Exceptional Set Estimates for orthogonal projections By: Paige Bright

Q: "How often is the shadow of a set small?"

Question 1: What is the relationship between the size of A and $\pi_{N}(A)$? Tool: Hans doff dimension?
Let $A \subseteq \mathbb{R}^{2}, V$ be 1-dim subspace.
\Longrightarrow Clearly. $\quad \operatorname{dim} \pi_{r}(A) \leq \min \{1, \operatorname{dim} A\}$.
The: [Marstrand's Projection Theorem]
For almost every $V \in G(2,1)\left(1\right.$-dim sulospecees in $\left.\mathbb{R}^{2}\right)$,

$$
\operatorname{dim} \pi_{v}(A)=\min \{1, \operatorname{dim} A\}
$$

The: [Marstrand's Projection Theorem]
For almost every $V \in G(2,1)$ (1-dim subspaces in \mathbb{R}^{2}),

$$
\operatorname{dim} \pi_{v}(A)=\min \{1, \operatorname{dim} A\}
$$

Example:

$$
A=\{x=0\}, V=\{y=0\}
$$

The: [Marstrand's Projection Theorem]
For almost very $V \in G(2,1)\left(1\right.$-dim subspaces in $\left.\mathbb{R}^{2}\right)$,

$$
\operatorname{dim} \pi_{r}(A)=\min \{1, \operatorname{dim} A\}
$$

Question 2: When is the size of the projection even smaller?
Let $s<\min \{1, \operatorname{dim} A\}$ define "the exceptional set of A ":

$$
E_{\delta}(A)=\{v \in G(2,1) \mid \operatorname{dim} \pi v(A)<s\} \subseteq G(2,1)
$$

Question 2': How can we bound $\operatorname{dim} E_{c}(A)$?
Rok: We want our bound to be smaller than $\operatorname{dim} G(2,1)=1$ to be nontrivial.

Question 2': How can we bound $\operatorname{dim} E_{c}(A)$?
Th m: Let $E_{s}(A)=\left\{V \in G(2,1): \operatorname{dim} \pi_{v}(A)<s\right\}$. Then, $\operatorname{dim} E_{s}(A) \leqslant \begin{cases}1+s-\operatorname{dim} A & \text { (Falconer/Peres-Scllag) } \\ s & \text { (Hartman) }\end{cases}$

Notice that for $s<\min \{\operatorname{dim} A, 1\}, \Longrightarrow \operatorname{dim} E_{s}(A)<1$. This implies Marstrand's Projection Theorem (as we can write $\left\{V \in G(2,1): \operatorname{dim} \pi_{v}(A)<\min \{\operatorname{dim} A, 1\}\right\}$ as a countable union of (measure O) exceptional sets).

Outline of proofs (reproven by B.-Gan 22):
Heuristic: If we cover $E_{s}(A)$ by δ-balls, it takes $\sim \delta^{-\operatorname{dim}^{\prime} E_{s}(A)}$ balls. Similarly, $\sim S^{-\operatorname{dim} A}$ balls to cover A.
Additionally $\approx \delta^{-s}$ balls to cover $\pi_{v}(A), V \in E_{s}(A)$.
For every $V \in E_{S}(A)$, cover $\pi_{v}(A)$ by δ-balls ($\approx \delta^{-s}$ many $\forall V$).

- Kaufman: Count the number of tubes (using ($\delta, s)$-sets)
- Falconer: Consider the L2 -norm of a sum of indicator functions on the tubes (Fourier analysis?)
\rightarrow uses the high-low method

$$
\begin{aligned}
& \text { WTS: } \quad t \leq 1+s-a \\
& f_{v}=\sum_{T \in \pi_{v}} \psi_{T}, \quad f=\sum_{v \in E_{S}(A)} f_{v} . \\
& \delta^{2} \delta^{-a} \delta^{-2 t} \leqslant|A| \delta^{-2 t} \leqslant \int_{A}|f|^{2} \\
& \leqslant \int_{\mathbb{R}^{2}}|f|^{2} \\
& =\int_{\mathbb{R}^{2}}|\hat{f}|^{2} \\
& \approx \int_{\mathbb{R}^{2}}\left|\hat{f}_{\text {nign }}\right|^{2}+\int_{\text {pmall }}^{\text {sin }}\left|n /{ }_{\text {dow }}\right|^{2} \\
& \sim \sum_{V \in E_{S}(A)} \sum_{T \in \pi_{V}} \int\left|\psi_{T}\right|^{2} \\
& \sim \delta^{-t} \cdot \delta^{-s} \cdot \delta \Rightarrow \delta^{-t} \leqslant \delta^{-1-s+a}
\end{aligned}
$$

You can generalize these to higher dimensions: codimensions?
Thm Let $A \subseteq \mathbb{R}^{n}$ Bores, and let $s^{2} \min \{m, d i m A\}$. Define

$$
E_{s}(A):=\{V \in G(n, m) \mid \operatorname{dim} \pi v(A)<s\} .
$$

Then

$$
\operatorname{dim} E_{s}(A) \leq \begin{cases}m(n-m)+s-a & \text { (Falconer) } \\ m(n-m)+s-m & \text { (Kaufman) }\end{cases}
$$

\Downarrow
Thin [Marstrand Poof The]: For a.e. $V \in G(n, m)$,

$$
\operatorname{dim} \pi_{v}(A)=\min \{m, \operatorname{dim} A\} .
$$

$$
\text { In } \mathbb{R}^{2}: \operatorname{dim} E_{s}(A) \leqslant \begin{cases}1+s-\operatorname{dim} A & \text { (Falconer) } \\ s & \text { (Kantian) }\end{cases}
$$

Can we do better? Yes:

To motivate the sharp statement, consider the following: Let A be a uniform (finite) square lattice in $[0,1]^{2}$ \& $0 \leq S \leq|A|$. Consider $E_{s}(A):=\left\{\theta: \mid \pi_{\theta}(A) \ll s\right\}$.
For all $\theta \in E_{s}(A)$, we can cover A by $\approx \frac{|A|}{s}:=r$ rich lines.
θ

$\pi_{\theta}^{-1}\left(\pi_{\theta}(A)\right)$ Thus, by Szemeredi-Trotter, $s \cdot \forall E_{s}(A) \leq \mid r$-rich lines $\left\lvert\, \leqslant \frac{|A|^{2}}{r^{3}}+\frac{|A|}{r}\right.$ $\Longrightarrow \# E_{s}(A) 乞 \frac{s^{2}}{|A|}$.

This motivates the following continuum theovem, conjectured by Oberlin, and recently resolved by Ren-Wang '23:
Thu [Ren-Wang]: Let $A \subseteq \mathbb{R}^{2}$, Bored. Then, for all $0 \leq s \leq \min \{1, d m A\}$, $\operatorname{dim}\left(\left\{\theta \in \mathbb{S}^{\prime}: \operatorname{dim} \pi_{\theta}(A)<s\right\}\right) \leq \max \{2 s-\operatorname{dim} A, 0\}$.

Q: What if instead of considering all subspaces of $G(n, m)$, we restricted ourselves to a submanifold?
"restricted projection problem"
Example: Projection onto lines generated by a curve in \mathbb{R}^{3}.
Let $\gamma:[0,1] \rightarrow \mathbb{S}^{2}, C^{2}$ cure, such that $\operatorname{det}(\gamma(\theta), \dot{\gamma}(\theta), \ddot{\gamma}(\theta)) \neq 0$. फ non degenerate
Let $\rho_{\theta}: \mathbb{R}^{3}-l_{\theta} \xlongequal[=]{=} \mathbb{R}$ be orthogonal prog onto line spanned by $\gamma(\theta), l_{\theta}$.

Degenerate Example:

Projection of A onto any line through the origin in the $x y$-plane has dimension O.

$$
\begin{aligned}
& \cdot \gamma:[0,1] \rightarrow \mathbb{S}^{2}, C^{2}, \text { s.t. } \operatorname{det}(\gamma(\theta), \dot{\gamma}(\theta), \ddot{\gamma}(\theta)) \neq 0 . \\
& \text { - } \rho_{\theta}: \mathbb{R}^{3} \rightarrow l_{\theta} \cong \mathbb{R}
\end{aligned}
$$

Thm: Let $A \subseteq \mathbb{R}^{3}$ Borel, γ nondegenerate - For $0 \leqslant s<\min \{\operatorname{dim} A, 1\}$,

$$
\operatorname{dim}\left\{\theta \cdot \operatorname{dim} \rho_{\theta}(A)<s\right\} \leq\left\{\begin{array}{c}
s \quad \text { Pramanik-Yang-Zall } \\
1+\frac{s-\operatorname{dim} A}{2} \text { Gan-Guth-Maldagre }
\end{array}\right.
$$

\downarrow
Thur: $\operatorname{dim} \rho_{\theta}(A)=\min \{\operatorname{dim} A, 1\}$ a.e. θ

You can also consider:

- (Restricted) Prog. of \mathbb{R}^{n} onto k-planes:
- $n=3, k=2$: Gan-Guo-Guth-Harvis-Maldague - Wang
- n arbitrary, $k=1$: Zahl

Marstrand-type

- nick arbitrary: Gan-Guo-Wang
- Projecting onto directions given by manifolds $\subseteq \mathbb{S}^{n-1}$: - eg Jiayin Lin
" "When does the pro y have positive volume?"
- GGGHMW and Harris
- Discrete/Finite Field version?
- see B-Gan 23, Lund-Pham-Vinh

Other types of projection? Radial? See talk: "Recent Developments in Radial Projections"?

Thank You:

