
18.S190 PSET 2

IAP 2023

Due 1/18/2022

Review / helpful information:

• The uniform distance on C0([a, b]) is defined as

d(f, g) = max
x∈[a,b]

|f(x)− g(x)|.

• Given a vector space V over the real numbers (i.e. a space where addition of vectors and multiplication by
real numbers is well-defined), we define a norm to be a function ∥·∥ : V → [0,∞) satisfying the following
properties:

– Positive Definite: ∥v∥ ≥ 0 and ∥v∥ = 0 ⇐⇒ v = 0.

– Homogeneity: ∥λv∥ = |λ|∥v∥ for all v ∈ V and λ ∈ R.

– Triangle Inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

• We denote "K is a compact subset of a metric space X" by K ⋐ X.

• Let A be a set of real numbers and a = supA < ∞. Then, for all n ∈ N there exists an xn ∈ A such that

a− 1

n
< xn ≤ a.

Throughout this problem set, let (X, d) be a metric space.
1.

1. Let xn → x and yn → y be two convergent sequences in (X, d). Then, d(xn, yn) → d(x, y).

2. Let {xn} and {yn} be Cauchy sequences in X. Show that d(xn, yn) converges.
Hint: show that in a metric space, |d(a, b) + d(a′, b′)| ≤ d(a, a′) + d(b, b′).

Remark 1. You may not assume xn and yn converges in the second part of this problem. This is only true in a
Cauchy complete space.

2. In class, we have defined a set A ⊂ X to be closed if its complement is an open set in X. There is another
useful definition of a closed set however. Show that A ⊂ X is closed if and only if every convergent sequence in A

converges in A. In other words, if {xn} is a convergent sequence in A such that xn → x, then x ∈ A.
3. Here, we will show that C0([0, 1]) is Cauchy complete with respect to the uniform distance. Suppose that
fn ∈ C0([0, 1]) is a Cauchy sequence.

(a) Fix an arbitrary x0 ∈ [0, 1]. Show that limn→∞ fn(x0) exists.
Hint: R is Cauchy complete.

1



(b) Define f : [0, 1] → R by
f(x) = lim

n→∞
fn(x).

Show that for all ϵ > 0, there exists N ∈ N such that

|fn(x)− f(x)| ≤ ϵ

for all x ∈ [0, 1] and for all n ≥ N .

(c) Show that f(x) is continuous on [0, 1]. I.e., f ∈ C0([0, 1]).

Hint: To show f(x) is continuous at x0, consider

|f(x)− f(x0)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)|.

(d) Using parts a-c, explain why limn→∞ fn = f as a sequence in C0([0, 1]).

4. Let ∥·∥ be a norm on a vector space V , and let d(x, y) = ∥x− y∥ for all x, y ∈ V .
Show the following three properties:

(a) d(λx, λy) = |λ|d(x, y) for all λ ∈ R, and for all x, y ∈ V.

(b) Translation invariance: d(x+ z, y + z) = d(x, y) for all x, y, z ∈ V .

(c) Prove d is a metric on V . This metric is called the metric induced by the norm.

5. Let U be an open set in the metric space (X, d). Show that U can be written as a union of arbitrarily many
open balls.
6. (Optional) The following are important properties of compact sets in R.

(a) Let K ⋐ R. Show that there exists a maximum and a minimum value in K.

(b) Generalize the Heine-Borel theorem on R to Rn. (This proof is very similar to that in class.)

7. (Optional) Show that a function f : X → Y is continuous if and only if given U ⊂ Y where U is open in Y ,
f−1(U) is open in X.
8. (Optional) We call two norms ∥·∥1, ∥·∥2 equivalent if there exists constants C1 > 0 and C2 such that

C1∥x∥1 ≤ ∥x∥2 ≤ C2∥x∥1.

One can similarly define equivalent metrics. On Rn we define the supremum norm and ℓp norms (for 1 ≤ p < ∞):

∥x∥∞ = max
i

|xi| and ∥x∥p =

(∑
i

|xi|p
)1/p

.

(You can check that these are in fact norms, but do not have to.) Show that the supremum norm, ℓ1, and ℓ2 norms
are equivalent on Rn by showing

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤
√
n∥x∥2 ≤ n∥x∥∞.

Briefly explain why this shows the norms are pairwise equivalent.
9. (Optional) Let f : X → Y be a map. Then, given A ⊂ B, show that f(A) ⊂ f(B).

Remark 2. There are a number of other properties of maps you can show, as outlined on this StackExchange post.
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https://math.stackexchange.com/questions/359693/overview-of-basic-results-about-images-and-preimages

