previous few examples, we have some insight as to what compact sets in R might look like.

Theorem 63

Compacts sets in R are closed and bounded.

Proof: Assume that A ⋐ R. We want to take an open cover of A that shows its bounded. Pick an arbitrary p ∈ A.

Then,

A ⊂
∞⋃
i=1

B(p, i) = R.

Given that A is compact, and the right hand side is an open cover, there exists a finite subcover. Hence,

A ⊂
n⋃
k=1

B(p, ik) = B(p, in).

Therefore, A is bounded, as given any x ∈ A, d(x, p) ≤ in <∞.

We now prove closure. To do so, we want to show that X \ A is open. Let p ∈ X \ A. For arbitrary q ∈ A, define

Vq = B

(
p,
d(p, q)

2

)
and Wq = B

(
q,
d(p, q)

2

)
.

Notice that Vq ∩Wq = ∅ for all q ∈ A. Furthermore, A ⊂
⋃
q∈AWq. Therefore, there exists a finite subcover of A,

given by A ⊂
⋃n
k=1Wqk .

Thus, consider the sets Vq1 , . . . , Vqk . Given that there are finitely many open sets, the intersection of them all

is open. Furthermore, by construction, for all qk ,Wqk ̸⊆ Vqk . Therefore,
⋂n
k=1 Vqk is a neighborhood of p, and⋂n

k=1 Vqk ∩K = ∅. We know this last intersection is the emptyset, as if it weren’t, then there would exist an element

in A in the intersection of the Vqs, and thus an element in a Wqj such that Wqj ∩ Vqj ̸= ∅, which is a contradiction.

Therefore, there exists a neighborhood of p contained in X \ A. Thus, X \K is open, and hence A is closed.

Notice that this proof does not rely on the fact that we are looking at R. In fact,

Lemma 64

A compact set in a metric space (X, d) is closed and bounded.

Is the converse true? To see why it is true in the case of R, we show a quick lemma.
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Lemma 65

Let K be a compact set in a metric space (X, d), and let F be a closed subset of K. Then, F is a compact set.

Proof: Given that F is closed, F c is open. Hence, let {Ui}i∈I be an open cover of F . Then,

F ⊂ K ⊂ F c ∪
⋃
i∈I
Ui .

Therefore, given K is compact, there exists a finite subcover of K. Hence, there is a finite open subcover of F .

Theorem 66 (Heine-Borel)

Let K be a subset of R. Then, K is compact if and only if K is closed and bounded.

Proof: We know that compact implies closed and bounded, and we thus need to prove the other direction! Let K be

a closed and bounded subset of R. Then, given K is bounded, K is contained in some closed interval [a, b], which we

have shown to be compact. Hence, K is a closed subset of a compact set, and thus K is compact.

Remark 67. The Heine-Borel theorem does not carry over to an arbitrary metric space. Here, we used the fact that

[a, b] is compact in R. A metric space is said to have the Heine-Borel property if every closed and bounded set in X

is compact.

At this point, you may be wondering why we mention the idea of sequential compactness, and how this actually

relates to the idea of topological compactness. Firstly, recall the following theorem:

Theorem 68 (Bolzano-Weierstrass)

Every bounded sequence in Rn has a convergent subsequence.

Lemma 69

Consider A ⊂ Rn such that A is closed and bounded. Then, A is sequentially compact.

Proof: Let {xn} be a sequence in A. Then {xn} is bounded as A is bounded, and thus by Bolzano-Weierstrass, there

exists a convergent subsequence of {xn}. How do we know that {xn} converges in A? This uses the fact that A is

closed. Therefore, every sequence in A has a convergent subsequence in A.

Is the converse true? Yes!

Theorem 70 (Bolzano-Weierstrass)

Let K be s subset of R. Show that K is sequentially compact if and only if K is closed and bounded.

Proof: We have shown the backwards direction, and we now show the forward direction. Let K ⊂ R be sequentialy

compact. Let {xn} be a sequence in K that converges to arbitrary x ∈ R. Then, every subsequence of {xn} converges

to x . Therefore, x ∈ K. Hence, K contains all of its limit points, and is thus closed.

Suppose for the sake of contradiction that K is unbounded. Then, there is a sequence {xn} in K such that

|xn| → ∞ as n → ∞. Therefore, every subsequence of {xn} is unbounded and diverges, and thus {xn} has no

convergent subsequence. This is a contradiction as K is sequentially compact.

Remark 71. You can generalize this proof to Rn; try to do so!
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Corollary 72

Given A ⊂ R, A is sequentially compact if and only if A is topologically compact.

In our next lecture, we will show this is true for all metric spaces! However, the proof will need to be different, as a

closed and bounded set is not necessarily compact in a general metric space.

4 January 13, 2022

Compact Metric Spaces
Last time, we showed that a set in Rn is sequentially compact if and only if it is topologically compact, by showing

sequentially compact ⇐⇒ closed and bounded Heine-Borel⇐⇒ topologically compact.

However, by the previous remark, we don’t have Heine-Borel for arbitrary metric spaces. Which begs the question: is

sequentially compact the same as topologically compact in metric spaces? The answer is yes. To prove this, we first

show a handful of preliminary results.

Lemma 73 (Lebesgue Number Lemma)

Let (X, d) be a sequentially compact metric space and {Ui}i∈I be an open cover of X. Then, there exists an r > 0

such that for each x ∈ X, Br (x) ⊆ Ui for some i ∈ I.

Proof: Before proving this, try to visualize the result!

We prove this lemma through contradiction. Assume that for some r > 0 there exists an x ∈ X (possibly depending

on r) such that for each i ∈ I, Br (x) ̸⊆ Ui . Consider the sequence {xn}n in X such that B1/n(xn) ̸⊆ Ui for all i ∈ I.
Given that X is sequentially compact, {xn} has a convergent subsequence {xnk}k . Let xnk → x ∈ X. Given that

{Ui} is an open cover of X, there exists a Ui0 such that x ∈ Ui0 . Given Ui0 is open, it also follows that there exists an

r0 such that Br0(x) ⊆ Ui0 . Hence, choose N large enough such that d(x, xN) < r0
2 and 1

N <
r0
2 . Then, if y ∈ B1/N(xN),

then

d(x, y) ≤ d(x, xN) + d(xN , y) < r0.

Therefore, y ∈ Br0(x) ⊆ Ui0 . Hence,

B1/N(xN) ⊆ Br0(x) ⊆ Ui0

which is a contradiction.

We call this r the Lebesgue number of the open cover of X, which is useful in other applications.

Definition 74

A metric space X it totally bounded if, for every ϵ > 0, there exists x1, x2, . . . , xk ∈ X with k finite such that

{Bϵ(xi) | 1 ≤ i ≤ k} is an open cover of X.

Lemma 75

A metric space X is sequentially compact implies that X is totally bounded.
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Proof: Assume that X is sequentially compact and not totally bounded. Therefore, there exists an ϵ > 0 such that

X cannot be covered by a collection of open sets of only finitely many ϵ-balls. Hence, let x1 ∈ X, x2 ∈ X \ Bϵ(x1),
then x3 ∈ X \ Bϵ(x1) \ Bϵ(x2) and so on. We know that there exists such xi by the previous statement. Hence, for

all i ̸= j , d(xi , xj) ≥ ϵ. Therefore, {xn}n has no convergent subsequence as if there was a convergent subsequence it

would be Cauchy, and the previous line shows that no subsequence of {xn} will be Cauchy. This is a contradiction to

X being sequentially compact.

Theorem 76

A metric space X is (topologically) compact if and only if X is sequentially compact.

Proof: We first show that topologically compact implies sequentially compact. Assume for the sake of contradiction

there there exists a sequence {xn}n in X with no convergent subsequence. Notice that no term in the sequence can

appear infinitely many times, as otherwise there would be a trivial subsequence of {xn}. Hence, we assume without

loss of generality that xi ̸= xj if i ̸= j . Furthermore, notice then that for every n there exists an ϵn > 0 such that

Bϵn(xn) contains no other terms in the sequence. If this wasn’t the case, then there would again be a convergent

subsequence of {xn}n. Therefore, for each i , there exists an open ball Ui centered at xi such that xj /∈ Ui for all i ̸= j .
Additionally, consider U0 = X \ {xn | n ∈ N}. U0 is open, as Uc0 = {xn | n ∈ N} is closed (it contains all of it’s limit

points). Hence,

U0 ∪ {Un | n ∈ N}

is an open cover of X. However, this open cover has no finite subcover as any finite collection of the cover will fail to

include infinitely many terms from the sequence {xn}n. This is a contradiction, and thus topologically compact implies

sequentially compact.

We now prove the other direction. Let X be sequentially compact and let {Ui}i∈I be an open cover of X. By the

Lebesgue number lemma, there exists an r > 0 such that for each x ∈ X, Br (x) ⊂ Ui for some i ∈ I. Furthermore,

by Lemma 5, X is totally bounded. Hence, there exists y1, . . . , yk ∈ X such that

X ⊂ Br (y1) ∪ · · · ∪ Br (yk).

However, for each i ∈ I, we have Br (yi) ⊂ Uj(i) for some j(i) ∈ I. (This notation just means for each i , there exists a

j ∈ I which depends on i such that Br (yi) ⊆ Uj). Thus, {Uj(1), . . . , Uj(k)} is a finite subcover for X. Therefore, every

open cover of X has a finite subcover, and thus sequentially compact implies topologically compact.

Remark 77. Notice that we technically could’ve used this proof in the previous lecture, but the Heine-Borel Theorem

is so vastly important that I decided to do that proof before today’s lecture.

We will now start to look at some illuminating applications of compact sets to reach an even more powerful theorem.

Recall 78

Let X, Y be metric spaces and f : X → Y be a continuous function. Then, for all U open in Y , f −1(U) is open in

X.

Theorem 79

Let X, Y be metric spaces and f : X → Y be continuous. Given K ⋐ X, f (K) ⊂ Y is compact.
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Proof: Let {Ui}i∈I be an open cover of f (K). Then, define Vi = {f −1(Ui)}i∈I , which is open as f is continuous.

Therefore, {f −1(Ui)}i∈I is an open cover of K. Hence, there exists a finite subcover {Vi1 , . . . Vik} of K as K is compact.

Thus, {Ui1 , . . . Uik} = {f (Vi1), . . . , f (Vik )} is a finite subcover of f (K). Therefore, f (K) is compact.

Corollary 80

Let X be a metric space and K ⋐ X. Then, given a continuous function f : X → R, f obtains a maximum and

minimum finite value on K.

Proof: The proof follows from the previous theorem, and Problem 5.(a) on PSET 2.

Corollary 81

Sometimes in particular we want to study bounded continuous functions, and the previous corollary gives us a nice

property. Given a compact metric space X, every continuous function on f is bounded.

Proof: Follows immediately.

Theorem 82 (Cantor’s Intersection Theorem)

If K1 ⊃ K2 ⊃ K3 ⊃ . . . is a decreasing sequence of nonempty sequentially compact subsets of Rn, then ∩i≥1Ki
is non-empty.

Proof: Choose a sequence {an}n such that an ∈ Kn for each n. We know that there exists such an an as each Kn
is nonempty. Then, {an}n is a sequence in K1, and thus there exists a convergent subsequence {ank}k such that

ank → a ∈ K1. Furthermore, {an}∞n=2 is a sequence in K2, and thus contains a a convergent subsequence. Therefore,

a ∈ K2. Continuing this process, we get that a ∈ Ki for all i . Thus, a ∈ ∩i≥1Ki .

Definition 83 (Finite Intersection Property)

A collection of closed sets {Ci}i has the finite intersection property if every finite subcollection has a nonempty

intersection.

Given Lemma 5 and the Cantor Intersection Theorem, it is clear that there are some relations between compact

sets, nonempty intersections of sets, and totally bounded sets. We hence show the following theorem.

Theorem 84

Given a metric space (X, d), the following are equivalent.

(1) X is compact.

(2) X is sequentially compact.

(3) X is Cauchy complete and totally bounded.

(4) Every collection of closed subsets of X with the finite intersection property has a non-empty intersection.

We have shown (1) ⇐⇒ (2), and thus we show (1) ⇐⇒ (4) and (2) ⇐⇒ (3) to finish the proof.

Proof: (1) =⇒ (4): Assume for the sake of contradiction that there exists a collection of closed subsets {Ci}i∈I
with the finite intersection property such that ∩i∈ICi =. Given Ci is closed in X for all i , Ui = Cci is open in X for
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each i . Then, ⋃
i∈I
Ui =

⋃
i∈I
Cci =

(⋂
i∈I
Ci

)c
= ∅c = X.

Hence, the Ui cover X. Given X is compact, there exists a finite subcover {Ui1 , . . . , Uik} of X. Thus,

X =

k⋃
n=1

Uin =

(
k⋂
n=1

Ucin

)c
=

(
k⋂
n=1

Cin

)c
.

Therefore,
⋂k
n=1 Cin = ∅ which is a contradiction with the finite intersection property.

(4) =⇒ (1): Suppose that {Ui}i∈I is an open cover of X, and let Ci = Uci for each i ∈ I. Assume for the sake of

contradiction that no finite subset of the Ui covers X. We show that Ci has the finite intersection property. Assume

for the sake of contradiction that {Cn1 , . . . , Cnk} satisfies Cn1 ∩ · · · ∩ Cnk = ∅. Then,

k⋃
i=1

Uni =

(
k⋂
i=1

Ucni

)c
=

(
k⋂
i=1

Cik

)c
= ∅c = X.

This is a contradiction with the assumption that no subset of the Ui covers X. Hence, {Ci}i∈I satisfies the finite

intersection property. Therefore, {Ci}i∈I has non-empty intersection; i.e.
⋂
i∈I Ci ̸= ∅. Then,

⋃
i∈I Ui ̸= X, which is a

contradiction to the Ui being an open cover for X. Thus, every open cover of X has a finite open subcover.

(2) =⇒ (3): We have already shown that X being sequentially compact implies totally bounded, and hence we

only need show that sequentially compact implies Cauchy complete. Let {xn} be a Cauchy sequence in X. Given {xn}
is a sequence in X, there exists a convergent subsequence {xnk} in X such that xnk → x ∈ X. Let ϵ > 0, and choose

N such that d(xi , xj) < ϵ/2 whenever i , j ≥ N. Next, choose nk > N such that d(xnk , x) < ϵ/2. Then,

d(x, xN) ≤ d(x, xnk ) + d(xnk , xN) < ϵ.

Thus, xn → x ∈ X as n →∞. Therefore, every Cauchy sequence in X converges to a point in X. Hence, X is Cauchy

complete.

(3) =⇒ (2): This part of the proof is quite difficult. Consider a sequence {xn}n in X. Given X is totally bounded,

for every n ∈ N, there exists a finite set of points {y (n)1 , . . . , y
(n)
r(n)} such that X ⊂ B 1

n
(y
(n)
1 ) ∪ · · · ∪ B 1

n
(y
(n)
r(n)). Define

Sn = {y (n)1 , . . . , y
(n)
r(n)}.

We want to find a convergent subsequence of {xn}n. We do so by construction. Given S1 is finite, there exists a

y
(1)
n(1) ∈ S1 such that B1(y

(1)
n(1)) contains infinitely many points from {xn}n. Choose z1 from this ball. Then, given S2 is

finite, there is a y (2)
n(2) such that infinitely many points from {xn}n are in B1(y

(1)
n(1)) ∩ B1/2(y

(2)
n(2)). Choose z2 from this

set. Continue this procedure for each k > 1, selecting a zk from
⋂k
i=1B 1

k
(y
(k)
n(k)). Then, we show {zn}n is Cauchy. Let

ϵ > 0. Then, there exists an N ∈ N such that 1N < ϵ. Hence, for all n,m ≥ N,

d(zn, zm) <
1

N
< ϵ.

Therefore, by the Cauchy completeness of X, {zn} converges to a point in X.

Remark 85. Where do we use the fact that each ball has infinitely many points? We do in fact use this property in

the proof. Try to figure out how!
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5 January 18, 2022

The Fixed Point Theorem
In this section of the notes, we focus on examples and theorems that are useful to know with very useful applications.

Some of the most insightful examples, involve "Lipschitz" functions.

Definition 86 (Lipschitz)

Let (X, dX) and (Y, dY ) be metric spaces. A function f : X → Y is called Lipschitz or K-Lipschitz if there exists

a K ∈ R such that

dY (f (x), f (y)) ≤ KdX(x, y) for all x, y ∈ X.

These functions are sometimes called Lipschitz continuous functions. Why? Well, consider a K-Lipschitz function

for some K > 0, and let ϵ > 0. Then, choose δ = ϵ
K . Hence, when dX(p, q) < δ, we have that

dY (f (p), f (q)) ≤ KdX(p, q) < ϵ.

Therefore, f is continuous. The same is immediately true when K ≤ 0, simply choose δ = 1 and use positive

definiteness of dY .

Lipschitz functions are a key motivator for uniformly continuous functions.

Definition 87 (Uniform continuity)

Let (X, dX) and (Y, dY ) be metric spaces. Then, f : X → Y is uniformly continuous if for every ϵ > 0 there

exists a δ > 0 such that whenever dX(x, y) < δ, we have dY (f (x), f (y)) < ϵ.

Remark 88. You may be wondering what the difference is between uniform continuity and regular continuity. Well

notice that in the definition of uniform continuity, δ only depends on ϵ and f . I.e., δ does not depend on x . We say

a function is continuous if it is continuous at every x ∈ X, and thus δ depends on x . This is the difference between

uniform continuity and regular continuity.

Notice that a uniformly continuous function is continuous, but the other direction is not necessarily true.

Theorem 89

Let (X, dX) and (Y, dY ) be metric spaces. Suppose f : X → Y is continuous and X is compact. Then, f is

uniformly continuous.

Proof: Let ϵ > 0. For each c ∈ X, choose δc such that

dX(x, c) < δc =⇒ dY (f (x), f (c)) < ϵ/2.

We know that such a δc exists as f is continuous. Furthermore, the balls B(c, δc) cover X and the space X is compact.

Then, by the Lebesgue Number Lemma, there exists a δ > 0 such that for all x ∈ X, there is a c ∈ X such that

B(x, δ) ⊂ B(c, δc).
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If x, y ∈ X and dX(x, y) < δ, choose a c ∈ X such that B(x, δ) ⊂ B(c, δc). Then, y ∈ B(c, δc) by assumption.

Therefore, by the triangle inequality,

dY (f (x), f (y)) ≤ dY (f (x), f (c)) + dY (f (c), f (y)) <
ϵ

2
+
ϵ

2
= ϵ.

We discuss one more application of uniform continuity, and then we will move onto another useful application of

Lipschitz functions.

Proposition 90

If f : [a, b]× [c, d ]→ R is a continuous function, then g : [c, d ]→ R defined by

g(y) =

∫ b
a

f (x, y) dx

is continuous.

Proof: Let ϵ > 0. Fix y ∈ [c, d ] and let {yn} be a sequence in [c, d ] such that yn → y . As we have shown in Lecture

2, g is continuous if and only if g(yn) → g(y). This is what we will show. Firstly, note that as f is continuous on

[a, b] × [c, d ] which is compact, f is uniformly continuous. I.e., there exists a δ > 0 such that given y ′ ∈ [c, d ] and

|y ′ − y | < δ, then |f (x, y ′)− f (x, y)| < ϵ for all x ∈ [a, b].
Let hn(x) = f (x, yn) and h(x) = f (x, y). We have thus shown that hn → h uniformly as n → ∞. Uniform

convergence implies we can swap limits and integrals, obtaining

lim
n→∞

g(yn) == lim
n→∞

∫ b
a

f (x, yn) dx =

∫ b
a

lim
n→∞

f (x, yn) dx =

∫ b
a

f (x, y) dx = g(y).

Therefore, g is continuous.

We now return back to the usefulness of Lipschitz functions.

Definition 91 (Contraction)

Let (X, dX) and (Y, dY ) be metric spaces. A mapping f : X → Y is said to be a contraction if it is a k−Lipschitz

map for some 0 ≤ k < 1. In other words, there exists a k < 1 such that

dY (f (x), f (y)) ≤ kdX(x, y) for all x, y ∈ X.

Definition 92 (Fixed point)

If f : X → X is a map, x ∈ X is called a fixed point if f (x) = x .

We thus have a useful theorem that follows from these simple definitions.

Theorem 93

Banach Fixed Point Theorem Let (X, d) be a nonempty complete metric space, and f : X → X be a contraction.

Then, f has a unique fixed point.

Note: This is sometimes called the contraction mapping principle.
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Proof: Try to picture this!

We want to show that there exists an x ∈ X such that f (x) = x , and then we want to show x is unique. How can

we find such an x though?

Pick some random x0 ∈ X, and define a sequence {xn} such that f (xn) = xn+1. Then, by definition, we have that

d(xn+1, xn) = d(f (xn), f (xn−1)) ≤ kd(xn, xn−1) ≤ · · · ≤ knd(x1, x0).

We will show that {xn} is a Cauchy sequence.

Question 94. What good does this do? What property of the theorem will we use here?

Suppose m ≥ n. Then,

d(xm, xn) ≤
m−1∑
i=n

d(xi+1, xi)

≤
m−1∑
i=n

k id(x1, x0)

= knd(x1, x0)

m−n−1∑
i=0

k i

≤ knd(x1, x0)
∞∑
i=0

k i

=
kn

1− k d(x1, x0).

Given 0 ≤ k < 1, as n → ∞, d(xm, xn) → 0. Therefore, {xn} is a Cauchy sequence, and thus there exists an x such

that xn → x . We claim that x is a fixed point:

x = f ( lim
n→∞

xn) = lim
n→∞

f (xn) = lim
n→∞

xn+1 = x.

We also claim that x is unique. Suppose that y is also a fixed point of f . Then,

d(x, y) = d(f (x), f (y)) ≤ kd(x, y) =⇒ (1− k)d(x, y) ≤ 0.

Given 0 ≤ k < 1, it follows that d(x, y) = 0 =⇒ x = y .

As stated in Lebl’s book: "The proof is constructive. Not only do we know a unique fixed point exists. We also

know how to find it" (7.6.1 page 268). We use this fact to consider an interesting application of the fixed point

theorem: differential equations.

Often, we wonder when a differential equation has a solution. In 18.03, we tried to produce formulas to precisely

solve differential equations. But as we approach more and more complex differential equations (complex in the sense

of difficulty, not inherently complex valued), we need a different approach. Analysis and metric spaces, and especially

the Banach fixed point theorem can be a very useful tool for such questions. Especially since, as we have shown,

C0([a, b]) is a complete metric space under the uniform metric/norm.

Remark 95. Using the contraction mapping principle to solve differential equation is a central topic in 18.152.

Consider the simple ordinary differential equation
df
dx = F (x, f (x))

f (x0) = y0.
.
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We want to solve this initial value problem (IVP), finding a function f (x) such that f ′(x) = F (x, f (x)) where F is a

general function. For instance, consider the IVP: 
dy
dx = y

′ = y

y(0) = 1.
.

We can solve this IVP with the solution y = ex as (ex)′ = ex and e0 = 1. A more complicated example to consider is

y ′ = −2xy , y(0) = 1. You can check that y(x) = ex
2

is a solution.

One can ask how long a solution exists for. For instance, consider y ′ = y2, y(0) = 1. This has solution y(x) = 1
1−x .

While y2 is a nice function (i.e. existing for all x and y), the solution blows up at x = 1. So how can we use the

contraction mapping theorem to approach this problem?

Consider the following equation:

f (x) = y0 +

∫ x
0

F (t, f (t)) dt.

Notice that f (0) = y0, and f ′(x) = F (x, f (x)) by the Fundamental Theorem of Calculus. Using this equation as a

motivator, we can prove the following theorem:

Theorem 96 (Picard’s Theorem)

Let I, J ⊂ R be closed and bounded intervals, let I◦, J◦ be their interiors, and let (x0, y0) ∈ I◦ × J◦. Suppose

F : I × J → R is continuous and Lipschitz in the second variable. I.e., there exists an L ∈ R such that

|F (x, y)− F (x, z)| ≤ L|y − z |

for all x ∈ I and y , z ∈ J. Then, there exists an h > 0 and a unique differentiable function f : [x0 − h, x0 + h]→
J ⊂ R such that

f ′(x) = F (x, f (x)) and f (x0) = y0.

By "interiors", I mean that if I = [0, 1], then I◦ = (0, 1). There is a more general definition of the interior of a set,

but we move on for now. Also note that we may assume without loss of generality that x0 = 0.

Proof: We will prove this by constructing the convergent sequence used in the Banach fixed point theorem, and then

I will outline another approach that creates a contraction that satisfies the properties we want.

The first method is called Picard iteration. To solve f ′(t) = F (x, t) with f (0) = 0, we first start with a guess.

Consider the simple function f0(t) = y0. Then, it is clear that f0(0) = y0, but clearly this only solves the equation if

F (x, f0(t)) = 0. We thus need to keep improving our guesses. Consider a function f1 such that

f ′1(t) = F (t, f0(t)), f1(0) = y0.

We can solve this ODE using an integral, obtaining

f1(x)− f1(0) =
∫ x
0

F (t, f0(t)) dt =⇒ f1(x) = y0 +

∫ x
0

F (t, f0(t)) dt.

Now this is a function we can keep on reiterating. Consider

fn+1(x) = y0 +

∫ x
0

F (t, fn(t)) dt.
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We thus want to show that this sequence of functions converges as k →∞ and that the limit

f (x) = lim
k→∞

fk(x)

is a solution to the ODE.

We first check that fk is well-defined for all k . Pick α > 0 such that [−α,α] ⊂ I and [y0 − α, y0 + α] ⊂ J. Given

F (x, y) is continuous over the compact set I × J, there exists an M such that |F (x, y)| ≤ M for all (x, y) ∈ I × J.
Hence, define

h = min

{
α,

α

M + Lα

}
.

Notice that [−h, h] ⊂ I. We prove that fk is well-defined inductively. Assuming that fk−1([−h, h]) ⊂ [y0−α, y0+α], it

follows that F (t, fk−1(t)) is well defined for all t ∈ [−h, h]. Therefore, fk(x) = y0 +
∫ x
0 F (t, fk−1(t)) dt is well defined

for all x ∈ [−h, h]. We thus need to show that fk([−h, h]) ⊂ [y0 − α, y0 + α]. Given x ∈ [−h, h], we have

|fk(x)− y0| =
∣∣∣∣∫ x
0

F (t, fk−1(t)) dt

∣∣∣∣ ≤ M|x | ≤ Mh ≤ Mα

M + Lα
≤ α.

Therefore, fk is well-defined for all k on the interval [−h, h] ⊂ I. Now we want to show that fk converge to some

function f . We can do this by showing {fk} is a Cauchy sequence (just like we did for the proof of the Banach fixed

point theorem!):

|fm(x)− fx(x)| =
∣∣∣∣∫ x
0

F (t, fm−1(t))− F (t, fn−1(t)) dx
∣∣∣∣

≤
∫ x
0

|F (t, fm−1(t))− F (t, fn−1(t))| dt

≤ L
∫ t
0

|fm−1(t)− fn−1(t)|

≤ L∥fm−1 − fn−1∥|x |

≤
Lα

M + Lα
∥fm−1 − fn−1∥.

Let C = Lα
M+Lα ≤ 1. Therefore, taking the supremum of the left-hand side, we get

∥fm − fn∥ ≤ C∥fm−1 − fn−1∥.

By induction, through a similar proof used in the Banach fixed point theorem, it follows that {fn} is a Cauchy sequence,

and thus fn → f ∈ C0([−h, h]).
We want to show that f satisfies the ODE. Note that f ([−h, h]) ⊂ [y0 − α, y0 + α]. Firstly, notice that

|F (t, fn(t))− F (t, f (t))| ≤ L|fn(t)− f (t)| ≤ L∥fn − f ∥.
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Therefore, given fn → f uniformly, F (t, fn(t))→ F (t, f (t)) uniformly for t ∈ [−h, h]. Thus,

y0 +

∫ x
0

F (t, f (t)) dt = y0 +

∫ x
0

F (t, lim
n→∞

fn(t)) dt

= y0 +

∫ x
0

lim
n→∞

F (t, fn(t)) dt

= lim
n→∞

y0 +

∫ x
0

F (t, fn(t))

= lim
n→∞

fn+1(x)

= f (x).

By the FTC, it is then clear that f is differentiable, f ′(x) = F (x, f (x)), and f (0) = y0.

To prove this by proving the premises of the Banach fixed point theorem, you can consider the space

Y = {f ∈ C([−h, h]) | f ([−h, h]) ⊂ J},

and show the following:

1. Y is a closed subset of continuous functions.

2. A closed subset of a complete metric space is a complete metric space.

3. Consider T : Y → C([−h, h]) given by

T (f )(x) = y0 +

∫ x
0

F (t, f (t)) dt,

and show that T is a contraction from Y → Y .

4. Then T has a unique fixed point by the fixed point theorem, which solves the ODE.

Remark 97. This will be an optional problem on PSET 4.

We can consider one more (harder to motivate) example of the Banach fixed point theorem.

Example 98

Let λ ∈ R, f , g ∈ C0([a, b]), and k ∈ C0([a, b]× [a, b]). Then, consider the operator T : C0([a, b])→ C0([a, b])

T (f )(x) = g(x) + λ

∫ b
a

k(x, y)f (y) dy .

For which λ is T a contraction?

By the Proposition 5, we know that T (f ) is continuous. Given that k is continuous on a compact set, k is bounded.

Thus, there exists a c such that

|k(x, y)| ≤ c ∀x, y ∈ [a, b].

29



Then, we have

d(T (f1), T (f2)) = sup
x∈[a,b]

|T (f1)(x)− T (f2)(x)|

= |λ| sup
x∈[a,b]

∣∣∣∣∫ b
a

k(x, y)(f1(y)− f2(y)) dy
∣∣∣∣

≤ |λ| sup
x∈[a,b]

∫ b
a

|k(x, y)||f1(y)− f2(y)| dy

≤ |λ| sup
x∈[a,b]

|f1(x)− f2(x)| sup
x∈[a,b]

∫ b
a

|k(x, y)| dy

≤ c |λ|(b − a)d(f1, f2).

Therefore, if |λ| < 1
c(b−a) , it follows that T is a contraction on a complete metric space. Therefore, by the Banach

fixed point theorem, there exists a unique f ∈ C0([a, b]) such that

T (f )(x) = f (x) = g(x) + λ

∫ b
a

k(x, y)f (y) dy .

6 January 20, 2022

Where We Go From Here
In this section of the notes (the final one for this class!), we will discuss a bit of the history of metric spaces, and give

a preview of how concepts learned here apply to future classes (i.e. 18.901, 18.102, etc.).

History: In the early 1900s, the usual approach to mathematics was far less abstract and axiomatic. Hence, at

the time, various spaces that mathematicians studied (such as function spaces as we have studied a bit of in this

class) had different notions of convergence. Each space has it’s own notion of the word, which was studied in its own

respect. There were some similarities between these notions, but there was no general understanding of the term.

Then, in 1906, Fréchet introduced the idea of metric spaces in his Ph.D. Dissertation.

Remark 99. Fréchet, however, did not coin the term "Metric Space"; the term was coined by Felix Hausdorff.

This allowed him (and many other mathematicians) to prove a result for a metric space, and have it be applicable

to all other specific examples. This was the highlight of §2 of our class– the General Theory of metric spaces.

In this class, we discussed normed spaces, and saw how such spaces were in fact metric spaces under the metric

induced by the norm. In this way, metric spaces are a generalization of normed spaces.

Question 100. Is there a generalization of metric spaces?

Yes, there is: Topological spaces.

18.901: Introduction to Topology: Topological spaces were first defined by Hausdorff in 1914 in his book

"Principles of Set Theory". His book increased the popularity of metric spaces as a mathematical tool.
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Definition 101 (Topology)

A topology on a set X is a collection T of subsets of X having the following properties:

1. ∅ and X are in T .

2. The union of the elements of any subcollection of T is in T .

3. The intersection of the elements of any finite subcollection of T is in T .

A set X for which a topology T has been specified is called a topological space.

Question 102. Where has we seem properties like this before?

We saw these properties when we defined open sets! In fact,

Definition 103 (Open Set)

Let (X, T ) be a topological space. Then, U ⊂ X is called an open set if U ∈ T . In other words, we define the

set in T as open sets. Similarly, V ⊂ X is a closed set if X \ V ∈ T .

Thus, inherently, open sets in the topological sense automatically follow the topological properties of open sets in

metric spaces (as discussed in Lecture 2). In fact, given a metric space (X, d), there is a topology induced by the

metric. Intuitively, the topology is defined as the collection of unions of ϵ-balls for all ϵ > 0. This intuitive definition

follows from what we have discussed about metric spaces: an open set in a metric space is the union of (arbitrarily

many) open balls.

Remark 104. To rigorously define the topology induced by the metric: ϵ-balls form a basis for the topology on X.

At first, this definition can feel too general to particularly seem useful, but then again the definition of metric spaces

can feel the same way at first. Given a topological space X, we can define notions of neighborhoods, convergence,

and continuity that align with what we have proven for metric spaces.

Definition 105

Let (X, TX) and (Y, TY ) be topological spaces. Then,

1. A neighborhood U of a point x ∈ X is an open set (i.e. U ∈ TX) such that x ∈ U.

2. A sequence {xn} in X converges to x ∈ X if for every neighborhood U of x , there is an N such that xn ∈ U
for all n ≥ N.

3. A function f : X → Y is said to be continuous if for each open set V ∈ TY , f −1(V ) ∈ TX .

This definition may feel very abstract, but as we have shown throughout 18.S097, these definitions are related to our

understanding of convergence and continuity in metric space.

One may ask, given that topological spaces are a generalization of metric spaces, why we study metric spaces.

To this, I say: why do we study calculus before we study real analysis? In theory, we could prove calculus using real

analysis without having actually taken 18.01 or 18.02. And yet, taking these pre-requisites give us an intuition for

why certain theorems should be true, and in some cases give us an intuition of how to approach proofs. Even more

generally, calculus gives us an intuition for how derivatives of functions "should" look for nice functions. Even if we
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study weirder functions (or analogously weirder spaces that aren’t metric spaces), having the intuition allows us to

play with abstract objects.

This is why throughout this class I have tried to draw diagrams when possible to describe what a theorem is actually

saying, or to visualize an example. This technique of drawing an entire "space" as a blob on a chalkboard or on paper

is very useful when trying to approach a problem, which you can see more of if you decide to take a class like 18.901.

That being said, there is a lot more we can know about metric spaces than we can about topological spaces, just

in the same way we can know more about normed spaces than metric spaces. We have already seen this to a certain

extent. One can show that given a normed space (X, ∥·∥), and two convergent sequences xn → x and yn → y , then

xn + yn → x + y . We cannot say the same about a general metric space, as we don’t inherently have always have a

notion of addition in a metric space. So metric spaces are still an interesting area to study even after someone learns

about topological spaces. In fact, metric spaces are currently an active area of research, even though most research

has ended for topological spaces.

So so far, we have talked about topological spaces which are more general than metric spaces. Is there a space

that is more specific than a metric space that is useful to study? Yes, in fact: normed spaces.

18.102: Introduction to Functional Analysis: In Lecture 3 for this class, as a way to motivate the usefulness of

compact sets, we defined normed spaces.

Recall 106

A vector space with a norm on it is defined as a normed space.

And as you showed in PSET 2, a normed space is in fact a metric space, by defining d(x, y) = ∥x − y∥: the metric

induced by the norm. In fact, using our concept of convergence, Cauchy sequences, and open sets for metric spaces,

we can define these ideas once again for normed spaces.

Definition 107

Let (X, ∥·∥) be a normed space and {xn} be a sequence in X. Let d be the metric induced by the norm. Then,

1. xn converges to x if and only if for all ϵ > 0, there exists an N such that for all n ≥ N,

d(xn, x) = ∥xn − x∥ < ϵ.

2. {xn} is a Cauchy sequence if and only if for all ϵ > 0, there exists an N such that for all n,m ≥ N,

d(xn, xm) = ∥xn − xm∥ < ϵ.

3. A set A is open in X if for all x ∈ A, there exists an ϵ > 0 such that

Bϵ(x) = {y ∈ X | d(x, y) = ∥x − y∥ < ϵ} ⊂ A.

We similarly have a definition of Cauchy completeness in a normed space (i.e. a space is Cauchy complete if every

Cauchy sequence converges in the space). To be honest, when I studied this in 18.100B, Cauchy sequences did not

seem all that useful. So, I found it somewhat shocking that Cauchy sequences were extremely important in functional

analysis.
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Definition 108 (Banach Space)

A Banach space is a normed space that is Cauchy complete with respect to the norm.

Banach spaces are named after Stefan Banach who studied the spaces in 1920-1922.

Remark 109. Fun fact: The term "Banach space" was coined by Fréchet, and the term "Fréchet space" (which we

did not cover in this class) was coined by Banach.

Example 110

As we have shown (either in 18.100A/P or in this class), Rn, Cn, and C0([a, b]) are Banach spaces. In fact, one

can show that the space

C∞(X) = {f : X → C | f continuous and bounded}

is a metric space with respect to the uniform norm on metric spaces.

In our study of Cauchy sequences in metric spaces, there was one fact that we use over and over again to help

finish proofs: the fact that R is Cauchy complete. This fact is so important, we obtain a new definition:

Definition 111 (Functional)

Let (V, ∥·∥) be a normed space. A functional is a bounded linear map from f : V → K where K = R or C
depending on the context.

This term is directly related to why 18.102 is called functional analysis! As it turns out, studying normed spaces

is heavily related to studying functionals on those spaces. If you have taken linear algebra, this idea is similar to how

studying a vector space is heavily related to studying the dual space of that vector space, but I digress.

This class is also heavily related to quantum mechanics, so if you are someone interested in physics/this concept,

a class like 18.102 may be interesting to take.

18.152: Introduction to Partial Differential Equations: I can’t say too much about this class as I haven’t taken

it myself, but just to bring it up again, the Banach fixed point theorem is very useful for proofs in this class regarding

differential equations as we have seen.

On that note, I want to discuss one specific problem in partial differential equations that actually motivated the

development of material in 18.100x classes: the Dirichlet problem. Consider some subset Ω ⊂ R2, and picture this

set as a metal plate. Suppose I heated the plate with a blowtorch for a certain amount of time. After a long period

of time, the plate will reach thermal equilibrium. This is represented by the steady-state heat equation:

∂2u

∂x2
+
∂2u

∂y2
= 0

where u(x, y) is the temperature at point (x, y). This operator is so important, we abbreviate it with ∆, referred to as

the Laplace operator or Laplacian. Suppose that I also knew the temperature on the boundary of this plate (denoted

∂Ω). Let f = u on ∂Ω (i.e. f is the temperature on the boundary of the plate).

Question 112. Can we find the temperature distribution on Ω? Is this temperature distribution unique? This question

is called the Dirichlet problem (in R2).
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We want to solve the differential equation ∆u = 0 on Ω

u
∣∣
∂Ω
= f

for some u ∈ C2(R2) and f ∈ C0(R2).
Early on, mathematicians studied this problem by studying the "Dirichlet energy" of u, given by the function

E(u) =
1

2

∫
Ω

|∇u|2 dA.

Consider all of the C2 functions on Ω with the given boundary condition. Let Einf be the infimal energy of functions in

this set. Dirichlet and others showed that if Einf is the energy of a function u ∈ C2 with the given boundary condition,

then ∆u = 0. Thus, u would be a solution to the Dirichlet problem! However, this raises the question:

Question 113 (Question 1). Does there exist a C2 function u with the given boundary condition, such that E(u) = Einf?

If the answer is yes, then we have solved the problem! How might we approach finding such a function u? We

could take a sequence of functions un such that E(un)→ E(u)! However, this raises yet another question:

Question 114 (Question 2). Does un converge in C2 to a limit function u?

If this is true, then we can easily show that E(u) = Einf and then we solve the problem! In fact, if un converges in

C1 to u, then E(u) = Einf. This raises the following question again:

Question 115 (Question 3). Consider the set of functions u ∈ C2 with the given boundary data, with E(u) at most

E0 > 0. Is this set of functions compact in C2 or C1?

If this is true, then we have sequential compactness, which means we can find a subsequence unk converging to a

limit u with E(u) = Einf.

The answer to question 3, is no. This set of functions it not compact in either C1 or C2. This ruins this entire,

arguably very intuitive approach to the problem. Even though this idea didn’t solve the problem though, it did highlight

some key issues at play. In fact, the ideas of convergence and compactness in a metric space were developed partly to

see if this approach to the Dirichlet problem works or not. It turns out, this approach doesn’t work.

The answer to question 2 is also no. We can in fact build a sequence of C2 functions un with the given boundary

condition such that E(un) → Einf, and yet un fails to converge in C1 (let alone C2). One can show that a function

with zero boundary data and very small Dirichlet energy can still have a large C1 norm.

However, the answer to question 1 is yes. Eventually, mathematicians were able to solve the Dirichlet problem,

using techniques beyond the scope of this class. While we won’t discuss the solution, this rich history highlights how

mathematical concepts were/are developed to solve problems like this. This topic is sometimes talked about more in

18.102, and in some graduate level classes.

Remark 116. An optional problem on PSET 4 asks you to solve the Dirichlet problem on an interval of R.

Thank you for taking this class with me this IAP. It has been a fun time developing the material and teaching

the class. Please feel free to send me any feedback by emailing me or talking to me after class. Have a great spring

semester!
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