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Abstract

We provide exposition and proofs of the Sobolev and isoperimetric inequalities on both Euclidean space
and submanifolds of Rn, and furthermore prove the logical equivalence of these two inequalities. We then
discuss further generalizations to minimal submanifolds and submanifolds of Riemannian manifolds with bounded
sectional curvature, following the work of Brendle, Hoffman, and Spruck.
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1 Introduction

In the study of Riemannian manifolds, many mathematical tools/definitions, theorems, and proofs are motivated
by analogous statements in Euclidean space, which are themselves often motivated by rather intuitive concepts.
For instance, suppose the derivative of a function is an "approximately" zero. Does this imply that the function is
"approximately constant"? Or for instance, suppose the surface area of a subset of Rn is small. Is the volume of the
entire subset small?
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These two questions, respectively, motivate what are known as a Sobolev inequality and the isoperimetric
inequality. While the motivating questions are conceptually (at least at first) rather separate, the inequalities are in
fact logically equivalent as we will prove.

In this expository paper, we will first prove the Sobolev inequality on Rn in Section 2.1 (following [3]), which will
motivate the analogous Sobolev inequality on a Riemannian manifold later on in subection 3.2 (following the proof
of [1]). Then, we will spend the majority of the rest of the paper showing the Sobolev and Isoperimetric inequalities
are equivalent. In Section 3, we will show that the isoperimetric inequality for Riemannian manifolds (and thus
Euclidean space) is implied by the Sobolev inequality. Then, we will see how the isoperimetric inequality implies
the Sobolev inequality, thus proving their equivalence. Using this equivalence, we motivate Brendle’s proof of the
Sobolev inequality on a Riemannian manifold. Note that we do not rewrite his proof here.

In the case of Riemannian manifolds, we will be proving these inequalities for submanifolds embedded into Rn.
In Section 4, generalized versions of these theorems will be discussed for submanifolds of an arbitrary Riemannian
manifold with some conditions on curvature via the work of [4].

1.1 Preliminaries

Notation 1 (Lp norm)

Given a function f : M ⊃ Ω → R for a Riemannian manifold M , we denote

∥f∥Lp(Ω) :=

(∫
Ω

|f |p
) 1

p

.

We note a standard lemma without proof, which will be used throughout the paper:

Lemma 1 (Hölder’s inequality)

Let f, g be measurable real functions on the set Ω ⊂ Rn. Then, given p, q ∈ [1,∞] with 1
p + 1

q = 1, we have that

∥fg∥1 ≤ ∥f∥p∥g∥q.

Notation 2
The expression A(x, t) ≲x B(x, t) is used to mean that there exists a constant C(x) ≥ 0 (i.e. that depends only
on x) such that

A(x, t) ≤ C(x)B(x, t).

2 A Sobolev inequality on Euclidean Space

2.1 Euclidean space
From calculus, we know that a differentiable function f on Rn is constant if and only if all of its partial derivatives
with respect to any of the n variables is zero. But what if the derivative of f is approximately zero? Is the
function approximately constant? In one dimension, this is conceptually true. Suppose that fϵ ∈ C∞

0 (R) and that
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∥f ′
ϵ∥L1(R) < ϵ. Then, for any a, b ∈ R, we have that

|fϵ(b)− fϵ(a)| =

∣∣∣∣∣
∫ b

a

f ′
ϵ(x) dx

∣∣∣∣∣ ≤
∫ b

a

|f ′
ϵ(x)| dx ≤

∫ ∞

−∞
|f ′

ϵ(x)|dx < ϵ

by the Fundamental Theorem of Calculus. Hence, if the L1 norm of f ′
ϵ is less than epsilon, then the distances

between any two points in the image of fϵ are also less than epsilon.
The analogue of this in higher dimensions is not true. To see this, let ϵ > 0 and consider a non-negative bump

function fϵ ∈ C∞
0 (Rn) (for n > 1) with compact support on B2ϵ(0) such that fϵ

∣∣
Bϵ(0)

≡ 1. Then, ∇fϵ is supported
in the region B2ϵ(0), and thus

∫
|∇f | ≤ 2

ϵ ·Area(Bϵ(0)). Hence,∫
Rn

|∇fϵ(x)|dx =

∫
0≤|x|≤2ϵ

|∇fϵ(x)|dx

=

∫
0≤|x|≤2ϵ

|∇fϵ(x)|dx

≲ ϵn · 2
ϵ

ϵ → 0−−−→ 0.

However, it is not true that |fϵ(b)− fϵ(a)| ≤ 1 for all a, b ∈ Rn. In other words, though the "derivative" tends to 0
in an integral sense, the difference |fϵ(b)− fϵ(a)| does not.

That being said, there is a relationship we can find between the integral of a function on an n-dimensional space
and the integral of its derivative.

Theorem 2 (Sobolev inequality on Rn)

If f : Rn → R is a smooth function on Rn with compact support, then

∥f∥
L

n
n−1 (Rn)

≤ ∥∇f∥L1(Rn).

The Sobolev inequality on Rn is quite a bit nicer to approach since on Rn we have a nice global orthonormal
frame we can take advantage of, though the analogous inequality on Riemannian manifolds will require more work.

To prove Theorem 2, we first prove the Loomis-Whitney inequality to break the integral over Rn into integrals
over R to which we can apply the one dimensional model case.

Lemma 3 (Loomis-Whitney inequality)

Let f1, . . . , fn : Rn−1 → R and let πi : Rn → Rn−1 be the projection that drops the i-th coordinate (i.e.
projection onto a hyper-plane). Then,∥∥∥∥∥

n∏
i=1

fi ◦ πi

∥∥∥∥∥
L1(Rn)

≤
n∏

i=1

∥fi∥Ln−1(Rn−1).

The Loomis-Whitney inequality is a powerful tool that allows us to apply this nice induction by breaking up the
integral into lower-dimensional terms.

Before jumping into the proof, let’s motivate this statement through an example for the functions fi. Suppose
the fi’s are the indicator functions for πi(Rn), i.e.

fi(x) =

1 x ∈ πi(Rn)

0 otherwise
.
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Then what this inequality is telling us is that we can bound the volume of an n-dimensional object by the areas
of it’s (n− 1)-dimensional projections (albeit with some exponents that make the dimensional analysis play out
correctly).

So this theorem is simply giving a way to break the integral of a product of functions ("the volume" of the
images of f) via a product of the integrals ("the areas" of it’s (n− 1)-dimensional projections).

Proof. For simplicity, assume the fi are all non-negative so we don’t carry around the absolute values. Integrating
over the first coordinate, we have that∫

R

n∏
i=1

fi ◦ πi dxi = f1

∫
R

n∏
i=2

fi ◦ πi dxi

as f1 ◦ π1 is constant as xi varies. Applying Hölder’s inequality to this product, we thus have∫
R

n∏
i=1

fi ◦ πi dxi ≤ f1

n∏
i=2

(∫
R
(fi ◦ πi)

n−1 dx1

)1/(n−1)

.

Now integrating over the second coordinate, we have∫
R2

n∏
i=1

fi ◦ πi dx1dx2 ≤
(∫

R
(f2 ◦ π2)

n−1 dx1

)1/(n−1) ∫
R
(f1 ◦ π1)

n∏
i=3

(∫
R
(fi ◦ πi)

n−1 dx1

)1/(n−1)

dx2.

Applying Hölder’s inequality gives∫
R2

n∏
i=1

fi ◦ πi dx1 dx2 ≤
(∫

R
(f2 ◦ π2)

n−1dx1

)1/(n−1) (∫
R
(f1 ◦ π1)

n−1dx2

)1/(n−1)

·
n∏

i=3

(∫
(fi ◦ πi)

n−1 dx1dx2

)1/(n−1)

.

Reiterating this process n− 2 more times, we obtain the desired result.

Proof of Theorem 2. We prove this inequality inductively. In the case of two dimensions, let

(f1 ◦ π1)(x1, x2) =

∫
R
|∂1f(x1, x2)|dx1

(f2 ◦ π2)(x1, x2) =

∫
R
|∂2f(x1, x2)|dx2.

Thus, fi ≤ |∇f |, and hence by the Loomis-Whitney inequality,∫
R2

f2(x1, x2) dx1dx2 ≤
∫
R2

(f1 ◦ π1)(x1, x2)(f2 ◦ π2)(x1, x2) dx1dx2

=

(∫
R
f1(x2) dx2

)(∫
f2 ◦ (x1) dx1

)
≤

(∫
R2

|∇f |
)2

.

Now, in higher dimensions, define

(fi ◦ πi)(x1, . . . , xn) =

∫
|∂if(x1, . . . , xn)|dxi.
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Then, |f | ≤ fn ◦ πn and
∫
Rn−1 ≤

∫
Rn |∇f |. Thus,∫

Rn

|f |
n

n−1 ≤
∫
R

(∫
Rn−1

|f |(fn ◦ πn)
1/(n−1) dx1, . . . ,dxn−1

)
dxn

≤
∫
R

[∫
Rn−1

|f |
n−1
n−2

]n−2
n−1

·
[∫

Rn−1

|fn ◦ πn|
]1/(n−1)

≤
∫
R

∫
Rn−1

|∇f |dx1 . . . dxn−1dxn

(∫
Rn−1

fn ◦ πn

)1/(n−1)

≤
(∫

R
|∇f |

) n
n−1

.

which concludes the proof.

This is the classic proof of the Sobolev inequality on Rn. However, this method will not work on general
Riemannian manifolds, where we will most generally have

∥f∥
L

n
n−1 (Σ)

≲ ∥∇f∥L1(Σ) + ∥fH∥L1(Σ),

where H here is the mean curvature vector field (see subsection 3.2 for a discussion on this).

2.2 Generalized Sobolev Inequality
The Sobolev inequality is also true for other Lp spaces where p ̸= n

n−1 , with some mild adjustments for scaling.
This generalization follows as a nice corollary of Theorem 7.

Corollary 4
Let f be a non-negative smooth function with compact support on Σ of dimension n, and let p ∈ [1, n). Let
q = np

n−p . Then,

∥f∥Lq(Σ) ≲n
(n− 1)p

n− p
∥∇f∥Lp(Σ) + ∥fH∥Lp(Σ). (1)

Proof. This follows by the Sobolev inequality and Hölder’s inequality. Suppose r > 1. Then, applying the Sobolev
inequality and the chain rule, we have

∥fr∥
L

nr
n−1 (Σ)

≲
∫
Σ

rfr−1|∇f |+ fr|H|. (2)

Then, applying Hölder’s inequality with exponents nr
(n−1)(r−1) and nr

n+r−1 gives the following bounds:

∫
Σ

fr−1|∇f | ≤
(∫

Σ

f
nr

n−1

) (n−1)(r−1)
nr

(∫
Σ

|∇f |
nr

n+r−1

)n+r−1
nr

∫
Σ

fr|H| ≤
(∫

Σ

f
nr

n−1

) (n−1)(r−1)
nr

(∫
Σ

(f |H|)
nr

n+r−1

)n+r−1
nr

.

Applying these two bounds on the right hand side of (2) and dividing through by

(
f

nr
n−1

) (n−1)(r−1)
nr = ∥f∥r−1

L
nr

n−1

gives that
∥f∥

L
nr

n−1 (Σ)
≲n,p r∥∇f∥Lp(Σ) + ∥fH∥Lp(Σ).

5



Let p = nr
n+r−1 (and thus r = (n−1)p

n−p ) to conclude the proof.

In fact, for any value of p ∈ [1, n), there is a unique q satisfying (1). To see this, consider a smooth bump
function η and let ηλ(x) = η(x/λ). For simplicity, let H = 0 (i.e. just consider the flat case). Then,

∥ηλ∥Lq(Σ)

∥∇ηλ∥Lp(Σ)
= λ

n
p −n

q −1 ∥η∥Lq(Σ)

∥∇η∥Lp(Σ)
.

If the Sobolev inequality is to be true (as we have proven above), then it must hold for this entire family of ηλs.
Hence, in order for the right hand side to be bounded for all λ, we must have n

p − n
q − 1 = 0 i.e. q = np

n−p . The
constant q here is called the Sobolev conjugate, and is denoted p∗.

3 The Isoperimetric inequality
Suppose one has 10 inches of string on a table, and they are tasked with creating a shape out of the string on the
table that maximizes the area of the interior. This goal would be achieved if they made a circle of radius 10

2π . This
concept is precisely what motivates the isoperimetric inequality which states that

Theorem 5 (Isoperimetric Inequality)

Let Σn ⊆ Rn+m be a compact submanifold and let Ω ⊂ Σ with sufficiently smooth boundary ∂Ω. Then,

(Vol(Ω))
n−1
n ≲ Area(∂Ω) + ∥H∥L1(Ω)

where the area is in reference to the volume form on the (n− 1)-dimensional boundary of Ω and H is the mean
curvature of Σ with respect to the ambient space Rn+m.

Proof. The goal is to create a sequence of piecewise smooth functions that approximate the set Ω (so as to apply the
Sobolev inequality) and whose derivatives approximate the area of the boundary. For ϵ > 0, consider the function
fϵ : Σ → R defined piecewise by

fϵ(x) =


1, x ∈ Ω, d(x, ∂Ω) ≥ ϵ,

d(x,∂Ω)
ϵ x ∈ Ω, d(x, ∂Ω) ≤ ϵ

0, x /∈ Ω

.

This is a non-negative function with compact support on Σ that is differentiable everywhere except a set of measure
zero. Therefore, we can apply the Sobolev inequality to fϵ, obtaining

∥fϵ∥L n
n−1 (Σ)

=

(∫
Σ

f
n

n−1
ϵ

)n−1
n

≲
∫
Σ

(|∇fϵ|+ |fϵH|) dVolΣ .

Notice that ∇fϵ(x) is zero almost everywhere on Σ \ {x ∈ Ω | d(x, ∂Ω) ≤ ϵ}, and fϵ is non-zero almost everywhere
within the ϵ-neighborhood of the boundary. Hence, as ϵ → 0,

∥∇fϵ∥L1(Σ) → Area(∂Ω)

where the area is in reference to the volume form on the (n− 1)-dimensional boundary of Ω.
Similarly, ∥fϵH∥L1(Ω) → ∥H∥L1(Ω) as fϵ(x) is 1 when x ∈ Ω and d(x, ∂Ω) ≥ ϵ. This gives the desired result.
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3.1 Equivalence of Sobolev and Isoperimetric
In fact, one can derive the Sobolev inequality from the isoperimetric inequality, so the two are equivalent. The
outline of this proof follows from this blog run by a collection of students from The Chinese University of Hong
Kong [5].

Proof. We have shown how the Sobolev inequality implies the Isoperimetric inequality. We now derive the Sobolev
inequality from the isoperimetric inequality to prove their logical equivalence. So, suppose that we have Theorem 5.

To prove the Sobolev inequality, we first find an upperbound on ∥f∥
L

n
n−1 (Σ)

. We can do so using annuli:

∥f∥
n−1
n

L
n

n−1 (Σ)
:=

∫
Σ

|f |
n

n−1 dVolΣ

=

∫ ∞

0

Vol({x ∈ Σ | f
n

n−1 (x) ≥ t}) dt

where here we are using the fact that f is non-negative and thus |f | = f . Then,

∥f∥
n−1
n

L
n

n−1 (Σ)
=

∫ ∞

0

Vol({x ∈ Σ | f(x) ≥ t
n−1
n }) dt

=
n

n− 1

∫ ∞

0

Vol({x ∈ Σ | f(x) ≥ s})s
1

n−1 ds

using the u-substitution of s
n

n−1 = t. We now compare this to ∥∇f∥L1(Σ).
To do so, we now find an lowerbound on ∥∇f∥L1(Σ). Recall the coarea formula, which states:

Lemma 6 (Coarea Formula)

Given f is a Lipschitz function on Σ, we have that∫
Σ

|∇f |dVolΣ =

∫ ∞

0

Area({x ∈ Σ | f(x) = s}) ds.

Thus, we have that

∥∇f∥L1(Σ) =

∫ ∞

0

Area({x ∈ Σ | f(x) = s}) ds

≥
∫ ∞

0

(
Vol({x ∈ Σ | f(x) ≥ s})

n−1
n − ∥H∥L1({x∈Σ|f(x)≥s})

)
ds

≥
∫ ∞

0

Vol({x ∈ Σ | f(x) ≥ s})
n−1
n ds− ∥fH∥L1(Σ)

where we applied the isoperimetric inequality in the second line.
Comparing the upper bound and lower bound derived so far, we now show that∫ ∞

0

Vol({x ∈ Σ | f(x) ≥ s})
n−1
n ds ≳

(
n

n− 1

∫ ∞

0

Vol({x ∈ Σ | f(x) ≥ s})s
1

n−1 ds

) n
n−1

to complete the proof. Let V (s) = Vol({x ∈ Σ | f(x) ≥ s}) for notational simplicity.

Let f1(t) =
(∫ t

0
V (s)

n−1
n ds

) n
n−1

and let f2(t) = n
n−1

∫ t

0
V (s)s

1
n−1 ds. We want to show that f1(t) ≥ f2(t). Notice

that f1(0) = f2(0) = 0. By direct computation (∗) we have that f ′
1(t) ≥ f ′

2(t) if and only if∫ t

0

V (s)
n−1
n ds ≥ V (t)

n−1
n t.
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This is true as V (s) is monotone decreasing. To see this, first note that∫ t

0

V (s)
n−1
n ds ≥

∫ t

0

V (t)
n−1
n ds = V (t)

n−1
n t.

Therefore, we have that f ′
1(t) ≥ f ′

2(t) for all t. Since f ′
1(t) ≥ f ′

2(t) and f1(0) = f2(0), we can conclude that
f1(t) ≥ f2(t)

We combine what we have found so far to obtain that

∥f∥
L

n
n−1 (Σ)

− ∥fH∥L1(Σ) ≲

(
n

n− 1

∫ ∞

0

Vol({x ∈ Σ | f(x) ≥ s})s
1

n−1 ds

)n−1
n

− ∥fH∥L1(Σ)

≲
∫ ∞

0

Vol({x ∈ Σ | f(x) ≥ s})
n−1
n ds− ∥fH∥L1(Σ)

≤
∫ ∞

0

Area({x ∈ Σ | f(x) = s}) ds

= ∥∇f∥L1(Σ).

This gives the desired result.

3.2 A Sobolev inequality on Riemannian Manifolds
The main conceptual idea behind the Sobolev inequality on Rn turns out to also be true on Riemannian manifolds
in general with one slight difference to take into account: curvature. Curvature can affect |∇f |, so we have another
term in the inequality.

Theorem 7 (Sobolev Inequality)

Let Σn ⊂ Rn+m (without boundary), and let f be a positive smooth function on Σ. Then,

∥f∥
L

n
n−1 (Σ)

≲n,m

∫
Σ

(|∇Σf |+ f |H|) = ∥∇f∥L1(Σ) + ∥fH∥L1(Σ)

where H is the mean curvature of Σ with respect to the ambient space Rn+m and ∇Σ is the induced Riemannian
connection on Σ.

This theorem is proven by Brendle [1], whose proof was itself motivated by the Alexandrov-Bakelman-Pucci
maximum principle. Rather than reiterate the argument here, we discuss his approach with respect to the equivalence
of the Sobolev and Isoperimetric inequalities.

In particular, he notes that through scaling of the function f via multiplication, we may assume that

∥∇Σf∥L1(Σ) + ∥fH∥L1(Σ) + ∥f∥∂Σ = n∥f∥
n

n−1

L
n

n−1 (Σ)
. (3)

This makes the problem slightly more approachable by removing the exponent of (n− 1)/n from the right hand side
for the time being. Now suppose there existed a g such that

g = nf
n

n−1 − |∇Σf | − |fH|.

Then, integrating this equality, we would obtain that∫
Σ

g =

∫
∂Σ

f

8



by (3). Hence, g must be the divergence of a function, in particular, there must exist a u ∈ C2,γ for each 0 < γ < 1

by elliptic regularity such that g = div(f∇Σu).
So if there is a function g equal to the side of (3) that we wish to understand, it is necessarily the divergence of

f∇Σu. In fact, he goes onto show that this function u is sufficient.
He uses u to cover Σ with balls depending on how steep the gradient of u is. After the covering of these balls,

he constructs a bijection between them and the unit ball Bn+m ⊂ Rn+m. Conceptually, one can interpret this
as "transporting" the mass on Σ to the unit ball in Rn+m– in fact, this motivates another proof of the Sobolev
inequality by Brendle and Eichmair [2].

The fact that we use the unit ball to understand div(f∇Σu) highlights the relationship between the Sobolev and
isoperimetric inequalities. We are using the divergence to understand the surface area integral of f in terms of it’s
volume ("mass"), which itself we can understand through the isoperimetric inequality. This is all we note of the
proof of the Sobolev inequality.

4 Generalizations and Applications
There are a number of directions one can go from here to further these results. Firstly, in the statement of the
Sobolev inequality one can also assume that Σ has boundary ∂Σ, obtaining the stronger result that

∥f∥
L

n
n−1 (Σ)

≲ ∥∇Σf∥L1(Σ) + ∥fH∥L1(Σ) + ∥f∥L1(∂Σ).

This can be seen in the work of Simon Brendle [1]. Brendle went through the proof finding an explicit constant
which makes the inequality true. In this paper, Brendle proved that this constant is sharp when Σ ⊂ Rn+2 has
codimension 2, and in fact this implies that Σ is a flat round ball. As a result, if Σ is a compact n-dimensional
minimal submanifold of Rn+2, then the isoperimetric inequality derived is sharp and equality holds if and only if Σ
is a flat round ball.

Furthermore, it is possible to generalize these results to submanifolds Σn of a Riemannian manifold Mn+m

assuming that the sectional curvature of M is bounded. This is done by the work of Hoffman and Spruck [4]. They
also discuss some neat corollaries regarding minimal surfaces, and further applications to vector bundles over a
Riemannian manifold.

Finally, the Sobolev inequality can directly be used to imply directly imply the embedding of Sobolev spaces
into Lp spaces. Specifically: for p ∈ [1, n), we have

W 1,p(Rn) ⊂ Lp∗
(Rn).

where again p∗ is the Sobolev conjugate of p as defined in Section 2.2.
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