18.S190 PSET 1

IAP 2023
Due 1/13/2022

1. Consider the following map: $d: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow[0, \infty)$ where

$$
d(x, y)= \begin{cases}\|x-y\|_{\mathbb{R}^{2}} & x, y, 0 \text { collinear } \\ \|x\|_{\mathbb{R}^{2}}+\|y\|_{\mathbb{R}^{2}} & \text { otherwise }\end{cases}
$$

Here, I use $\|\cdot\|_{\mathbb{R}^{2}}$ to denote the Euclidean norm/magnitude of a vector in \mathbb{R}^{2}. Show that this map is a metric on \mathbb{R}^{2}. This is called the British Railway metric. (Try to figure out why!)
Hint: Try drawing a picture, and use the fact that $\|\cdot\|_{\mathbb{R}^{2}}$ is a metric.
2. Is $d: C^{1}([0,1]) \times C^{1}([0,1]) \rightarrow[0, \infty)$ defined by

$$
d(f, g)=\sup _{x \in[0,1]}\left|f^{\prime}(x)-g^{\prime}(x)\right|
$$

a metric on $C^{1}([0,1])$? If so, prove it. If not, show what properties of a metric d satisfies, and explain which properties of a metric d fails.
3. Show that $d: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$ where

$$
d(x, y)=\frac{|x-y|}{1+|x-y|}
$$

is a metric on \mathbb{R}.
4. Define a semi-metric on X as a metric that satisfies symmetry, the triangle inequality, and $d(x, y) \geq 0$ for all $x, y \in X$, but doesn't necessarily satisfy $d(x, y)=0 \Longleftrightarrow x=y$. Specifically, $x=y \Longrightarrow d(x, y)=0$ but the opposite implication need not be true. Show that the sum of a metric and a semi-metric on X is a metric on X. In other words, if d is a metric on X, and d^{\prime} is a semi-metric on X, then $d+d^{\prime}$ is a metric on X.
5. Show that $I_{t}: C^{0}([a, b]) \rightarrow C^{1}([a, b])$ is a continuous map where

$$
I_{t}(f)=\int_{a}^{t} f(x) \mathrm{d} x
$$

for some $t \in[a, b]$.
Hint: This proof is semi-similar to an example done in class, though you will need to mess with $\epsilon \mathrm{s}$ and $\delta \mathrm{s}$.
6. (Optional) In this problem, you will show that the ℓ^{p}-metric is in fact a metric.
(a) (Hölder's Inequality) Suppose that $n \in \mathbb{N}$, and let $a_{k}, b_{k} \in \mathbb{R}, 1 \leq k \leq n$. Prove that if $1<p<\infty$, and $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\sum_{k=1}^{n}\left|a_{k} b_{k}\right| \leq\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{n}\left|b_{k}\right|^{q}\right)^{1 / q}
$$

Hint: Prove that if $A, B>0$ and $t \in(0,1)$, then $A^{t} B^{1-t} \leq t A+(1-t) B$ by showing the function

$$
f(x)=t x+(1-t) B-x^{t} B^{1-t}, \quad x>0
$$

has a minimum at $x=B$.
(b) (Minkowski's inequality) Suppose that $n \in \mathbb{N}$ and let $a_{k}, b_{k} \in \mathbb{R}, 1 \leq k \leq n$. Prove that if $1 \leq p<\infty$, then

$$
\left(\sum_{k=1}^{n}\left|a_{k}+b_{k}\right|^{p} \leq \sum_{k=1}^{n}\left|a_{k}+b_{k}\right|^{p}\right)^{1 / p} \leq\left(\sum_{k=1}^{n}\left|a_{k}\right|^{p}\right)^{1 / p}+\left(\sum_{k=1}^{n}\left|b_{k}\right|^{p}\right)^{1 / p}
$$

Hint: by the triangle inequality,

$$
\sum_{k=1}^{n}\left|a_{k}+b_{k}\right|^{p} \leq \sum_{k=1}^{n}\left|a_{k}\right|\left|a_{k}+b_{k}\right|^{p-1}+\sum_{k=1}^{n}\left|b_{k}\right|\left|a_{k}+b_{k}\right|^{p-1}
$$

Now apply Hölder's inequality.
7. (Optional) We denote the space of infinitely differentiable functions on an interval $[a, b]$ as $C^{\infty}([a, b])$. Denote

$$
\sup _{x \in[a, b]}\left|f^{(n)}(x)-g^{(n)}(x)\right|=d_{n}(f, g)
$$

Problem 2 shows that d_{n} is a semi-metric on $C^{\infty}([a, b])$ for all $n \in \mathbb{N}$, and d_{0} is a metric as we showed in class. Show that

$$
d(f, g):=\sum_{n=0}^{\infty} 2^{-n} \frac{d_{n}(f, g)}{1+d_{n}(f, g)}
$$

is a metric on $C^{\infty}([a, b])$.
Remark 1. This concept is related to what is called a Fréchet space, named after Maurice Fréchet who first wrote about metric spaces!

