Recent Progress in Applying Gauge/Gravity Duality to Quark-Gluon Plasma & Nuclear Physics

Andreas Karch

(University of Washington, Seattle)

Holography = Solvable Toy Model

Solvable models of strong coupling dynamics.

- Study Transport, real time (Challenging in real QCD,
- Study Finite Density experimentally relevant)
- Explore paradigms "beyond Landau"

(this is interesting for a different audience)

Gives us qualitative guidance/intuition.

Not QCD! Expect errors of order 100% (better than extrapolating perturbation theory to $\alpha_s \sim 1$??)

Holographic Theories:

Examples known:

- in d=1, 2, 3, 4, 5, 6 space-time dimensions
- with our without super-symmetry
- conformal or confining
- with or without chiral symmetry breaking
- with finite temperature and density

Holographic Theories:

Holographic toy models have two key properties:

"Large N": theory is essentially classical

"Large λ ": large separation of scales in the spectrum

 $m_{spin-2-meson} \sim \lambda^{1/4} m_{spin-1-meson}$ D: 1275 MeV 775 MeV

(note: there are some exotic examples where the same parameter N controls both, classicality and separation of scales in spectrum)

Successes and recent developments

Viscosity and Hydrodynamics

Energy Loss

□ Thermalization

Viscosity and Hydrodynamics

Viscosity

Viscosity can be quantified:

water: I centipoise (cp) air: 0.02 cp honey: 2000-10000 cp

$$(1 \text{ cp} = 10^{-2} \text{ P} = 10^{-3} \text{ Pa} \cdot \text{s})$$

Pitch drop experiment

Started in 1930

8 drops fell so far

but no one has ever witnessed a drop fall

2005 Ig Nobel Prize in Physics

Viscosity of pitch: 230 billions times that of water

(2.3 10¹¹cp)

Recall: Viscosity of pitch: ~ $2.3 \ 10^{11}$ cp

Recall: Viscosity of pitch: ~ $2.3 \ 10^{11}$ cp

RHIC's measurement of QGP (confirmed by LHC):

$$\eta \sim \frac{\hbar}{4\pi} s \sim \frac{10^{-27} {\rm erg \cdot s}}{(10^{-13} {\rm cm})^3} \sim 10^{14} {\rm cp}$$

Recall: Viscosity of pitch: ~ $2.3 \ 10^{11}$ cp

RHIC's measurement of QGP (confirmed by LHC) :

$$\eta \sim \frac{\hbar}{4\pi} s \sim \frac{10^{-27} {\rm erg \cdot s}}{(10^{-13} {\rm cm})^3} \sim 10^{14} {\rm cp}$$

BNL press release 2005:

"The degree of collective interaction, rapid thermalization, and extremely low viscosity of the matter being form at RHIC makes this the most nearly perfect liquid ever observed."

Viscosity in Holography:

In a large class of systems:

$$\frac{\eta}{s} = \frac{\hbar}{4\pi} \tag{KSS}$$

- pinpoints correct observable
- gives ball-park figure
- large at weak coupling: bound?

Viscosity – Recent Developments

Not a bound!

(Kats, Petrov, 2007)

$$\frac{\eta}{s} = \frac{1}{4\pi} \left(1 - \frac{1}{2N} \right) \qquad \begin{array}{l} \mathcal{N} = 2 \operatorname{Sp}(N) \\ 4 \operatorname{fundamental} \\ 1 \operatorname{antisymmetric traceless} \end{array}$$

Higher Curvature corrections violate bound.

(Brigante, Liu, Myers, Shenker, Yaida, Buchel, Sinha,)

Calculations only reliable if violations are small¹⁴

Hydro – Recent Developments

Viscosity is not the only hydro transport coefficient that can be calculated holographically.

- 2nd order hydro
 - Calculated in 2007 (Romatschke et. al., Batthacharyya et. al.)
 - Needed for stable hydro simulation (causality!)
 - Holographic values/structure routinely used
- anomalous transport

(following Kharzeev and Son)

$$\vec{J} = \frac{N_c \mu_5}{2\pi^2} [\operatorname{tr}(VAQ)\vec{B} + \operatorname{tr}(VAB)2\mu\vec{\omega}]$$

(following Kharzeev and Son)

$$\vec{J} = \frac{N_c \mu_5}{2\pi^2} [\operatorname{tr}(VAQ)\vec{B} + \operatorname{tr}(VAB)2\mu\vec{\omega}]$$

J: conserved current 1) Baryon Number or 2) Electric Charge

(following Kharzeev and Son)

$$\vec{J} = \frac{N_c \mu_5}{2\pi^2} [\operatorname{tr}(VAQ)\vec{B} + \operatorname{tr}(VAB)2\mu\vec{\omega}]$$

B: magnetic field "Chiral Magnetic Effect"

(following Kharzeev and Son)

$$\vec{J} = \frac{N_c \mu_5}{2\pi^2} [\operatorname{tr}(VAQ)\vec{B} + \operatorname{tr}(VAB)2\mu\vec{\omega}]$$

ω: vorticity (= curl of velocity)"Chiral Vortical Effect"

(following Kharzeev and Son)

$$\vec{J} = \frac{N_{c}\mu_{5}}{2\pi^{2}} [\operatorname{tr}(VAQ)\vec{B} + \operatorname{tr}(VAB)2\mu\vec{\omega}] \\ \langle \mu_{5} \rangle = 0 \\ \langle \mu_{5}^{2} \rangle \neq 0$$

axial chemical potential (requires non-zero axial charge)

relies on event by event fluctuations

20

(following Kharzeev and Son)

$$\vec{J} = \frac{N_c \mu_5}{2\pi^2} [\operatorname{tr}(VAQ)\vec{B} + \operatorname{tr}(VAB)2\mu\vec{\omega}]$$

Coefficients determined by anomaly!

Relative size of baryon versus charge asymmetry unambiguous.

Anomaly and the CVE

connection between CME and anomaly was quantitatively understood before (Kharzeev, ...)

How does the anomaly know about vorticity?

Erdmenger et. al, Banerje et. al:

In holographic models CVE completely determined in terms of

Chern-Simons term = anomaly.

Anomaly and the CVE

How does the anomaly know about vorticity?

Son, Surowka: True in general.

axial anomaly in background electromagnetic fields

+ = CVE entropy current with non-negative divergence

Energy Loss

Energy Loss (2006): Heavy quarks

(Casalderrey-Solana & Teaney, HKKKY, Gubser)

Energy Loss, Recent Developments:

Use holographic models to make LHC "predictions":

Energy Loss, Light Quarks (2010)

(Chesler, Jensen, AK, Yaffe; Gubser, Gulotta, Pufu, Rocha)

Stopping Distance vs Energy

Stopping Distance:

Perturbative QCD: $L \sim E^{1/2}$ (BDMPS, ...) Holography: $L \sim E^{1/3}$ Maximal Stopping Distance: $L \sim E^{1/4}$ **Typical Stopping Distance:** (Arnold, Vaman - 2011) Experiment: 1/3 preferred over 1/2 ??? (Renk, ...)

Stopping Distance: Exponents!

Perturbative QCD: $\mathbf{L} \sim \mathbf{E}^{1/2}$ (BDMPS, ...)Holography:Maximal Stopping Distance: $\mathbf{L} \sim \mathbf{E}^{1/3}$ Typical Stopping Distance: $\mathbf{L} \sim \mathbf{E}^{1/4}$

(Arnold, Vaman - 2011)

Experiment:1/3 preferred over 1/2 ???(Renk, ...)

Thermalization

Why does the QCD fireball thermalize so rapidly?

Thermalization

Why does the QCD fireball thermalize so rapidly?

too hard!

Thermalization

How quickly does the holographic fireball thermalize?

Shockwave-collision to black hole

Shockwave-collision to black hole

Shockwave-collision to black hole

(Chesler, Yaffe)

"RHIC":

 $\mu \sim 2.3 \text{ GeV}$

Hydro valid ~ 0.35 fm/c << 1 fm/c

But: there is so much more info in this plot!

What do you want to know?

Summary: recent progress

□ Viscosity and Hydrodynamics

Energy Loss

□ Thermalization