Connecting the LHC to ultra-high energy cosmic rays: from 10 to 100 TeV CMS

Ralph Engel Karlsruhe Institute of Technology (KIT)

Outline

Cosmic rays and air showers

First LHC data and the knee

Cross section measurements using air showers

Muons in air showers at 10^{19} eV

Astrophysical constraints at the highest energies

Ultra-high energy: 10²⁰ eV

Need accelerator of size of Mecury's orbit to reach 10^{20} eV with current technology

Acceleration time for LHC: 815 years

Energy spectrum and collider energies

Extensive air showers

core distance (km)

Energy and composition measurement (Ne-Nµ)

Energy and composition measurement: shower profiles

Example: event measured by Auger Collab. (ICRC 2003)

- Energy well determined
- Primary particle type: mean and fluctuations of shower depth of maximum

Mean depth of shower maximum (composition?)

(RE, Pierog, Heck, ARNPS 2011)

First LHC data and the interpretation of the knee

Exotic models for the knee

New physics: scaling with nucleon-nucleon cms energy

LHC data probe the region beyond the knee

LHC: distribution of charged secondary particles

LHC: Exotic scenatios for knee very unlikely, model predictions bracket LHC data on secondary particle multiplicity

Composition in knee region (i)

Composition in knee region (ii)

First LHC data and the extrapolation of interaction models

Measurement of pp cross section at LHC

$$\frac{\Delta p}{p} = \xi > 5 \times 10^{-6}$$

$$\sigma_{ATLAS} = 60.3 \pm 0.05 \pm 0.5 \pm 2.1 mb$$

N _{trk} Pt (MeV)	3 200	4 200	3 250	4 250	σ_{tot}
<u>CMS</u>	<u>59.7</u>	<u>58.6</u>	<u>58.9</u>	<u>57.3</u>	
Q-11-03	65.2	64.6	63.0	62.0	77.5
SYBILL-2.1	71.5	71.0	70.2	69.3	79.6

(CMS, DIS Workshop, Brookhaven)

$\sigma_{CMS} = 59.7 \pm 0.1 \pm 1.1 \pm 2.4 mb$

Direct comparison with model predictions (no extrapolation), extrapolation strongly modeldependent

Importance of LHC cross section measurement (i)

(extrapolated cross sections compatible)

Cross section discrepany resolved in favour of lower measurements

TOTEM: total cross section measurement with much higher precision

Importance of LHC cross section measurement (ii)

Study only for changed cross section, global tuning to LHC data will be needed

Extending the cross section measurements to higher energy

Maximum statistics for fluorescence observations and indications of mixed/light composition

Cross section measurement with air showers

experimental resolution ~20 g/cm²

Proton-air cross section for particle production

Cross section measurement: composition

Cross section measurement: self-consistency

 $\sigma_{p-\text{air}} = (505 \pm 22_{\text{stat}} \ (^{+26}_{-34})_{\text{sys}}) \text{ mb}$

Simulation of data sample with different cross sections, interpolation to measured low-energy values

Conversion to proton-proton cross section

Muon production in air showers at ~10¹⁹ eV

Full efficiency and high statistics range of Pierre Auger Observatory

Do shower simulations reproduce the observed shower characteristics ?

Shower longitudinal profile

Auger Observatory: Study of individual hybrid events

Procedure

- Selection of high-quality showers of ~10¹⁹ eV
- Simulation of 400 showers for each event with reconstructed geometry
- Proton or iron primaries
- surface detector simulation for best longitudinal profiles

Results

- Signal deficit found for **both** proton and iron like showers
- Showers with same X_{max} show only 10-15% variation
- Discrepancy larger than 22% energy calibration uncertainty

Angular dependence of discrepancy: Muon component?

All results given relative to proton-induced showers simulated with QGSJET II.03

Do we have a muon problem?

Muon discrepancy confirmed by independent muon counting methods

Similar, but smaller discrepancy found by Telescope Array (renormalization of ~27% needed)

- muon signal less important in scintillators
- showers of zenith angle $< 45^{\circ}$
- energy scale of TA 20% higher than Auger Observatory

Possible solution: enhanced baryon-antibaryon pair production in nuclear interactions ?

(Pierog & Werner, PRL 101 (2008) 17110)

The upper end of the energy spectrum

Composition from correlations and deflection in galactic magnetic field ?

Composition information from flux suppression ?

Highest energies and GZK energy loss effect

GZK effect as composition selection mechanism

Proton and iron suffer smallest (and almost equal) energy loss

Distribution of Galaxies

Capricornus Supercluster

> Capricornus Superclusters Void Pavo-Indus

Supercluster Centaurus Supercluster

Sculptor Superclusters Void Virgo Coma Supercluster

> Perseus-Pisces Supercluster

Horologium

Supercluster Supercluster Sextans Supercluster

Shapley Supercluster

> Ursa Major Supercluster Superclusters

> > $E > 3 \times 10^{19} eV$

Bootes

Superclysters

Bootes Void

Pisces-Cetus

Superclusters

Distribution of Galaxies

Capricornus Supercluster

> Capricornus Superclusters Void

> > Pavo-Indus Supercluster

Sculptor Void

Virgo Coma Supercluster Hydra Perseus-Pisces Supercluster

Supercluster

$E > 6 \times 10^{19} eV$

9 Columba Supercluster

Superclusters Void Shapley Supercluster

> Ursa Major Supercluster Leo Superclusters

Bootes

Sextans Supercluster

Horologium Supercluster

vww.atlasoftheuniverse.con

Pisces-Cetus

Superclusters

Anisotropy at the highest energies

Auger Observatory: discovery of anisotropy: 70% correlation (Science 318, 2007)

Active Galactic Nucleus (AGN) smeared by 3.1°

Note:

- anisotropy only for source distances up to GZK sphere (as one would expect)
- small deflection angle indicates presence of light elements (protons?)

Auger Observatory: Composition data

(Piera Ghia, Auger Collab., parallel session)

Telescope Array: Composition measurement

Anisotropy:

- no correlation found in HiRes data (smaller statistics than Auger, northern hemisphere)
- current TA data still inconclusive (limited statistics and sky coverage)

Summary

First LHC data and the knee:

exotic models disfavoured

Cross section measurements:

LHC data for extrapolation, air shower data at higher energy

Muons in air showers at 10¹⁹ eV:

still a serious probelm

Astrophysical constraints at the highest energies:

very helpful and expected, but situation unclear right now

Problem I: Sources must be extreme objects

Problem 3: Deflection in magnetic fields

Typical field strengths:

- proton deflection angle ~few degrees
- iron deflection angle large
- proton astronomy ?

Extragalactic magnetic fields

Magnetic fields: Confinement in the Galaxy (i)

Observed spectrum softer than injection spectrum

Magnetic fields: Confinement in the Galaxy (ii)

Diffusion: same behaviour for different elements at same rigidity $p/Z \sim E/Z$

Magnetic fields: Confinement in sources

Acceleration: same behaviour for different elements at same rigidity $p/Z \sim E/Z$

Origin and physics of the knee

Heitler model of em. shower

Muon production in hadronic showers

Primary particle proton

 π^0 decay immediately

 Π^{\pm} initiate new cascades

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha}$$
$$\alpha = \frac{\ln n_{\text{ch}}}{\ln n_{\text{tot}}} \approx 0.82 \dots 0.95$$

Assumptions:

- cascade stops at $E_{part} = E_{dec}$
- each hadron produces one muon

Superposition model

Proton-induced shower

$$N_{\text{max}} = E_0 / E_c$$

$$X_{\text{max}} \sim \lambda_{\text{eff}} \ln(E_0)$$

$$N_{\mu} = \left(\frac{E_0}{E_{\text{dec}}}\right)^{\alpha} \qquad \alpha \approx 0.9$$

Assumption: nucleus of mass A and energy E_0 corresponds to A nucleons (protons) of energy $E_n = E_0/A$

$$N_{\rm max}^A = A\left(\frac{E_0}{AE_c}\right) = N_{\rm max}$$

$$X_{\rm max}^A \sim \lambda_{\rm eff} \ln(E_0/A)$$
$$N_{\mu}^A = A \left(\frac{E_0}{AE_{\rm dec}}\right)^{\alpha} = A^{1-\alpha} N_{\mu}$$