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1 The Restriction Problem
Throughout the last half of the course, we have seen multiple ways in which the Fourier transform of a function
relates to the function itself with regards to norms. For instance, we have the Hausdorff–Young inequality which
states that for all p ∈ [1, 2], q = p′, and f ∈ Lp(Rn),

∥f̂∥Lq ≤ ∥f∥Lp(Rn). (1)

But what happens when one starts affecting various parts of this inequality? On the one hand, as we proved in the
homework the only range of p where (1) can possible hold is for p ∈ [1, 2], and by a scaling argument one can see
that the only possible value of q must be q = p′. On the other hand, if instead of integrating over Rn we integrated
over a compact set (say, a closed ball B), we obtain a similar string of inequalities as a natural corollary: for all
p ∈ [1, 2] and q ≤ p′,

∥f̂∥Lq(B) ≲ ∥f̂∥Lp′ (B) ≤ ∥f∥Lp(B) ≤ ∥f∥Lp(Rn). (2)

Here, we used the fact that B is compact, to apply Hölder’s inequality to see that (up to some constant depending
on the radius of the ball), (2) holds for all q ≤ p′.

Both of these statements are the best one can hope for in terms of getting inequalities of the form

∥f̂∥Lq(E) ≲ ∥f∥Lp(Rn),

where E is allowed to be an arbitrary Borel subset of Rn. Analogous questions, however, become much more
interesting when we restrict the Fourier transform to some hypersurface S. This is the heart of restriction theory.

Definition 1
Let S be a hypersurface embedded in Rn and let 1 ≤ p, q ≤ ∞. We say that RS(p → q) holds if

∥f̂∥Lq(S) ≲ ∥f∥Lp(Rn).

This is referred to as a restriction theorem.

Remark 2. Note that it is not a priori clear that the above inequality even makes sense. Indeed, S is a set of
measure 0 and one cannot, in general, meaningfully talk about the restriction of a Lq function to a set of measure
0 as they are equivalence classes of functions that are equal up to a measure 0 set. For that reason, when proving
that statements of the form “RS(p → q) holds,” we first prove said estimates for every f ∈ S (Rn). Then, by a
density argument (akin to multiple we have seen throughout the course), one can then extend such estimates for
every f ∈ Lp(Rn). For the arguments throughout this paper, one can notice that every step holds for Schwartz
functions.
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Well, if the hypersurface is a hyperplane (e.g. a copy of Rn−1), we can’t hope for better than (1), but things
become much more interesting when S has some curvature. For simplicity, throughout the rest of this document
(unless stated otherwise) we let S = Sn−1.

1.1 Some motivation
One might ask why one might be interested in such restriction theorems. A key motivator for this topic comes
in the form of studying partial differential equations (PDEs), as solutions to various types of PDEs lie on nice
submanifolds S. An example of such a PDE is the Helmholtz equation:

∆u+ 4π2u = 0.

Notice that by applying the Fourier transform to both sides of this equation, we get that if u is a solution to the
Helmhotz equation then

4π2(−|ξ|2 + 1)û = 0.

In particular, this implies that if û(ξ) ̸= 0 then |ξ|2 = 1, i.e. û is supported on the unit sphere. As such, if we knew
that RS(p → q) held and we knew u was a solution to Helmholtz equation, one can obtain quantitative bounds on
the Lq norm of û in terms of the Lp norm of u. This heuristically allows us study how quickly û decays at infinity
(morally, the smaller q is, the faster û has to decay).

We note here that one is also able to study inhomogeneous and nonlinear PDEs using methods that can be
motivated by tools in restriction theory. Take for instance the meson equationi∂tu− ∆xu = λ|u|2u

u(0, x) = f(x)

where λ ≥ 0 and u is a function of time t ∈ R and space x ∈ Rn. Just as before, one can show that solutions to
the homogeneous part of the meson equation are Fourier supported on the paraboloid. Using tools from restriction
theory, one can show that for small enough |λ| and nice enough initial conditions f , solutions to the meson equation
exist for short periods of time. This is done in Notes 4 from a restriction theory course by Terence Tao [6].

Heuristically, it makes sense that restriction theory may be applicable (as solutions to this PDE are Fourier
supported on the paraboloid). That said, the proofs that the authors know for proving the short time existence
of solutions to the meson equation do not explicitly/directly apply restriction theorems of the form RS(p → q).
Rather, this statement follows from techniques used to study restriction theorems (such as those used to prove the
Tomas–Stein theorem discussed in the final section).

1.2 The restriction conjecture
It is interesting to ask what assumptions on p and q are necessary and sufficient to imply RS(p → q) holds. As it
turns out, the assumptions which must necessarily hold can be motivated by a few examples when S is the unit
sphere.

Let dσ be the surface measure on S. Then, by standard duality arguments, one can show that RS(p → q) is
equivalent to the inequality

∥ĝdσ∥Lp′ (Rn) ≲ ∥g∥Lq′ (S) for all g ∈ Lq′
(S).

The above inequality is known as an extension theorem. Using this as a blackbox, notice that if one takes g to be
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1 when restricted on the unit sphere, then RS(p → q) holds only if

∥d̂σ∥Lp′ (Rn) ≲ 1.

Hence, a necessary condition for RS(p → q) to hold is that d̂σ ∈ Lp′ . Additionally, |d̂σ(ξ)| behaves like |ξ|−(n−1)/2

for large values of |ξ|. Thus, RS(p → q) holds only if d̂σ ∈ Lp′ , which holds only if

p′ >
2n
n− 1 , or equivalently p <

2n
n+ 1 . (3)

On the other hand, we can show via a scaling argument that RS(p → q) holds only if p′ ≥ n+1
n−1q. To see this,

suppose that RS(p → q) holds and let ψ ∈ S (Rn) such that ψ ∼ 1 near the origin (e.g. a Gaussian). Then, for
λ ≫ 1, define fλ as

fλ(x1, . . . , xn) = ψ(x1/λ
1/2, . . . , xn−1/λ

1/2, xn/λ).

Like ψ, fλ is also a bump function of height 1, but is concentrated on a tube with dimensions

λ1/2 × . . .× λ1/2 × λ.

Hence, ∥fλ∥p ≈ λ(n+1)/(2p). On the other hand,

f̂λ(ξ1, . . . , ξn−1, ξn) = λ(n+1)/2ψ̂(λ1/2ξ1, . . . , λ
1/2ξn−1, λξn).

Thus, f̂λ has size λ(n+1)/2 on a cap of S with measure about λ−(n−1)/2. Combining this information with the
assumption that RS(p → q) holds, we see that for all λ ≫ 1,

λ
n+1

2 λ− n−1
2q ≲ ∥f̂λ∥Lq′ (S) ≲ ∥fλ∥p ≲ λ

n+1
2p .

Thus, RS(p → q) holds only if
p′ ≥ n+ 1

n− 1q. (4)

Equations (3) and (4) are also conjectured to be sufficient for RS(p → q) to hold.

Conjecture 3 (The Restriction Conjecture)
If S = Sn−1 is the unit sphere and 1 ≤ p, q ≤ ∞, then RS(p → q) holds if and only if (3) and (4) both hold.

We end this section with a few remarks. Firstly, the restriction problem has a natural analogue over compact
hypersurfaces with certain curvature conditions that is also conjectured to hold. See [6, Notes 1] for more. Further-
more, the restriction conjecture for the sphere is known when n = 2 due to work of Fefferman and Stein [4] and is
still open in higher dimensions. Lastly, the restriction conjecture is linked to another famous problem in harmonic
analysis known as the Kakeya conjecture in the sense that the restriction conjecture implies the Kakeya conjecture
due to work of Bourgain [3] (see also Exercise 17 in this blog of Tao). We don’t have time to discuss Kakeya sets
more here, but mention it for the interested reader.

2 The Tomas–Stein Theorem
Though we won’t go into the full proof of the restriction conjecture in two dimensions, we outline the case of the
restriction conjecture when q = 2 in all dimensions. This is known as the Tomas–Stein theorem, which states:
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Theorem 4 (Tomas–Stein, ’75)
if 1 ≤ p ≤ 2(n+1)

n+3 , then RS(p → 2) holds. I.e., in this range,

∥f̂∥L2(S) ≲ ∥f∥Lp .

The case p ̸= 2(n+1)
(n+3) was obtained by Tomas in ’75 [7] using real interpolation, and in that same year Stein

(unpublished) obtained the endpoint case using complex interpolation. The outline of this result follows the much
more detailed notes of Wolff [8] and Tao [6].

Firstly, notice that when q = 2, we can use the fact that L2(Rn) is an inner product space, and in particular,

∥f̂∥2
L2(S) =

∫
f̂(ξ)f̂(ξ)dσ(ξ).

Remark 5. For simplicity, we drop the conjugates in this inner product. Note that the arguments below are not
affected by this since dσ is real-valued and symmetric.

The first equality here follows as |f̂ |2 = f̂ f̂ , and the second line follows as the surface measure on the sphere is
real-valued and symmetric. Additionally, one of the key properties of the Fourier transform that we discussed in
class is that the Fourier transform is a unitary operator on L2, and in particular this implies∫

f̂(ξ)f̂(ξ)dσ(ξ) =
∫
f(ξ)(f̂(ξ)dσ(ξ))̂ ≤ ∥f∥p∥ ̂̂

fdσ∥p′ .

The second inequality here follows from Hölder’s inequality. Additionally, we can simplify the right hand side
using convolution, noticing that ̂̂

fdσ = f ∗ d̂σ. Hence, we have reduced the Tomas–Stein theorem to showing

∥f ∗ d̂σ∥p′ ≲ ∥f∥p. (5)

The trick we described above is known as the TT ∗ method, which simplifies showing an operator T is bounded
from Lp to L2 to showing that TT ∗ is bounded from Lp′ to Lp. This method of attack makes very particular use
of the fact that q = 2.

So now the question remains: how can we show (5)? Well, in it’s current form, the inequality looks like a
prime subject for applying a result like Young’s convolution inequality, but in order to be able to apply that result,
we need know what Lr space, if any, d̂σ lies in. As it turns out, via the method of stationary phase (discussed
in [6, Notes 1]), one can show the following decay of d̂σ:

Proposition 6 (Proposition 5.3 in [6])
If dσ is the surface measure of the unit sphere, then for all |ξ| ≫ 1, we have

d̂σ(ξ) = C
e2πi|ξ|

|ξ|(n−1)/2 + C
e−2πi|ξ|

|ξ|(n−1)/2 +O(|ξ|−n/2).

In particular,
|d̂σ(ξ)| ≲ |ξ|−(n−1)/2. (6)

In particular, this allows us to see that

∥f ∗ d̂σ∥p′ ≤ ∥|f | ∗ |ξ|−(n−1)/2∥p′ .
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Unfortunately, while 1
|ξ|(n−1)/2 “almost” L2n/(n−1); it isn’t quite. Hence, we cannot immediately apply Young’s

convolution inequality from class. That said, the Hardy–Littlewood–Sobolev inequality deals with this end case.

Lemma 7 (Hardy–Littlewood–Sobolev)
If 0 < α < n, 1 < p, q < ∞, and 1

q + 1 = 1
p + α

n , then for all f ∈ Lp(Rn),

∥f ∗ |x|−α∥q ≲ ∥f∥p.

One proof of the Hardy–Littlewood–Sobolev inequality is contained in [6], and another can be seen in lecture
notes from a course of Guth. Both proofs are essentially the same; the former proof uses distribution functions,
while the latter directly makes use of the Hardy–Littlewood maximal operator. Notably, in both proofs, the authors
make use of restricted weak-type estimates. In particular, an operator T mapping measurable functions on Rn to
itself is of restricted weak-type (p, q) if for all Borel E ⊂ Rn and λ > 0,

|{x : |T1E(x)| > λ}| ≲ |E|q/pλ−q.

While we do not explore this subject further here, the reader may be interested to know that, similar to weak-
type estimates, restricted weak-type estimates can also be used to obtain interpolation theorems akin to the
Marcinkiewicz interpolation theorem seen in class (which, in turn, can be used to imply Lemma 7).

In either case, using Lemma 7 with Proposition 6, we see that (5) holds for p ≤ 4n
3n+1 (notably a smaller range

than what is claimed in the statement of Tomas–Stein). To obtain the full range of p, we have to apply interpolation
in a smarter way, which is precisely what the work of Tomas and Stein does.

The main part of the argument that was extremely lossy came in inequality (6). In particular, dσ has a lot of
oscillation that is not seen when we bound it by |dσ|. Hence, we need a way to exploit the amount of oscillation
of dσ, though doing this over all of Rn at once is quite difficult to do. Rather, using Littlewood–Paley theory, we
can break the support of f ∗ d̂σ into different annuli in Rn. This is particularly a good idea to exploit oscillation,
as the higher the frequency of ξ (i.e. the further it is from the origin), the more oscillation we expect.

So, let ϕ be a compactly supported radial bump function on Bn(0, 1), and define

ψk(x) = ϕ(2−kx) − ϕ(2−(k−1)x).

Notice then that ψk has size 1 and is (more or less) supported when |x| ∼ 2k. Furthermore, notice that we have

1 = ϕ(x) +
∑
k>0

ψk(x) ∀x ∈ Rn.

Therefore, we have
f ∗ d̂σ = f ∗ (ϕd̂σ) +

∑
k>0

f ∗ (ψkd̂σ).

Hence, by the triangle inequality,

∥f ∗ d̂σ∥p′ ≤ ∥f ∗ (ϕd̂σ)∥p′ +
∑
k>0

∥f ∗ (ψkd̂σ)∥p′ . (7)

This approach of decomposing frequency space into disjoint annuli is the key idea of Littlewood–Paley theory,
which can be used to, for instance, study the time evolution of solutions to nonlinear PDE [1] and study Fourier
multipliers [5].

Let’s see why we’ve made progress towards proving the Tomas–Stein theorem. Firstly, the first term in the
above sum can use Young’s convolution inequality since ϕ is Schwartz and will decay fast enough to apply this
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result. To finish, we want bounds on each term in the sum of the form

∥ψkd̂σ∥p′ ≲ 2−ϵk∥f∥p (8)

for some ϵ > 0. Such upper bounds imply that the sum is in fact summable and bounded by ∥f∥p (up to some
constant). Obtaining (8) for an arbitrary choice of p′ is rather difficult, but as we know 1 ≤ p ≤ 2, we have that
2 ≤ p′ ≤ ∞. Thus, (8) is a prime candidate for applying interpolation theory. In particular, one can find prove
(8) when p′ = 2 and ∞ using the fact that ϕ is Schwartz. Doing so and applying the Marcinkiewicz interpolation
theorem shows that (8) holds for all 2 ≤ p′ ≤ ∞ if p < 2(n+1)

n+3 . In other words, this approach is able to obtain all
but the endpoint case of the Tomas–Stein theorem.

To complete the proof of the endpoint case, instead of using the triangle inequality in (7), one can use Stein’s
complex interpolation theorem (while much of the above proof remains the same). This is all we will say here
about what one needs to obtain the endpoint case. That said, one should not dismiss the endpoint case of the
Tomas–Stein theorem as such endpoint cases can be quite important. Here is one way to see this. Let S be the
paraboloid defined by the equation

S = {(ξ, |ξ|2) : ξ ∈ Rn−1}.

One can show via a scaling argument that, since S is not compact, RS(p → q) can only hold if q = n−1
n+1p

′. E.g., if
q = 2, then p must be 2(n+1)

n+3 for RS(p → q) to hold; just like the endpoint case of Tomas–Stein for the sphere! In
fact, RS(p → q) holds for such p and q, and one can show this as a corollary of Tomas–Stein (Exercise 9.(vi) in a
blog of Tao). In this sense, the endpoint case is of the utmost importance as it is the only case that holds!

Remark 8. In fact, one can obtain the result for the paraboloid discussed above using the same approach as Tomas–
Stein. This can more or less be seen by considering the Fourier decay of the surface measure on the paraboloid.
That said, trying to find ways in which the paraboloid is significantly different than the sphere is an important topic
for a vast number of problems in harmonic analysis and geometric measure theory.

However, in regards to the restriction conjecture (Conjecture 3), the endpoint case (when p = 2n
n+1 ) does not

hold, and it furthermore doesn’t seem like any weak-type estimate at the endpoint will hold either (see [2]).
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