18.S190 PSET 2

IAP 2023
Due 1/18/2022

Review / helpful information:

- The uniform distance on $C^{0}([a, b])$ is defined as

$$
d(f, g)=\max _{x \in[a, b]}|f(x)-g(x)|
$$

- Given a vector space V over the real numbers (i.e. a space where addition of vectors and multiplication by real numbers is well-defined), we define a norm to be a function $\|\cdot\|: V \rightarrow[0, \infty)$ satisfying the following properties:
- Positive Definite: $\|v\| \geq 0$ and $\|v\|=0 \Longleftrightarrow v=0$.
- Homogeneity: $\|\lambda v\|=|\lambda|\|v\|$ for all $v \in V$ and $\lambda \in \mathbb{R}$.
- Triangle Inequality: $\|x+y\| \leq\|x\|+\|y\|$.
- We denote " K is a compact subset of a metric space X " by $K \Subset X$.
- Let A be a set of real numbers and $a=\sup A<\infty$. Then, for all $n \in \mathbb{N}$ there exists an $x_{n} \in A$ such that

$$
a-\frac{1}{n}<x_{n} \leq a
$$

Throughout this problem set, let (X, d) be a metric space.
1.

1. Let $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ be two convergent sequences in (X, d). Then, $d\left(x_{n}, y_{n}\right) \rightarrow d(x, y)$.
2. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be Cauchy sequences in X. Show that $d\left(x_{n}, y_{n}\right)$ converges.

Hint: show that in a metric space, $\left|d(a, b)+d\left(a^{\prime}, b^{\prime}\right)\right| \leq d\left(a, a^{\prime}\right)+d\left(b, b^{\prime}\right)$.
Remark 1. You may not assume x_{n} and y_{n} converges in the second part of this problem. This is only true in a Cauchy complete space.
2. In class, we have defined a set $A \subset X$ to be closed if its complement is an open set in X. There is another useful definition of a closed set however. Show that $A \subset X$ is closed if and only if every convergent sequence in A converges in A. In other words, if $\left\{x_{n}\right\}$ is a convergent sequence in A such that $x_{n} \rightarrow x$, then $x \in A$.
3. Here, we will show that $C^{0}([0,1])$ is Cauchy complete with respect to the uniform distance. Suppose that $f_{n} \in C^{0}([0,1])$ is a Cauchy sequence.
(a) Fix an arbitrary $x_{0} \in[0,1]$. Show that $\lim _{n \rightarrow \infty} f_{n}\left(x_{0}\right)$ exists.

Hint: \mathbb{R} is Cauchy complete.
(b) Define $f:[0,1] \rightarrow \mathbb{R}$ by

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

Show that for all $\epsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\left|f_{n}(x)-f(x)\right| \leq \epsilon
$$

for all $x \in[0,1]$ and for all $n \geq N$.
(c) Show that $f(x)$ is continuous on $[0,1]$. I.e., $f \in C^{0}([0,1])$.

Hint: To show $f(x)$ is continuous at x_{0}, consider

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}\left(x_{0}\right)\right|+\left|f_{n}\left(x_{0}\right)-f\left(x_{0}\right)\right|
$$

(d) Using parts a-c, explain why $\lim _{n \rightarrow \infty} f_{n}=f$ as a sequence in $C^{0}([0,1])$.
4. Let $\|\cdot\|$ be a norm on a vector space V, and let $d(x, y)=\|x-y\|$ for all $x, y \in V$.

Show the following three properties:
(a) $d(\lambda x, \lambda y)=|\lambda| d(x, y)$ for all $\lambda \in \mathbb{R}$, and for all $x, y \in V$.
(b) Translation invariance: $d(x+z, y+z)=d(x, y)$ for all $x, y, z \in V$.
(c) Prove d is a metric on V. This metric is called the metric induced by the norm.
5. Let U be an open set in the metric space (X, d). Show that U can be written as a union of arbitrarily many open balls.
6. (Optional) The following are important properties of compact sets in \mathbb{R}.
(a) Let $K \Subset \mathbb{R}$. Show that there exists a maximum and a minimum value in K.
(b) Generalize the Heine-Borel theorem on \mathbb{R} to \mathbb{R}^{n}. (This proof is very similar to that in class.)
7. (Optional) Show that a function $f: X \rightarrow Y$ is continuous if and only if given $U \subset Y$ where U is open in Y, $f^{-1}(U)$ is open in X.
8. (Optional) We call two norms $\|\cdot\|_{1},\|\cdot\|_{2}$ equivalent if there exists constants $C_{1}>0$ and C_{2} such that

$$
C_{1}\|x\|_{1} \leq\|x\|_{2} \leq C_{2}\|x\|_{1} .
$$

One can similarly define equivalent metrics. On \mathbb{R}^{n} we define the supremum norm and ℓ^{p} norms (for $1 \leq p<\infty$):

$$
\|x\|_{\infty}=\max _{i}\left|x_{i}\right| \text { and }\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

(You can check that these are in fact norms, but do not have to.) Show that the supremum norm, ℓ^{1}, and ℓ^{2} norms are equivalent on \mathbb{R}^{n} by showing

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2} \leq n\|x\|_{\infty}
$$

Briefly explain why this shows the norms are pairwise equivalent.
9. (Optional) Let $f: X \rightarrow Y$ be a map. Then, given $A \subset B$, show that $f(A) \subset f(B)$.

Remark 2. There are a number of other properties of maps you can show, as outlined on this StackExchange post.

