Exceptional Set Estimates for orthogonal projections By: Paige Bright Q: "How often is the shadow of a set small?" TULAS

Let $A \subseteq \mathbb{R}^2$, V be 1-dim subspace. \Longrightarrow Clearly, dim $\pi_{V}(A) \leq \min\{1, \dim A\}$. Thum: [Marstrand's Projection Theorem] For almost every Ve G(2,0) (1-dim subspaces in \mathbb{R}^2), dim $\pi_{V}(A) = \min\{1, \dim A\}$.	Question 1: What is the relationship between the size of A and TTU(A)? Tool: Hausdorff dimension?
Let $A \subseteq \mathbb{R}^2$, V be 1-dim subspace. \implies Clearly, dim $\pi_v(A) \leq \min \S 1$, dim A? Then: [Marstrand's Projection Theorem] For almost every Ue G(2,0) (1-dim subspaces in \mathbb{R}^2), dim $\pi_v(A) = \min \S 1$, dim A? \implies	
$\Rightarrow Clearly, \dim \pi_{v}(A) \leq \min \{1, \dim A\}.$ Thum: [Marstrand's Projection Theorem] For almost every $Ve G(2, 0) (1-\dim subspaces in \mathbb{R}^{2}),$ $\dim \pi_{v}(A) = \min \{1, \dim A\}.$	Let $A \subseteq \mathbb{R}^2$, V be 1-dim subspace.
Thum: [Marstrand's Projection Theorem] For almost every Ve G(2,0 (1-dim subspaces in \mathbb{R}^2), $\dim \pi_v(A) = \min\{1, \dim A\}$	\implies CO \qquad I. (I) \qquad CA \qquad A \qquad
Thum: [Marstrand's Projection Theorem] For almost every. Ue G(2,1) (1-dim subspaces in \mathbb{R}^2), dim $\pi_{V}(A) = \min\{1, \dim A\}$	Clearly, $\operatorname{Clim} \pi_{V}(A) \leq \min \{2\}, \dim A \}$
Thus: [Marstrand's Projection Theorem] For almost every Ue G(2,1) (1-dim subspaces in \mathbb{R}^2), $\dim \operatorname{Tr}(A) = \min \S 1$, $\dim A \S$ \Longrightarrow	· · · · · · · · · · · · · · · · · · ·
Thun: [Marstrand's Projection Theorem] For almost every $VeG(2,1)$ (1-dim subspaces in \mathbb{R}^2), $\dim \pi_v(A) = \min \S 1$, $\dim A \Im$ \Longrightarrow	· · · · · · · · · · · · · · · · · · ·
For almost every $Ve G(2, 0)$ (1-dim subspaces in \mathbb{R}^2), $\dim \pi_v(A) = \min \S 1$, $\dim A \S$.	Thin Marstrand's Projection Theorem J
For almost every $V \in G(2,0)$ (1-dim subspaces in \mathbb{R}^2), $\dim \pi_v(A) = \min \S 1$, $\dim A \S$ \Longrightarrow	
$\dim \pi_{v}(A) = \min \{1, \dim A\}$	tor almost every UE G(2,1) (I-dim subspaces in IR2),
$\dim \pi_{v}(A) = \min \{1, \dim A\}$	
	$\dim \pi_{v}(A) = \min \{ 1, \dim A \}$
· · · · · · · · · · · · · · · · · · ·	

Thm: [Marstrand's	Projection Theorem J
For almost every	Ve G(2,0) (1-dim subspaces in R ²),
· · · · · · · · · · · · · · · · · · ·	$\dim \pi_{v}(A) = \min \{1, \dim A\}$
Example:	A
A = {x=03, V =	5y=03 √
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

Thm: [Marstrand's Projection Theorem] For almost very Ve G(2,1) (1-dim subspaces in R ²),	· · ·
$\dim \pi_{\mathbf{v}}(\mathbf{A}) = \min \{1, \dim \mathbf{A}\} $	• •
Question 2: When is the size of the projection even smaller?	· ·
Let $s < minipped 1$, $\dim A_{\overline{f}} \notin define$ "the exceptional set of $A^{"}$: $E_s(A) = \{ V \in G(2, 1) \mid \dim T_V(A) < s \} \leq G(2, 1) \}$	· · ·
Question 2: How can we bound dim Es(A)?	• •
Rmk: We want our bound to be smaller than $\dim G(2, D = 1$ to be nontrivial] .

Question 2: How can we bound dim Er(A)? Thm: Let Es(A) = { Ne G(2,1): dim TU(A)<53 Then, dim Es(A) < { I+s-dimA (Falconer/Peres-Schlag) s (Kaufman) Notice that for s< min {dim A, 13, => dim Es(A)<1. This implies Marstrand's Projection Theorem (as we can write {VeG(2,1): dim TTV(A) < min ?dim A, 13? as a countable union of (measure O) exceptional sets).

Outline of proofs (reproven by B.-Gan '22): Heuristic: If we cover $E_{s}(A)$ by S-balls, it takes ~ S-dimE_{s}(A) balls. Similarly, ~ S-dimA balls to cover A. Additionally $\leq S^{-s}$ balls to cover $\pi_{v}(A)$, $v \in E_{s}(A)$. For every VEES(A), cover TTV(A) by S-balls (2 S-S many UV) $A = \frac{\pi_{\nu}^{-1}}{2}$ TU(A)

· · · ·	· ·	Sx1 tubes	•
			•
 . .<			•
· · · · · · · · · · · · · · · · · · ·	·Kaufman: Count ·Falconer: Cons	the number of tubes (using (S, s) -sets) ider the L^2 - norm of a sum of indicator	•
 . .	· Kaufman : Count · Falconer : Cons functions on the L reses the	the number of tubes (using (S, s)-sets) ider the L ² -norm of a sum of indicator tubes (Fourier analysis?) high-low method	

WTS: (x) $f_{V} = \underbrace{\mathcal{Z}}_{T \in T_{V}} \Psi_{T}$, $f = \underbrace{\mathcal{Z}}_{V \in E_{S}(A)}$ $S^2 S^{-\alpha} S^{-2t} \neq |A| S^{-2t} \leq \int |f|^2$ $\leq \int_{\mathbb{R}^2}^1 |f|^2$ Fornier transtom $\int_{\mathbb{R}^2} |\hat{f}|^2$ Small $\lesssim \int_{\mathbb{R}^2} |\hat{f}_{nign}|^2 + \int_{\mathbb{R}^2} |$ $L \sum_{v \in E_s(A)} \sum_{T \in T_u} \int |\Psi_T|^2$ $S^{-t} \cdot S^{-s} \cdot S \implies S^{-t} \neq S^{-t}$

you can generalize these to higher dimensions : codimensions?
Thim Let ASTR" Borel, and let S2 min 3m, dim AF. Define Es (A) = SVEG(n,m) / dim Tru(A) < SZ.
Then $dim E_{s}(A) \leq \begin{cases} m(n-m) + s - a (Falconer) \\ m(n-m) + s - m (Kaufman) \end{cases}$
Thun [Marstrand Proj Thun]: For a.e. VEG(n.m), dim Thu (A) = minzm, dim AZ.

In R²: dim Es(A) < {I+s-dim A (Falconer) S (Kaufman) Can we do better? Yes?

To motivate the sharp statement, consider the following: Let A be a uniform (finite) square lattice in $[0,1]^2 \notin 0 \le s \le A $. Consider $E_s(A) := \{0: TT_0(A) \le s\}$. For all $\Theta \in E_s(A)$, we can cover A by $\approx \frac{ A }{s} := r$ rich lines.
$\Theta = A \qquad \pi_{\Theta}^{-1}(\pi_{\Theta}(A)) \text{Thus, by Szemeredi-Trotter,} \\ s \cdot \# E_{s}(A) \leq r - n \text{chlines} \leq \frac{ A ^{2}}{r^{3}} + \frac{ A }{r}$
$\implies \# E_s(A) \stackrel{<}{\sim} \frac{s^2}{ A }.$

This motivates the following continuum theorem, conjectured by Obenlin, and recently resolved by Ren-Wang 23: Thun [Ren-Wong]: Let A = R², Borel. Then, for all O ≤ S ≤ min { I, dim A }, dim ({OE S': dim TTO (A) < S }) ≤ max {2s - dim A, 0}.

Q: What if instead of considering all subspaces of G(n,m), we restricted ourselves to a submanifold?
<" restricted projection problem"
Example: Projection onto lines generated by a curve in TR3.
Let $\mathcal{Y}:[0,1] \rightarrow \mathbb{S}^2$, \mathbb{C}^2 curve, such that $det(\mathcal{Y}(0), \dot{\mathcal{Y}}(0)) \neq 0$, $\leftarrow non degenerate$
Let $p_0: \mathbb{R}^3 - l_0 \cong \mathbb{R}$ be orthogonal proj onto line spanned by $Y(0)$, l_0 .

Degenerate E	xample:	. .
٤.	A	Projection of A onto any live through the origin in
	d d	the xy-plane has dimension O.
×		

• γ : $[0,1] \rightarrow \mathbb{S}^2$, \mathbb{C}^2 , s.t. det($\gamma(0), \dot{\gamma}(0), \dot{\gamma}(0) \neq 0$. $\cdot \quad \rho_{\Theta} \colon \mathbb{R}^3 \to \mathcal{I}_{\Theta} \cong \mathbb{R}$ Thm: Let AS IR3 Borel, V nondegenerate For DESC min Edim A, 13, dim 80: dim po(A)<53 < { s Pramanik-Yang-Zahl 1+ <u>s-dim A</u> Gran-Guth-Maldagne Thus: dim po(A) = min ?dimA,1? a.e. 0

You can also consider:
· (Kestneted) troj. of IK onto k-planes:
0 n=3, k=2: Gan-Guo-Guth-Harris-Maldagne-Wang
°n arbitrany, k=1: Zahl Marstrand-type
onék arbitrang: Gan-Guo-Wang
· Projecting onto directions given by manifolds = 5"-":
° eg. Jiayin Liu
· When does the prof. have positive volume?"
· GGGHMW and Harris
· Discrete Finite Field version?
° see B-Gan 23, Lund-Pham-Vinh

				• •											• •		• •		• •			• •		• •		• •				• •				• •				
				• •											• •									• •		• •				• •				• •				
																							-															
								1	1				à	5 ' 1	· I		·			1.	•	2	P		1.	_ (2											
							Ľ		N.	2~		(U	P	20	<i>to</i>		·Y	N Q	je	ΓĽ	<u>on</u>	. .	۲ .	101	<i>X</i>	07	• • •											
												. (U .					• •													• •	
							÷.,	الأ م									• •		· .					• •	Á	• •											• •	
																									n										\sim			
		1		+1	11	1	•	1	56	o r	Ô,	4)0	اه			Λ Ο	int	<	'N/	K	NC	i i a	X		5			ナ	6	<u>^</u>	1	• •	· Y			
•		7	Se	t	2/1	K	•		Ke	20	e	vf)e	ve	lo	ph	rl	int	5	<i>in</i>	K	00	lia	X	1	Ń	Z	ور	ti	0	n l	2	• •	Y O		• •	
•		24	20	t)/	K	•		Ke	20	e i	νų)e	ve	lo	ph	rl 1	int	5	јŅ.	K	00		X	6	Ń	J	ور	t,	9	nt	2	• •			• •	•
•	• •	96	2e	t	י ו ג ו	K	•	-	Ke	2C	eı	νţ)e	مو	Ισ	ph	رگ	int	5	Ni	K	00		X	4	Ý C	J	20	ti.	0	<u>n</u> t		• •	• • •		· ·	•
•		<u> </u>	20	t	ו ג ייי	K	•	•	Ke	2C	E 1	ν <i>τ</i> .)e	ve	lo	ph	~	nt.	5	Ni	K	00		X		Ń	J		ţ,		~ .		• •		- - -	· ·	•
•	· · ·)	20	t	ו ו ג ייי	K	•		Ke	٤С	er	, , , , , , , , , , , , , , , , , , ,)e	مو		ph		nt	5	Ni	K				6	ŃC	J	20	<i>:</i> †1	0			• •	Ŷ	- - - -	· · ·	•
•		<u>у</u>	20	t		K	•		Ke	٢C	er)e	٨		ph		int	5	<i>Ni</i>	K	00				Ń	Z	20	<i>:</i> †1	0	~\$		· · ·	Y 0		· · · · · · · · · · · · · · · · · · ·	•
•		<u>у</u>	20	t			•		Ke	٤C	er)e	مو		ph		t	5	Ni						Ŷ	2	20	<i>:</i> †ז	6			· · ·			· · · · · · · · · · · · · · · · · · ·	•
•			20	ta						2 C)e	مد		pn			5	N	. K					Ŷ	J .	20	<i>.</i> ,	6					•	· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·			20	t					Ke	20)e	٨					5	N	. K.						2	20	<i>.</i> ,							· · · · · · · · · · · · · · · · · · ·	
		24	20	ta		K					er)e														2		ţ							· · · · · · · · · · · · · · · · · · ·	
• • • • • • • • • • • •		24	20	te		K					eı																	?		<i>.</i>				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
		24	20	t		K					er	ν <i>μ</i>		<u>)</u> e								. K						7		<u>, , , , , , , , , , , , , , , , , , , </u>				· · · · · · · · · · · · · · · · · · ·				
		24	20	ta								ν <i>μ</i>)e			pn					. K						?						· · · · · · · · · · · · · · · · · · ·				
		24	2	t					K) e			pn			5		K												· · · · · · · · · · · · · · · · · · ·				
				t												[O	ph			5		K				κ.			20									
				t		K											ph			5																		

```
Thank you?
```