18.S097 PSET 3

IAP 2022

Due 1/23/2022

Review / helpful information:

• Let $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^n$. Then, we define

$$A + B := \{a + b \mid a \in A, b \in B\}.$$

• We define the ℓ^p norm on a sequence $a = \{a_n\}_n$ of real numbers as

$$\|a\|_p = \left(\sum_{j=1}^{\infty} |a_n|^p\right)^{1/p}$$

where $1 \le p < \infty$. We define ℓ^p space as the space of (infinite) sequences $x = \{x_n\}_n$ in \mathbb{R} such that $\|x\|_p < \infty$.

1. Let A be a closed subset of \mathbb{R}^n and let B be a compact subset of \mathbb{R}^n . Show that A + B is closed. Hint: Let $\{a_n\}_n$ be a sequence in A + B such that $a_n \to z \in \mathbb{R}^n$. Show that $z \in A + B$.

Remark 1. In fact, you can show that the sum of a closed set and a compact subset in a "topological vector space" is a closed set, but that goes beyond the scope of this class.

Let (X, d) be a metric space and S ⊂ X. Then, a point x ∈ S is an isolated point if there exists an ε > 0 such that B_ε(x) contains no other points of S. Show that a point x ∈ S is an isolated point if and only if give a sequence {a_n} in S converges to x, it must be the case that there exists an N such that for all n ≥ N, a_n = x.
Let X be a metric space. Show that a finite union of compact subsets in X is compact.
Let 1 ≤ p < ∞. Consider the set

$$S := \{a = \{a_n\} \in \ell^p \mid ||a||_p \le 1\}$$

Explain why S is closed and bounded in ℓ^p (under the metric induced by the norm in PSET 2), and prove that S is not a compact subset of ℓ^p .

Hint: Let $e_n = {\delta_{k,n}}_k \in S$ where

$$\delta_{k,n} = \begin{cases} 1 & k = n \\ 0 & k \neq n \end{cases}.$$

Show that $\{e_n\}_n$ does not have a convergent subsequence in S. Make sure to explain why this shows S is not compact.

5. Consider the set

$$S := \{ f \in C^0([0,1]) \mid ||f||_{\infty} = \sup_{x \in [0,1]} |f(x)| \le 1 \}.$$

Prove that S is not compact.

Hint: consider the sequence $f_n(x) = x^n$.

6. (Optional) Consider the space ℓ^2 . Show that the set

$$A = \{a = \{a_k\}_k \in \ell^2 \mid |a_k| < k^{-3}\}$$

is a compact subset of $\ell^2.$

7. (Optional) Consider the set of functions of the form

$$\sum_{n} a_n e^{inx}$$

with $|a_n| < (1+|n|)^{-2}$.

- (a) Show that every function in this set lies in $C^0([0, 2\pi])$.
- (b) Show that this set is compact in $C^0([0, 2\pi])$.