18.S097 PSET 2

IAP 2022

Due 1/16/2022

Review / helpful information:

• The uniform distance on $C^0([a,b])$ is defined as

$$d(f,g) = \max_{x \in [a,b]} |f(x) - g(x)|.$$

- Given a vector space V over the real numbers (i.e. a space where addition of vectors and multiplication by real numbers is well-defined), we define a norm to be a function $\|\cdot\|:V\to[0,\infty)$ satisfying the following properties:
 - Positive Definite: $||v|| \ge 0$ and $||v|| = 0 \iff v = 0$.
 - Homogeneity: $\|\lambda v\| = |\lambda| \|v\|$ for all $v \in V$ and $\lambda \in \mathbb{R}$.
 - Triangle Inequality: $||x + y|| \le ||x|| + ||y||$.
- We denote "K is a subset of a metric space X" by $K \subseteq X$.
- Let A be a set of real numbers and $a = \sup A < \infty$. Then, for all $n \in \mathbb{N}$ there exists an $x_n \in A$ such that

$$a - \frac{1}{n} < x_n \le a$$
.

Throughout this problem set, let (X, d) be a metric space.

1. Let $\{x_n\}$ and $\{y_n\}$ be Cauchy sequences in X. Show that $d(x_n, y_n)$ converges.

Hint: show that in a metric space, $|d(a,b) + d(a',b')| \le d(a,a') + d(b,b')$.

Remark 1. You may **not** assume x_n and y_n converges. This is only true in a Cauchy complete space.

- **2.** In class, we have defined a set $A \subset X$ to be closed if its complement is an open set in X. There is another useful definition of a closed set however. Show that $A \subset X$ is closed if and only if every convergent sequence in A converges in A. In other words, if $\{x_n\}$ is a convergent sequence in A such that $x_n \to x$, then $x \in A$.
- **3.** Here, we will show that $C^0([0,1])$ is Cauchy complete with respect to the uniform distance. Suppose that $f_n \in C^0([0,1])$ is a Cauchy sequence.
- (a) Fix an arbitrary $x_0 \in [0,1]$. Show that $\lim_{n\to\infty} f_n(x_0)$ exists. Hint: \mathbb{R} is Cauchy complete.
- **(b)** Define $f:[0,1]\to\mathbb{R}$ by

$$f(x) = \lim_{n \to \infty} f_n(x).$$

1

Show that for all $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that

$$|f_n(x) - f(x)| \le \epsilon$$

for all $x \in [0,1]$ and for all $n \ge N$.

(c) Show that f(x) is continuous on [0,1]. I.e., $f \in C^0([0,1])$. Hint: To show f(x) is continuous at x_0 , consider

$$|f(x) - f(x_0)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(x_0)| + |f_n(x_0) - f(x_0)|.$$

- (d) Using parts a-c, explain why $\lim_{n\to\infty} f_n = f$ as a sequence in $C^0([0,1])$.
- **4.** Let $\|\cdot\|$ be a norm on a vector space V, and let $d(x,y) = \|x-y\|$ for all $x,y \in V$. Show the following three properties:
- (a) $d(\lambda x, \lambda y) = |\lambda| d(x, y)$ for all $\lambda \in \mathbb{R}$, and for all $x, y \in V$.
- (b) Translation invariance: d(x+z,y+z) = d(x,y) for all $x,y,z \in V$.
- (c) Prove d is a metric on V. This metric is called the metric induced by the norm.
- **5.** The following are important properties of compact sets in \mathbb{R} .
- (a) Let $K \in \mathbb{R}$. Show that there exists a maximum and a minimum value in K.
- (b) (Optional) Generalize the Heine-Borel theorem to \mathbb{R}^n . (This proof is very similar to that in class.)
- **6.** (Optional) Let U be an open set in the metric space (X, d). Show that U can be written as a union of arbitrarily many open balls.
- 7. (Optional) Show that a function $f: X \to Y$ is continuous if and only if given $U \subset Y$ where U is open in Y, $f^{-1}(U)$ is open in X.
- 8. (Optional) We call two norms $\|\cdot\|_1$, $\|\cdot\|_2$ equivalent if there exists constants $C_1 > 0$ and C_2 such that

$$C_1||x||_1 \le ||x||_2 \le C_2||x||_1.$$

One can similarly define equivalent metrics. On \mathbb{R}^n we define the supremum norm and ℓ^p norms (for $1 \leq p < \infty$):

$$||x||_{\infty} = \max_{i} |x_i| \text{ and } ||x||_p = \left(\sum_{i} |x_i|^p\right)^{1/p}.$$

(You can check that these are in fact norms, but do not have to.) Show that the supremum norm, ℓ^1 , and ℓ^2 norms are equivalent on \mathbb{R}^n by showing

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le \sqrt{n} ||x||_2 \le n ||x||_{\infty}.$$

Briefly explain why this shows the norms are pairwise equivalent.