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Abstract. The purpose of this expository article is to explain Arsovki’s proof

of p-adic Kakeya. The tools used in his proof are ones not often encountered

alongside papers on the Kakeya conjecture: and so this article begins with
providing the necessary prerequisites for Arsovki’s paper. This is then followed

by a highly detailed proof of the his main theorem, providing more information

when needed, and extra steps.

1. Introduction and pre-requisites

Section 1 introduces motivation along with the algebraic and analytic properties
of the p-adics. Section 2 states and proves Arsovski’s result, Theorem 2.1.

1.1. Introduction. After Dvir’s proof of finite field Kakeya [Dvi09], Ellenberg,
Oberlin and Tao in [EOT10] noted that in order to achieve a result analogous to
Euclidean Kakeya, one would require infinite scales of length. And so the p-adics,
Qn

p serve as a logical place to study Kakeya phenomena; since Qp, similar to R, is
a locally compact Hausdorff field. In fact, Rn, Qn

p and Fn
q ((t)), the space of formal

Laurent series, along with their finite algebraic extensions, are the only such spaces.
Arsovki’s result [Ars24] resolves the conjecture over all n, and Salvatore [Sal23] was
able to augment the method to resolve the matter over Fq((t))n.

Logically, we should first define Qp. For a rational number q ̸= 0 ∈ Q, we take

q = pm
a

b
,

where a and b are co-prime to p. We define the function vp : Q → Z such that

vp(q) = m,

and adopt vp(0) = ∞. Later we will see this function is a valuation on Q. Using
vp, we may define the p-adic norm, | · |p via

|q|p = p−vp(q) = p−m,

where we adopt the convention

(1) |0|p = 0.

We define the p-adic numbers as the completion of Q with respect to | · |p, and take

Zp = BQp
(0, 1)

Alternatively, one can define the ring Zp as the completion of Z with respect to
| · |p, and take Qp as the field of fractions of Zp.
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1.2. Valuations. In this subsection, we will define and discuss valuations. They
are used to both construct the p-adic numbers, and extensively throughout Ar-
sovki’s proof. For a field K, We define a valuation v as a function from K → R∪{∞}
satisfying the following three properties.

v(q) = ∞ ⇐⇒ q = 0(2)

v(a · b) = v(a) + v(b)(3)

v(a + b) ≥ min{v(a), v(b)}.(4)

We see that vp, as defined in the previous subsection is a valuation from Q to
R ∪ {∞}. vp measures the multiplicity of a rational q with respect to a prime p.
However we can give examples of other valuations.

Consider the field of formal Laurent series over a field F , F (t). For f(t) =∑∞
n=−∞ ant

n, we define

vt : F (t) → Z ∪ {∞}
vt(f(t)) = min{n : an ̸= 0},

and again adopting vt(0) = ∞. Note this well is defined since for all sufficiently
large n, a−n = 0.

Consider the example F = F2, f1(t) = t2 + t4 and f2(t) = t100 + t50. Then
if we view f1 and f2 as functions, and not purely algebraic objects, we can see
f1(t) = f2(t), for all t. However vt(f1) = 2 and vt(f2) = 50 and so one can see
we may interpret vt as measuring how fast a polynomial vanishes at t = 0. In
fact, recalling the previous example of vp, one can view vp as measuring how fast a
element of Q vanishes mod p.

1.3. Directions and Kakeya sets in Qp. We define a Kakeya set S ⊆ Qn
p to

be a compact set such that for every direction v ∈ Zn
p , S contains a line lv =

{bv + λv : λ ∈ Zp}. One may believe we are requiring lines in too many directions,
and instead should only require a line in every direction v contained in Pn−1(Zp),
since this would be analogous to the euclidean definition. Indeed this definition is
used in the literature, in [EOT10], however they can be show to be equivalent.

We define a Kakeya set S in Z/pkZ to be a set such that for every v ∈ (Z/pkZ)n,
there exists lv = {bv + λv : λ ∈ Z/pkZ} ⊂ S.

Now we prove the correspondence between Kakeya sets in Zn
p and (Z/pkZ)n via

the following proposition.

Proposition 1.1. Consider the canonical projection φ : Zn
p → (Z/pkZ)n, then for

a Kakeya set S ⊂ Zn
p , φ(S) is a Kakeya set in (Z/pkZ)n.

Proof. Consider a direction v′ ∈ (Z/pkZ)n, and via the topological isomorphism

Zp/p
kZp

∼= Z/pkZ,

we take v to be some element of the coset v′+pkZn
p ⊂ Zn

p . Let lv = {bv+λv : λ ∈ Zp}
be the line contained in S in the direction v. Cover lv in pk δ = p−k balls, and note

they will be disjoint since | · |p is an ultrametric. Label the balls {Bj}p
k

j=1, then we

see Bj = pkZn
p + λjv + bv for λjv ∈ lv ∩Bj . Since the balls are disjoint, the map

φ : Zn
p → (Z/pkZ)n,
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restricted to the set λjv is injective. Hence the image of S will contain a set of the
form

lv′ = {φ(bv) + λjv
′ : λ ∈ Z/pkZ},

a line in the direction v′. Since v′ was arbitrary, φ(S) is a Kakeya set. □

Unfortunately, the relationship between Kakeya sets in Zp and Z/pkZ does not
flow in the other direction.

Proposition 1.2. There exists a set S ⊆ Zn
p such that for all k ∈ N, φk(S) ⊆

Z/pkZ is Kakeya, but S is a not a Kakeya set in Zn
p .

Proof. First note that Zn is dense in Zn
p , and take

S =
⋃
v∈Z

{λv : λ ∈ Zp}.

Consider k ∈ N, and v ∈ (Z/pkZ)n. Then note the interior of the set v + pkZn
p is

non-empty. And so pick some v′ ∈ Z ∩ v + pkZn
p . Then there exists some lv′ ⊂ S.

By the argument presented in Proposition 1, φk(lv′) will be a line of direction v in
(Z/pkZ)n. Since v was arbitrary, the image will be contain a unit line segment for
every in the direction v, v ∈ Zn

p . Hence for every k, the projection of S will be a

Kakeya set in Z/pkZ. However S contains no line in any non-integer direction.
□

Intuitively one can see why this result would hold. Z ⊊ Zp, however by the
definition Z/pk+1Z, the projection from Zp → Z/pkZ restricted to Z will still be
surjective. And so integer directions should be enough to give a Kakeya set in
Z/pkZ. This construction holds for any dense D ⊆ Zn

p .

Throughout the literature there are different notions of Kakeya sets in Zn
p and

(Z/pkZ)n. Some definitions require lines in all directions, while others only require
lines in directions contained in P(ZP )n−1 and P(Z/pkZ)n−1 respectively. In this
section we define the aforementioned objects, and prove the equivalence of Kakeya
sets defined using either.

As in euclidean space, we define Sd−1(Qp) to be the set of elements with norm
1 contained in Qn

p . By the definition of the norm we can see these are exactly the
elements with at least one component of norm 1, and the rest having norm less
than or equal to 1. It follows that

Sd−1(Qp) = Sd−1(Zp).

Recalling Zp is the unit ball in Qp, we see that by the non-degeneracy and absolute
homogenity of the norm | · |p, if |x|p = 1, x−1 exists in Qp and |x−1|p = 1. And so
we can see x−1 ∈ Zp. Using this argument, we can equivlantly define Sd−1(Zp) to
be the set of x having one component invertible in Zp.

Somewhat naturally, we define

Sd−1(Z/pkZ) = {x ∈ (Z/pkZ)d : xi is a unit for some 1 ≤ i ≤ d}.
Analogous to P(R)n−1 we define

P(Zp)n−1 = Sn−1(Zp)/Z×
p

P(Z/pkZ)n−1 = Sn−1(Z/pkZ)/(Z/pkZ)×,
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where in both definitions, we quotient out by the relation

b ∼ b′ ⇐⇒ b = λb, λ ∈ R×.

For sake of clarity, we call a set S ⊂ Zn
p p−Kakeya if S contains a unit line lv for

every v ∈ Sn−1(Zp)

Proposition 1.3. A set S ⊂ Zn
p is Kakeya if and only if it is p−Kakeya.

Proof. We can see that if a set is Kakeya, it is automatically p−Kakeya. Now we
prove the other implication.

Consider a p−Kakeya set S, and a direction v ̸= 0 contained in Zn
p \ Sn−1(Zp).

Then

v = (v1, . . . , vn) = (pe1k1, . . . p
enkn),

where (kj , p) = 1 and ej > 0 for all 1 ≤ j ≤ n. Then let ei = min1≤j≤n{ej}. Then
we can see

peiki(p
e1−ei

k1
ki

, . . . , pei−1−ei
ki−1

ki
, 1, pei+1ei

ki+1

ki
, . . . , pen−ei

kn
ki

) = v.

Let

b = (pe1−ei
k1
ki

, . . . , pei−1−ei
ki−1

ki
, 1, pei+1ei

ki+1

ki
, . . . , pen−ei

kn
ki

) ∈ Sd−1(Zp).

Then we can see any line in direction b will contain a line of direction v. And so
any p−Kakeya set will contain a Kakeya set, and therefore is Kakeya. □

Corollary 1.4. The Kakeya conjecture is equivalent to the proving every p−Kakeya
set has full Hausdorff dimension.

Remark 1.5. One can use the same method to show the parallel result for Kakeya
sets in Z/pkZ .

Now when working with Pn−1(Z/pkZ) we will have to pick a set of representatives
that is consistent. Consider a equivalence class contained in projective space, [x].
Then let nx be a natural such that the nth

x coordinate of x is the first which is a unit.
It is important to note that nx is independent of our choice of representative of [x].
Then choose the unique scalar such that λxnx

= 1. Then this representative is
unique for each class in Pn−1(Z/pkZ)n. Proceeding, when we work with projective
space over these rings, we will treat directions as simply these representatives, unless
for some unforeseen reason, it is easy to choose another.

Consider the following maps

φk : Pn−1(Z/pkZ) → Pn−1(Z/pk−1Z),

which determined by (x1, . . . , 1 . . . , xn) 7→ (x1, . . . , 1 . . . , xn) mod pk. Then we can
see this map is indeed surjective.

And so we have the sequence

· · · φk+2→ Pn−1(Z/pk+1Z)
φk+1→ Pn−1(Z/pkZ)

φk→ Pn−1(Z/pk−1Z)
φk−1→ · · · .

One can verify that indeed Pn−1(Zp) is the inverse limit of the above sequence and
further using the argument presented in Proposition 1.1, that if S is p-Kakeya as a
subset of Zn

p , then all of it’s projections are p-Kakeya in (Z/pkZ)n.
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2. Arsovki’s proof of p-adic Kakeya

2.1. Theorem statements and Proof sketch. For A ⊂ Qn
P we define the Haus-

dorff s measure of A as

Hs(A) = lim
δ↘0

inf{
∞∑
i=1

|Ui|s :

∞⋃
i=1

Ui ⊃ A, |Ui| ≤ δ}.

And further we define the Hausdorff dimension as

dimH(A) = inf{s : Hs(A) < ∞}.
This is well defined for every Borel subset of Qp. Arsovki’s was able to prove the
p-adic Kakeya conjecture with the following theorem.

Theorem 2.1. Every Kakeya set A ⊂ Qn
p satisfies dimH(A) = n.

We now give a proof sketch and the intermediate results Arsovski uses to prove
Theorem 2.1.

Arsovski’s proof of the p-adic Kakeya conjecture relies precisely on the idea that
the projection of a Kakeya set contained in Zn

p to (Z/pkZ)n, is a Kakeya set. To
show dimH S = n, we show Hs(S) > 0 for all s < n. To do this, we show that
for every δ, Hs

δ(S) is sufficiently large: and to accomplish this, he exploits the fact
that the projective image of a nice enough covering of a Kakeya set in Zn

p will form

a Kakeya set in (Z/pkZ)n. And so to lower bound the cardinality of any δ = p−k

covering on a Kakeya set in Zn
p , we find lowerbounds to the size of Kakeya sets in

Z/pkZ. This what we call as The Covering Theorem.

Theorem 2.2. The Covering Theorem Let p be a prime number, and n, k be positive
integers, then a Kakeya set in Zn

P cannot be covered by fewer than(
pk/pnk + n− 1

n

)
≳

pkn

3kn
.

To prove The Covering Theorem, take ζ to be a primitive pkth root of unity, and
lift our Kakeya set from (Z/pkZ)n to (Qp[ζ])n via the isomorphism ζZ ∼= Z/pkZ.
We then find a polynomial f , vanishing on the image of our Kakeya set in (Qp[ζ])n

of small degree, and examine it’s reduction in Z/pkZ. Heuristically it is at this
point that Dvir’s and Arsovki’s proof follow in the same manner. For Dvir’s proof
of finite field Kakeya, he takes a polynomial of small degree vanishing on his Kakeya
set, and shows the homogenization vanishes at the hyperspace at infinity, which is
in bijection with the set of directions of the finite field vector space. This in turn
forces the homogenous component of the original polynomial to vanish in every
direction. Applying the Schwartz-Zippel Lemma yields a contradiction.

Here we are not so fortunate that we can show the homogeneous component of
our f vanishes at every direction. However we can show it has large vt−valuation
at every x ∈ C

n
, which corresponds with the set of directions in (Z/pkZ)n. Then
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we apply the DVR Schwartz-Zippel Lemma which yields a contradiction in the
same spirit as the original Schwartz-Zippel Lemma did in Dvir’s paper. Now we
proceed with Arsovski’s proof, by formally introducing the The DVR Schwartz-
Zippel Lemma and proving the Covering Theorem implies Theorem 2.1.

Lemma 2.3. (Discrete Valutation Schwartz-Zippel). Let the coefficient of zm1
1 zm2

2 · · · zmn
n

of f ∈ T [z1, . . . zn] be c ̸= 0, and any monomimal that is larger in lexicographic or-

der than zm1
1 zm2

2 · · · zmn
n be 0, and γ ∈ (0, 1]. Then the number of s ∈ C

n
such that

vt(f(s)) ≥ vt(c) + γnpk is at most pkp(n−1)k(m1 + · · ·mn)/γ.

2.2. Proofs. In this subsection, we prove first that the Theorem 2.2 proves Theo-
rem 2.1. And then we prove Theorem 2.1 and Lemma 2.3.

Proof. Theorem 2.2 implies Theorem 2.1

To see this, we first show the implication of the Kakeya conjecture over Zn
p .

Consider δ > 0 and 0 ≤ s < n. Since we are working over Zn
p , δ = p−k for some

k ∈ Z. From Theorem 2.2, we know we require ≳ pnk

k3n δ balls to cover our set. And
so

Hs
δ(S) ≳

pkn

k3n
· p−ks = pk(n−s)k−3n ≳n,p 1.

Since this bound is uniform in k, when we take δ ↘ 0, we see Hs(S) > 0. Since
s < n was arbitrary, we see dimH S = n. And so this resolves the case over Zn

p .
To See how this applies to the case of Qn

p , we note that a Kakeya set is compact
by definition, and hence can be covered in finitely many disjoint δ balls. Partition
S by intersecting with these balls, then translate and superimpose them to form a
Kakeya set S̃ in the unit ball Zn

p . We know Hs
δ(S̃) > 0 uniformly in δ and s < n.

S̃ is the union and translation of finitely many subsets of S, and so at least one of
those subsets must have Hs > 0. This proves the desired result. □

Proof. Proof of Theorem 2.2

We will show the any kakeya set in (Z/pkZ)n has cardinality at least

(
pk/pnk + n− 1

n

)
.

Too see this suppose not and that there is some counter example S. Consider the
set

Sc = {(ζs1 , ζs2 , . . . , ζsn) ⊂ (Zp[ζ])n : (s1, . . . , s2) ∈ S}.
As seen in Guth’s book, there is a non-zero Polynomial f ∈ Qp(ζ)[z1, z2, . . . zn] van-
ishing on Sc, with degree strictly less than pk/pnk. We may take f ∈ Zp[ζ][z1, z2, . . . , zn]
since one can multiply f by (1− ζ)m for the minimum m such that each coefficient
of f has non-negative vp-valuation: taking the minimum m insures at least one co-
efficient of f remains non-zero under the reduction via m, the maximal ideal (ζ−1)
in Zp[ζ]. Proceeding with the proof, we can can see by the definition of f if we take

lv as defined previously, to be the line in direction v, contained in S, we see for all
v = (v1, . . . , vn) ∈ (Z/pkZ)n, bv = ((bv)1, . . . (bv)n), and λ ∈ Z/pkZ, we have

f(ζ(bv)1+λv1 , . . . , ζ(bv)n+λvn) = f(ζ(bv)1ζ [v1], . . . , ζ(bv)nζ [vn]) = 0,

where we take [vk] = vk mod pk. We define a polynomial gv ∈ Zp[ζ][z], indexed
on v such that

gv(z) = f(ζ(bv)1zλ[v1], . . . , ζ(bv)1zλ[vn]).
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Consequentially, we see gv vanishes at ζλ for all λ ∈ Z/pkZ, hence∏
λ∈Z/pkZ

(z − ζλ)| gv(z).

And so if we take gv to be the reduction of gv via m, we have

(z − 1)p
k

=
∏

λ∈Z/pkZ

(z − 1)| gv(z).

It follows that

(5) vt(gv((1 + t))) = vt(f((1 + t)[v1], . . . , (1 + t)[v2])) ≥ pk,

where the λ’s disappeared because they are mapped to 1 under the reduction by
m. And so by (5), we see for all

s ∈ D = {(1 + t)[v1], . . . (1 + t)[vn]} ⊆ C
n

, we have vt(f(s)) ≥ pk: importantly, |D| = (pk)n. f was constructed in such a
way that it would have non-zero reduction in T [z1, . . . , zn] and to be of degree at
most pk/pnk < pk with coefficients in Fp. Noting Lemma 2.3, and since all of the
coefficients of f have vt−valuation equal to 0, taking γ = 1/n we have

pkn = |D| < (pkpk
n−1

)/(pk/pnk)(n) = pkn,

a contradiction, and so all Kakeya sets in (Z/pkZ)n have size at least(
pk/pnk + n− 1

n

)
≳n,p

pkn

k3n
.

□

Proof. Proof of Lemma 2.3

We will prove this inductivly, beginning with the base case n = 1. Suppose for
sake of contradiction we have a S ⊆ C such that |S| > pkm1/γ where f has vt
valuation at least vt(c) + γpk. Take

S = {(1 + t)l : l ∈ L},

such that l ∈ {0, 1, . . . , pk − 1}, |L| = |S|. Define d such tat

k ≥ d = ⌈logp(k/γ)⌉ ≥ 1.

Then we can see L modulo pk−d has an image of size greater than

p−d|L| = p⌈logp(k/γ)⌉pkm1/γ > m1.

Choose an element from the pre-image of the coset under mod pk−d to form the
set L0 ⊆ L. Then we can see that |L0| ≥ m1 + 1, and the difference between any
two elements in L0 is not divisible by pk−d. Let S0 be the subset of S associated
to L0. By Lagrange interpolation in the field Fp(t), we see we have the Lagrange
Polynomial generated by

∑
s∈S0

 ∏
u∈S0\{s}

z − u

s− u

 f(s) = f(z),
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for z ∈ S0. By construction, the polynomial has degree m1. And so we may recover
c by looking at the coefficient of maximum degree, indeed

c =
∑
s∈S0

 ∏
u∈S0\{s}

1

s− u

 f(s).

By properties of the valuation vt and the definition of S0, we have

vt(c) ≥ min
s∈S0

vt(f(s)) + vt

 ∏
u∈S0\{s}

1

s− u


=⇒ 0 ≥ min

s∈S0

γpk + vt

 ∏
u∈S0\{s}

1

s− u


=⇒ max

s∈S0

vt

 ∏
u∈S0\{s}

(s− u)

 ≥ γpk

And so there must exist some s ∈ S0 such that

vt

 ∏
u∈S0\{s}

(s− u)

 ≥ γpk.

Then we take

L0 = {l0, . . . , lm1
},

where (1 + t)l0 = s. Take li ̸= l0 in L0, then we see we have

vt
(
(1 + t)li − (1 + t)l0

)
= vt

(
(1 + t)l0((1 + t)li−l0 − 1)

)
= vt

(
(1 + t)l0

)
+vt

(
(1 + t)li−l0 − 1)

)
.

Since vt
(
(1 + t)l0

)
= 0, we see we have

(6) vt
(
(1 + t)li − (1 + t)l0

)
= vt

(
(1 + t)li−l0 − 1)

)
.

Since

(1 + t)li−l0 − 1 =

li−l0∑
n=1

(
li − l0

n

)
tn,

the valuation in (6) will be the least n such that

(
li − l0

n

)
is non-zero. One can

deduce from Kummer’s theorem for binomial coefficients mod p that

(
l
w

)
is non-

zero in Fp if and only if every p-adic digit of w is at most the corresponding

p-adic digit of l. Note here that pvp(li−l0) is the largest power of p dividing li − l0.
Expanding li − l0, one can see that for every k < vp(li − l0), li − l0 has a p-adic
digit of 0, and and in the vp(li − l0)th place, a p-adic digit of at least 1. And since

pvp(li−l0) has a p-adic digit of 0 for every place other than the vp(li − l0), where

it has a one; we can see

(
li − l0

pvp(li−l0)

)
is the least non-zero (in terms of monomial

degree) coefficient of (1 + t)li−l0 . Hence

γpk ≤
m1∑
i=1

vt((1 + t)li−l0 − 1) =

m1∑
i=1

pvp(li−l0).
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Hence

γpk ≤ vt

 ∏
u∈S0\{s}

(s− u)

 =

m1∑
i=1

vt
(
(1 + t)li − (1 + t)l0

)
=

m1∑
i=1

pvp(li−l0).

Define

Nj = |{li ∈ L0 : vp(li − l0) ≥ j}|
r = ⌈logp(m1)⌉.

Then if we sum over the possible values of vp(li − l0), and count multiplicities,

γpk ≤
m1∑
i=1

pvp(li−l0) = N0 +

k−d−1∑
j=1

Nj(p
j − pj−1).(7)

And so we have

Nj ≤ pk−d−j(8)

Nj ≤ pr,(9)

where (8) follows from requiring the quotient by pk−d to be injective on L0. Hence
we may bound (7) by

γpk ≤ pr +

k−d−r∑
j=1

pr(pj − pj−1) +

k−d∑
j=k−d−r+1

pk−d−j(pj − pj−1),

where we used (9) in the first summation, and (8) in the second summation. Pro-
ceeding, we have

pr +

k−d−r∑
j=1

pk−d−j(pj − pj−1) +

k−d∑
j=k−d−r+1

pr(pj − pj−1) ≤ pk−d +

k−d∑
j=k−d−r+1

pr(pj − pj−1)

≤ pk−d + rpk−d = (r + 1)pk−d.

By assumption, we have r + 1 ≤ k, hence

γpk < kp−⌈logp(k/γ)⌉pk ≤ γpk.

This gives us a contradiction, so we must have |S| ≤ pkm1/γ. Now we proceed
with the inductive argument. For n > 1, we write

f(z1, . . . , zn) = zm1
1 g(z2, . . . , zn) + h(z1, . . . , zn),

where h is of degree less than m1 in z1. We use the probabilistic method to find the
probability that f has large valuation on a given point in C. Since we are working
over a finite probability space, this probability will give us the exact proportion of
C

n
where f has large vt valuation, and further, multiplying by |C|n we find the

cardinality of the subset where f is large in vt.
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Forging ahead, we see define the events

F = vt(f) ≥ vt(c) + γnpk

G< = vt(g) < vt(c) + γ(n− 1)pk

G≥ = vt(g) ≥ vt(c) + γ(n− 1)pk.

Evaluating atz1, . . . zn, uniformly and independently over C at random, we see

P(F ) = P(F |G<)P(G<) + P(F |G≥)P(G≥)

≤ P(F |G<) + P(G≥).

We can see the event G≥0 is a reduction to the case of n − 1, and so we know
P(G≥) ≤ pk(m2 + m3 + · · · + mn)/γpk.

Now considering the case P(F |G<). We consider g now as a function in 1 variable

y ∈ C
n−1

. Since we are working with conditional probabilities, we fix y′ satisfying
G<. Now for a fixed y, if we assume F to also be true, we see

vt(g(y)) < vt(c)+γ(n−1)pk =⇒ vt(f) > vt(g(y))+γpk =⇒ vt(f) ≥ vt(g(y))+γpk.

The event of the inequality on the right of the above has probability pkm1/p
kγ by

inductive assumption, and so

P(F ) ≤ pkm1/p
kγ + pk(m2 + m3 + · · · + mn)/γpk) = pk(m1 + · · · + mn)/γpk.

Noting |Cn| = pnk, we prove the lemma.
□

Remark 2.4. The result in [Ars24] is more general than Theorem 2.1, where
Arsovski resolves the (δ, ε)−Kakeya conjecture, which seeks bounds on the Haus-
dorff Dimension of fragmented Kakeya sets. Theorem 2.1 is the special case of the
(δ, ε)−Kakeya conjecture, where both δ, ε = 1. The proofs are essentially the same,
and the above exposition should lend the reader guidance on reading [Ars24].

References

[Ars24] Bodan Arsovski, The p-adic Kakeya conjecture, J. Amer. Math. Soc. 37 (2024), no. 1,

69–80. MR 4654608
[Dvi09] Zeev Dvir, On the size of Kakeya sets in finite fields, J. Amer. Math. Soc. 22 (2009),

no. 4, 1093–1097. MR 2525780

[EOT10] Jordan S. Ellenberg, Richard Oberlin, and Terence Tao, The Kakeya set and maximal
conjectures for algebraic varieties over finite fields, Mathematika 56 (2010), no. 1, 1–25.

MR 2604979

[Sal23] Alejo Salvatore, The Kakeya conjecture on local fields of positive characteristic, Math-
ematika 69 (2023), no. 1, 1–16. MR 4516796


	1. Introduction and pre-requisites
	1.1. Introduction
	1.2. Valuations
	1.3. Directions and Kakeya sets in Qp
	1.4. Acknowledgement

	2. Arsovki's proof of p-adic Kakeya
	2.1. Theorem statements and Proof sketch
	2.2. Proofs

	References

