AN INTRODUCTION TO P-ADIC KAKEYA

MATTHEW BULL-WEIZEL

ABSTRACT. The purpose of this expository article is to explain Arsovki’s proof
of p-adic Kakeya. The tools used in his proof are ones not often encountered
alongside papers on the Kakeya conjecture: and so this article begins with
providing the necessary prerequisites for Arsovki’s paper. This is then followed
by a highly detailed proof of the his main theorem, providing more information
when needed, and extra steps.

1. INTRODUCTION AND PRE-REQUISITES

Section [I] introduces motivation along with the algebraic and analytic properties
of the p-adics. Section [2] states and proves Arsovski’s result, Theorem 2.1}

1.1. Introduction. After Dvir’s proof of finite field Kakeya [Dvi09], Ellenberg,
Oberlin and Tao in [EOTI0] noted that in order to achieve a result analogous to
Euclidean Kakeya, one would require infinite scales of length. And so the p-adics,
Q) serve as a logical place to study Kakeya phenomena; since Qp, similar to R, is
a locally compact Hausdorff field. In fact, R", Q) and Fy((t)), the space of formal
Laurent series, along with their finite algebraic extensions, are the only such spaces.
Arsovki’s result [Ars24] resolves the conjecture over all n, and Salvatore [Sal23| was
able to augment the method to resolve the matter over F,((¢))".

Logically, we should first define Q,. For a rational number ¢ # 0 € Q, we take
_.ma
q - p b 9
where a and b are co-prime to p. We define the function v, : Q — Z such that

vp (Q) = ma

and adopt v,(0) = oo. Later we will see this function is a valuation on Q. Using
vp, we may define the p-adic norm, | - |, via

m

lalp = p~*@ =p7,
where we adopt the convention
(1) 0], = 0.
We define the p-adic numbers as the completion of Q with respect to |- |,, and take
ZP = B@p (Oa 1)

Alternatively, one can define the ring Z, as the completion of Z with respect to
| - |p, and take Q, as the field of fractions of Z,.
1
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1.2. Valuations. In this subsection, we will define and discuss valuations. They
are used to both construct the p-adic numbers, and extensively throughout Ar-
sovki’s proof. For a field K, We define a valuation v as a function from K — RU{oco}
satisfying the following three properties.

) v(g) =00 = =0
(3) v(a-b) =v(a)+v(b)
(4) v(a+ b) > min{v(a),v(b)}.

We see that v,, as defined in the previous subsection is a valuation from Q to
R U {o0}. v, measures the multiplicity of a rational ¢ with respect to a prime p.
However we can give examples of other valuations.

Consider the field of formal Laurent series over a field F, F(t). For f(t) =
S ant™, we define

vt F(t) = Z U {o0}
v (f(t)) = min{n : a,, # 0},
and again adopting v;(0) = oco. Note this well is defined since for all sufficiently
large n, a_, = 0.

Consider the example F' = Fy, fi(t) = t2 +t* and fo(t) = t19° + ¢59. Then
if we view f; and fy as functions, and not purely algebraic objects, we can see
fi(t) = fa(t), for all t. However v:(f1) = 2 and v:(f2) = 50 and so one can see
we may interpret v; as measuring how fast a polynomial vanishes at ¢ = 0. In

fact, recalling the previous example of v,,, one can view v, as measuring how fast a
element of Q vanishes mod p.

1.3. Directions and Kakeya sets in Q,. We define a Kakeya set S C Q) to
be a compact set such that for every direction v € Zj, S contains a line [, =
{by+ v : X €Z,}. One may believe we are requiring lines in too many directions,
and instead should only require a line in every direction v contained in P"~1(Z,),
since this would be analogous to the euclidean definition. Indeed this definition is
used in the literature, in [EOT10], however they can be show to be equivalent.

We define a Kakeya set S in Z/p*Z to be a set such that for every v € (Z/p*Z)",
there exists [, = {b, + \v: A € Z/p*Z} C S.

Now we prove the correspondence between Kakeya sets in Z7 and (Z/pFZ)" via
the following proposition.

Proposition 1.1. Consider the canonical projection ¢ : Z; — (Z/p*Z)™, then for

a Kakeya set S C 77, o(S) is a Kakeya set in (Z/p"Z)".

Proof. Consider a direction v’ € (Z/p*Z)™, and via the topological isomorphism
Zp/kap = Z/ka,

we take v to be some element of the coset v'+p"Z1 C Z7. Let I, = {by+Xv : X € Zp}

be the line contained in S in the direction v. Cover I, in p* § = p~* balls, and note

k
they will be disjoint since | - |, is an ultrametric. Label the balls {B;}}_,, then we
see B; = kaZ + Ajv + b, for Aju € [, N B;. Since the balls are disjoint, the map

. 7n k n
¢ Ly — (Z/p"Z)",
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restricted to the set ;v is injective. Hence the image of S will contain a set of the
form

Ly = {p(by) + \jv' : X € Z/p*Z},
a line in the direction v’. Since v’ was arbitrary, ¢(5) is a Kakeya set. O

Unfortunately, the relationship between Kakeya sets in Z,, and Z/ p*7Z does not
flow in the other direction.

Proposition 1.2. There exists a set S C Zj such that for all k € N, vr(S) C
7./p*Z is Kakeya, but S is a not a Kakeya set in Ly -

Proof. First note that Z" is dense in Z;, and take

S=J{w: ez}
VEZ
Consider k € N, and v € (Z/p*Z)". Then note the interior of the set v 4 p*Z is
non-empty. And so pick some v/ € ZNwv + kaI’}. Then there exists some [, C S.
By the argument presented in Proposition 1, ¢ (l,/) will be a line of direction v in
(Z/p*Z)™. Since v was arbitrary, the image will be contain a unit line segment for
every in the direction v, v € Zj. Hence for every k, the projection of S will be a

Kakeya set in Z/p*Z. However S contains no line in any non-integer direction.
d

Intuitively one can see why this result would hold. Z C Z,, however by the
definition Z/p**1Z, the projection from Z, — Z/p*Z restricted to Z will still be
surjective. And so integer directions should be enough to give a Kakeya set in
7./p*Z. This construction holds for any dense D C Ly,

Throughout the literature there are different notions of Kakeya sets in Zj and
(Z/p*Z)™. Some definitions require lines in all directions, while others only require
lines in directions contained in P(Zp)"~! and P(Z/pkZ)"~! respectively. In this
section we define the aforementioned objects, and prove the equivalence of Kakeya
sets defined using either.

As in euclidean space, we define S4=1(Q,) to be the set of elements with norm
1 contained in Q. By the definition of the norm we can see these are exactly the
elements with at least one component of norm 1, and the rest having norm less
than or equal to 1. It follows that

Sd_l(Qp) = Sd_l(Zp)-

Recalling Z,, is the unit ball in Q,, we see that by the non-degeneracy and absolute
homogenity of the norm |- |,, if [z], = 1, 71 exists in Q, and |z~ !|, = 1. And so
we can see £ € Z,. Using this argument, we can equivlantly define Sdil(Zp) to
be the set of x having one component invertible in Z,.

Somewhat naturally, we define
SN Z)p* L) = {x € (Z/p*Z)* : x; is a unit for some 1 < i < d}.
Analogous to P(R)"~! we define
P(Zpykl = Snil(Zp)/Z;
P(Z/p*Z)" "t = S"N(Z/p* 1) /(2 /" D),
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where in both definitions, we quotient out by the relation
b~V < b=MXb, A€ R*.
For sake of clarity, we call a set S C Zj; p—Kakeya if S contains a unit line [, for
every v € S""Y(Z,)
Proposition 1.3. A set S C Zjy is Kakeya if and only if it is p—Kakeya.

Proof. We can see that if a set is Kakeya, it is automatically p—Kakeya. Now we
prove the other implication.

Consider a p—Kakeya set S, and a direction v # 0 contained in Zj \ S"~(Zy,).
Then
v=(v1,...,0,) = (p%k1,...p"kn),

where (kj,p) =1 and e; > 0 for all 1 < j <n. Then let e; = mini<;<,{e;}. Then
we can see

) ok ki ) .ki+1 _e. Kn
ezk_ €1—€; -~ €i—1 617,1 €i41€4 T~ €En—€4 "% =
Pk (PN D b oo )
Let
‘kl ) ,k"_1 ) ,k“+1 k
b ermen L peimiTe T penien UL pen—e Ty ¢ gd=L(7 Y

Then we can see any line in direction b will contain a line of direction v. And so
any p—Kakeya set will contain a Kakeya set, and therefore is Kakeya. O

Corollary 1.4. The Kakeya conjecture is equivalent to the proving every p— Kakeya
set has full Hausdorff dimension.

Remark 1.5. One can use the same method to show the parallel result for Kakeya
sets in Z/p*7 .

Now when working with P"~1(Z/p*Z) we will have to pick a set of representatives
that is consistent. Consider a equivalence class contained in projective space, [z].
Then let n, be a natural such that the n* coordinate of z is the first which is a unit.
It is important to note that n, is independent of our choice of representative of [z].
Then choose the unique scalar such that Az,, = 1. Then this representative is
unique for each class in P*~1(Z/p*Z)". Proceeding, when we work with projective
space over these rings, we will treat directions as simply these representatives, unless
for some unforeseen reason, it is easy to choose another.

Consider the following maps
o PPTHZ/P L) — P THZ P,

which determined by (z1,...,1...,2,) + (21,...,1...,7,) mod p*. Then we can
see this map is indeed surjective.

And so we have the sequence
TR prlz k) PR prel (P ) B Pl (2R ) TS

One can verify that indeed P"~!(Z,) is the inverse limit of the above sequence and
further using the argument presented in Proposition [I.1} that if S is p-Kakeya as a
subset of Zy, then all of it’s projections are p-Kakeya in (Z)p*7)".
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2. ARSOVKI’S PROOF OF P-ADIC KAKEYA

2.1. Theorem statements and Proof sketch. For A C Q% we define the Haus-
dorff s measure of A as

(4) lim in {; Ui 91 |Ui| <6}
And further we define the Hausdorff dimension as
dimy (A) = inf{s : H*(A) < oo}.

This is well defined for every Borel subset of Q,. Arsovki’s was able to prove the
p-adic Kakeya conjecture with the following theorem.

Theorem 2.1. Every Kakeya set A C Qp satisfies dimy (A) = n.

We now give a proof sketch and the intermediate results Arsovski uses to prove
Theorem 2.1

Arsovski’s proof of the p-adic Kakeya conjecture relies precisely on the idea that
the projection of a Kakeya set contained in Z to (Z/p*Z)", is a Kakeya set. To
show dimy S = n, we show H*(S) > 0 for all s < n. To do this, we show that
for every d, Hj(S) is sufficiently large: and to accomplish this, he exploits the fact
that the projective image of a nice enough covering of a Kakeya set in Z; will form
a Kakeya set in (Z/p*Z)". And so to lower bound the cardinality of any § = p~*
covering on a Kakeya set in Z;, we find lowerbounds to the size of Kakeya sets in
Z/p*Z. This what we call as The Covering Theorem.

Theorem 2.2. The Covering Theorem Let p be a prime number, and n, k be positive
integers, then a Kakeya set in 7% cannot be covered by fewer than

Pk /pnk +n —1 S ﬂ
n ~ 3kn’

To prove The Covering Theorem, take ¢ to be a primitive pFth root of unity, and
lift our Kakeya set from (Z/p*Z)" to (Q,[¢])" via the isomorphism ¢% = Z/p*Z.
We then find a polynomial f, vanishing on the image of our Kakeya set in (Q,[¢])"
of small degree, and examine it’s reduction in Z/p*Z. Heuristically it is at this
point that Dvir’s and Arsovki’s proof follow in the same manner. For Dvir’s proof
of finite field Kakeya, he takes a polynomial of small degree vanishing on his Kakeya
set, and shows the homogenization vanishes at the hyperspace at infinity, which is
in bijection with the set of directions of the finite field vector space. This in turn
forces the homogenous component of the original polynomial to vanish in every
direction. Applying the Schwartz-Zippel Lemma yields a contradiction.

Here we are not so fortunate that we can show the homogeneous component of
our f vanishes at every direction. However we can show it has large v;—valuation
at every z € C, which corresponds with the set of directions in (Z/p*Z)™. Then
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we apply the DVR Schwartz-Zippel Lemma which yields a contradiction in the
same spirit as the original Schwartz-Zippel Lemma did in Dvir’s paper. Now we
proceed with Arsovski’s proof, by formally introducing the The DVR Schwartz-
Zippel Lemma and proving the Covering Theorem implies Theorem

Lemma 2.3. (Discrete Valutation Schwartz-Zippel). Let the coefficient of 2] 25" - - -z
of f € T[z1,...2,] be ¢ # 0, and any monomimal that is larger in lexzcogmphzc or-

der than 2™z ... 2" be 0, and y € (0,1]. Then the number of s € C' such that
ve(f(5)) > vi(c) +ynpF is at most pkp™=VE(my +---m,,) /7.

2.2. Proofs In this subsection, we prove first that the Theorem proves Theo-
rem [2.1] And then we prove Theorem [2.1] and Lemma

Proof. Theorem implies Theorem

To see this, we first show the implication of the Kakeya conjecture over Zj.
Consider § > 0 and 0 < s < n. Since we are Working over Zy, 0 = p~* for some

keZ. From T heorem . we know we require > kS,L 5 balls to cover our set. And

SO
kn

H(;(S) > ign . p—ks — pk:(n—s)k—3n zn,p 1.
Since this bound is uniform in k, when we take & N\, 0, we see H*(S) > 0. Since
s < n was arbitrary, we see dimy S = n. And so this resolves the case over Z;.
To See how this applies to the case of Q), we note that a Kakeya set is compact
by definition, and hence can be covered in finitely many disjoint § balls. Partition
S by intersecting with these balls, then translate and superimpose them to form a
Kakeya set S in the unit ball Zy. We know H3(S S) > 0 uniformly in § and s < 7.

S is the union and translation of finitely many subsets of .S, and so at least one of
those subsets must have H® > 0. This proves the desired result. O

Proof. Proof of Theorem

We will show the any kakeya set in (Z/p*Z)™ has cardinality at leas n

Too see this suppose not and that there is some counter example S. Consider the
set

¢ Pk /pnk +n — 1)

Se={(¢",¢,..., (%) C(Zy[C])™ - (s1,...,82) € S}
As seen in Guth’s book, there is a non-zero Polynomial f € Q,(¢)[z1, 22, . . . 2] van-
ishing on S, with degree strictly less than p* /pnk. We may take f € Z,[(][21, 22, - -, 2n]
since one can multiply f by (1 —¢)™ for the minimum m such that each coefficient
of f has non-negative v,-valuation: taking the minimum m insures at least one co-
efficient of f remains non-zero under the reduction via m, the maximal ideal (¢ —1)
in Z,[¢]. Proceeding with the proof, we can can see by the definition of f if we take

l, as defined previously, to be the line in direction v, contained in .S, we see for all
v=(v1,...,0,) € (Z/P*Z)", by = ((by)1,...(by)n), and X € Z/p*7Z, we have

f(C(b'u)1+>\U1 . C(b'v)7l+)\vn) — f(C(bv)1<[v1]7 s C(bv)nc[vn]) =0,

where we take [v;] = v, mod pF. We define a polynomial g, € Z,[(][z], indexed
on v such that

go(2) = F(CO A, (),
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Consequentially, we see g, vanishes at ¢* for all A\ € Z/p*Z, hence

H (= — CA)‘ 90(2).

NEZ/pP*Z

And so if we take g, to be the reduction of g, via m, we have

k

-1 = ] G-Dlg@).
NEZ/pFT.

It follows that
(5) v(@o(1+ 1)) = v (F((L+ 1), (14 ) > pF,

where the \’s disappeared because they are mapped to 1 under the reduction by
m. And so by , we see for all

seD={1+t) . .a+plycc”

, we have v;(f(s)) > p*: importantly, |D| = (p*)". f was constructed in such a
way that it would have non-zero reduction in T'[z1, ..., 2,] and to be of degree at
most p¥/pnk < p* with coefficients in F,. Noting Lemma and since all of the
coefficients of f have v;—valuation equal to 0, taking v = 1/n we have

P = D] < (pkp*" ) /(0" fpnk) (n) = p*,

a contradiction, and so all Kakeya sets in (Z/p*Z)™ have size at least

<pk/pnk +n— 1) > pkn

n ~nN,p kgn .

Proof. Proof of Lemma (2.3

We will prove this inductivly, beginning with the base case n = 1. Suppose for
sake of contradiction we have a S C C such that |S| > pkmy/y where f has v,
valuation at least v;(c) + yp*. Take

S={1+t):1eL}
such that [ € {0,1,...,p* — 1}, |L| = |S|. Define d such tat
k> d = [log,(k/7)] = 1.
Then we can see L modulo p¥~¢ has an image of size greater than
p YL = pflogp(k/vﬂpkmlm > my.

Choose an element from the pre-image of the coset under mod pF~? to form the
set Ly C L. Then we can see that |Lg| > my + 1, and the difference between any
two elements in Lg is not divisible by p*~%. Let Sy be the subset of S associated
to Lyg. By Lagrange interpolation in the field F,(¢), we see we have the Lagrange
Polynomial generated by

S| I = | =1,

s€So \u€So\{s}
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for z € Sy. By construction, the polynomial has degree m;. And so we may recover
¢ by looking at the coefficient of maximum degree, indeed

=3 I =]

s€So \u€eSo\{s}

By properties of the valuation v; and the definition of Sy, we have

u€So\{s}

ve(c) > min | ve(f(s)) + vy H %

sESy

1
= 0> mi k
>min (o | ] =
u€So\{s}

— — > k
maxv | J[ (s—w) | =
u€So\{s}

And so there must exist some s € Sy such that

vy H (s —u) | >p~.

u€So\{s}

Then we take
Lo={lo,- -y lmy }s
where (1 + t)l0 =s. Take l; # [y in Lg, then we see we have

v (L0 — (1 +0)°) =v (L+ O ((L+8) 0 1)) = v (L+8)") 4o, (1+8)1

Since vy ((1+¢)!) =0, we see we have
(6) v (L) — (14 0)) = v, (L + 1) —1)).
Since

I;—1
(1 4 t)lz‘*lo 1= ZO l1 - ZO "
n )

n=1

the valuation in @) will be the least n such that (li ;lo is non-zero. One can

. . . LY.
deduce from Kummer’s theorem for binomial coefficients mod p that (w) is non-

zero in [, if and only if every p-adic digit of w is at most the corresponding
p-adic digit of I. Note here that p¥»(ti=10) is the largest power of p dividing ; — lo.
Expanding [; — ly, one can see that for every k < v,(l; — lo), l; — lo has a p-adic
digit of 0, and and in the v,(l; — lo)" place, a p-adic digit of at least 1. And since
pvrti=lo) has a p-adic digit of 0 for every place other than the vp(li — lo), where
li =1
pvp(li—lg)

degree) coefficient of (1 +¢)!~'o. Hence

mi m
P <D u(( )i —1) =) prrlito),
=1 i=1

it has a one; we can see is the least non-zero (in terms of monomial
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Hence
" < vy H (s —u) :th ((1+t)li—(1+t)10)
ueSo\{s} i=1
mi
= vap(l'i_lﬂ)_
i=1
Define

Nj =i € Lo : vp(li — lo) > j}
r = [log,(m1)].

Then if we sum over the possible values of v,(I; — lp), and count multiplicities,

mi k—d—1

(7) wph <Y pr T = Ny + Y N =Y.
=1 j=1

And so we have

(8) N; < phmi

9) N <p",

where follows from requiring the quotient by p*~? to be injective on L. Hence
we may bound @ by

k—d—r k—d
pk < p"+

-+ Y P -,
j=1 j=k—d—r+1
where we used @ in the first summation, and in the second summation. Pro-
ceeding, we have

k—d—r k—d k—d
o S A e v D S (e e I e A S U (2 )
j=1 j=k—d—r+1 j=k—d—r+1
<pFdppph=d = (r 4 1)pFd.

By assumption, we have r + 1 < k, hence
vpF < kp~ ﬂogp(k/vﬂpk < pF.

This gives us a contradiction, so we must have |S| < pkm;/y. Now we proceed
with the inductive argument. For n > 1, we write

flzryoo o zn) =27 g(22, .y 2n) + h(21, - -0y 20),

where h is of degree less than my in z;. We use the probabilistic method to find the
probability that f has large valuation on a given point in C. Since we are working
over a finite probability space, this probability will give us the exact proportion of
C" where f has large vy valuation, and further, multiplying by |C|" we find the
cardinality of the subset where f is large in v;.
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Forging ahead, we see define the events
F =v(f) = vele) +ynp"
Ge = wvi(9) < vi(e) +y(n —1)p"
G> = vi(g) = vele) +y(n — 1)p".
Evaluating atz1,... z,, uniformly and independently over C at random, we see
P(F) = P(F|G)P(G<) + P(F|G>)P(G>)
<P(F|G<) +P(G>).
We can see the event G>¢ is a reduction to the case of n — 1, and so we know
P(Gs) < pk(ma +msz + -+ +my)/vp".
Now considering the case P(F|G<). We consider g now as a function in 1 variable
Yy € 6n_1. Since we are working with conditional probabilities, we fix 3’ satisfying
G .. Now for a fixed y, if we assume F' to also be true, we see
vi(9(y)) < vr(e)+r(n=1)p" = v (f) > vig(y)+0" = ve(f) > vi(g(y))+7p".
The event of the inequality on the right of the above has probability pkm,/p*vy by
inductive assumption, and so
P(F) < pkmy /p*y + pk(ma + ms + -+ +my) /vp") = pk(my + -+ +my,) /"

Noting |€n\ = p™* we prove the lemma.
O

Remark 2.4. The result in [Ars24] is more general than Theorem where
Arsovski resolves the (0,e)—Kakeya conjecture, which seeks bounds on the Haus-
dorff Dimension of fragmented Kakeya sets. Theorem[2.]] is the special case of the
(6,e)—Kakeya conjecture, where both 6, = 1. The proofs are essentially the same,
and the above exposition should lend the reader guidance on reading [Ars24].
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