Parity-Violating Electron Scattering: Hadron Structure and New Physics

Jeff Martin The University of Winnipeg

- Electron scattering
- Parity-violation
- Structure
- New Physics

"Regular" Electron Scattering

The EM interaction does not violate parity

Parity-violation in electron scattering?

Interference term in cross-section violates parity.

Structure

 Decomposition of the proton's electromagnetic form factors into contributions from up, down, and strange quarks.
 Species Charge Weak Charge

$$\begin{aligned} G_{E,M}^{\gamma,p} &= \frac{2}{3} G_{E,M}^{u,p} - \frac{1}{3} G_{E,M}^{d,p} - \frac{1}{3} G_{E,M}^{s,p} \\ G_{E,M}^{\gamma,n} &= \frac{2}{3} G_{E,M}^{d,p} - \frac{1}{3} G_{E,M}^{u,p} - \frac{1}{3} G_{E,M}^{s,p} \\ G_{E,M}^{\gamma,n} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} + \left(-1 + \frac{4}{3} \sin^2 \theta_W\right) G_{E,M}^{d,p} + \left(-1 + \frac{4}{3} \sin^2 \theta_W\right) G_{E,M}^{d,p} \\ G_{E,M}^{Z,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} + \left(-1 + \frac{4}{3} \sin^2 \theta_W\right) G_{E,M}^{d,p} + \left(-1 + \frac{4}{3} \sin^2 \theta_W\right) G_{E,M}^{s,p} \\ G_{E,M}^{Z,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} + \left(-1 + \frac{4}{3} \sin^2 \theta_W\right) G_{E,M}^{d,p} + \left(-1 + \frac{4}{3} \sin^2 \theta_W\right) G_{E,M}^{s,p} \\ G_{E,M}^{Z,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} + \left(-1 + \frac{4}{3} \sin^2 \theta_W\right) G_{E,M}^{d,p} \\ G_{E,M}^{Z,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} + \left(-1 + \frac{4}{3} \sin^2 \theta_W\right) G_{E,M}^{d,p} \\ G_{E,M}^{Z,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{U,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{u,p} \\ G_{E,M}^{u,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^{u,p} &= \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G_{E,M}^{u,p} \\ G_{E,M}^$$

And axial structure!

New Physics

measures Q^p_{weak}-proton's weak charge

At tree level in the standard model:

$$Q_{weak}^{p} = 1 - 4\sin^{2}\theta_{W}$$

A sensitive, low-energy extraction of the weak mixing angle.

Structure

- Strange quark form factors
- Inelastic scattering, axial transition form factors
- Pb neutron skin
- (Transversely polarized beams)

Parity-violating Asymmetry

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{A_E + A_M + A_A}{\varepsilon(G_E^p)^2 + \tau(G_M^p)^2} = \frac{\sqrt[3]{\gamma}}{\left(\int_{\mathbb{P}} \sqrt[3]{\gamma}} \left(\int_{\mathbb{P}} \sqrt[3]{\gamma}\right) \left(\int_{\mathbb{P}} \sqrt[3]{\gamma}} \left(\int_{\mathbb{P}} \sqrt[3]{\gamma}\right) \left(\int_{\mathbb{P}} \sqrt[3$$

Program of the last two decades:

Measure at forward and backward angles, on a variety of targets.

Strange-quark Experiments

- SAMPLE (MIT-Bates)
- HAPPEx I, II, and III (JLab)
- G0 (JLab)
- A4 (MAMI)
- A variety of techniques used to measure with (sub)ppm precision in a scattering experiment.
- Feedback to the injector on helicity-correlated beam properties measured in the experimental hall.

target (LH2)

• High rates ~ MHz.

Helicity-Correlated Systematics

must have excellent control of all "helicity-correlated" beam properties (in this case at 1 nm level) symmetry in detector to sense these effects

GO, A4, SAMPLE

Results as of last year

(HAPPEX on the next slide)

Note: G_{E}^{s} and G_{A}

New: HAPPEX III Results

See: M. Dalton, Session 1A, and global fit

New: A4 Experiment Preliminary LD2 results

• Thank you to S. Baunack.

Strange-quark Summary

- No large or obvious contributions of strange vector form factor in this range of Q². Contributions limited to the few percent level.
- Some enticing results on the axial form factor.
 - Is it being suppressed by electroweak radiative corrections?
- Results being analyzed by A4 at $Q^2 = 0.6 \text{ GeV}^2$. Future running at $Q^2 = 0.1 \text{ GeV}^2$ by A4.

Inelastic Scattering in the Resonance Region

- Determination of N->Delta axial transition form factors using PV electron scattering
- An interesting suggestion by Zhu et al (based partly on hyperon radiative decay) that the electroweak radiative corrections for this process might also be large.
- Zhu et al suggested the PV asymmetry could be as large as ±5 ppm at Q² = 0 (that's very large, by my standards).

GO Inclusive Pions Results

• Pion photoproduction asymmetry extracted:

$$A_{\gamma}^{-} = -0.36 \pm 1.06 \pm 0.37 \pm 0.03 \ ppm$$

A. Coppens, PhD thesis (U. Manitoba, 2010). G0 Collaboration – in preparation.

- The possibility of an unexpectedly large PV asymmetry in pion photoproduction has been limited to the ppm level.
- More results, in inclusive electron scattering, expected from G0 (higher Q²) and Qweak (lower Q²) soon.

Weak Charge Distribution of Heavy Nuclei

208

Neutron distribution is challenging to interpret from strongly interacting probes (protons, pions, etc.), and is not accessible to the charge-sensitive photon.

But the weak interaction sees the

neutrons clearly:	proton	neutron
Electric charge	1	0
Weak charge	~0.08	1

PREX (Pb-Radius EXperiment)

 $\begin{array}{c} Q^2 \thicksim 0.01 \ GeV^2 \\ 5^\circ \ \text{scattering angle} \end{array} \xrightarrow{} \begin{array}{c} A_{PV} \thicksim 0.6 \ ppm \\ Rate \ \sim 1.5 \ GHz \end{array}$

$$M^{EM} = \frac{4\pi\alpha}{Q^2} F_p(Q^2)$$
$$M^{NC}_{PV} = \frac{G_F}{\sqrt{2}} \Big[\Big(1 - 4\sin^2\theta_W \Big) F_p(Q^2) - F_n(Q^2) \Big] \qquad A_{PV} \approx \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \frac{F_n(Q^2)}{F_p(Q^2)}$$

PREX Interpetation

Parity-Violating Electron Scattering

and New Physics

New Physics

measures Q^p-proton's electric charge

- Measure $\sin^2 \theta_w$ using:
 - Moller (ee)
 - Elastic (ep)
 - Deep-inelastic (eq)

measures Q^p_{weak}- proton's weak charge

Species	Charge	Weak Charge	
u	$+\frac{2}{3}$	$1-\frac{8}{3}\sin^2\theta_W$	
d	$-\frac{1}{3}$	$-1+\frac{4}{3}\sin^2\theta_W$	
S	$-\frac{1}{3}$	$-1+\frac{4}{3}\sin^2\theta_W$	
р	1	1-4sin ² θ_{w}	
е	-1	-1+4sin ² θ_{w}	

PV electron scattering to probe the weak charges of electrons, protons, and quarks

What New Physics?

Z-exchange could compete with:

which would affect the running of $\sin^2\theta_w$ with energy.

Running of \sin^2\theta_w

From K. Kumar

Experiments

- Past:
 - SLAC E122 PV deep-inelastic scattering of D2
 - SLAC E158 PV Moller scattering
- Present:
 - Qweak (PV Elastic ep at JLab)
 - PV DIS at 6 GeV (JLab)
- Future:
 - Moller (JLab 11 GeV)
 - SOLID (PV DIS at JLab 11 GeV)
 - P2 (PV elastic ep at MAMI)

Complementary Diagnostics for New Physics

 Elastic, deep-inelastic (semi-leptonic) and Moller (pure leptonic) scattering experiments together make a powerful program to search for and identify new physics. Erler, Kurylov, Ramsey-Musolf, PRD 68, 016006 (2003)

Qweak Experiment

- Elastic scattering at forward angle
- longitudinally polarized electrons
- rapid helicity-flip: 960 Hz
- low momentum transfer: $Q^2 = 0.027 (GeV/c)^2$

- ➤ Expect: A_{PV} ≈ 230 ppb
- ➤ ≈ 5 ppb statistical error in ~2200 hours
- Use eight detectors, 800 MHz each, in "current integrating mode"

2.5% on
$$A_{PV}$$
 4% on Q_{weak} 0.3% on $sin^2 \theta_W$

See: R. Carlini, Session 3G

Qweak Experiment

Scanner detector for current mode tracking results

• New Compton polarimeter has produced %/hr relative measurements.

Main Detectors

Eight fused silica bars with dimensions 200 x 18 x 1.25 cm

Cerenkov radiator low noise electronics; high precision ADCs radiation hard

background insensitive

preradiated to boost signal and kill backgrounds

QTOR focuses the elastically scattered electrons onto each bar

Scanner Rate map on MD face

Simulated

As measured

and the second second

Qweak Status

- First commissioning beam July 2010
- Commissioning Fall 2010
- "Run I" Jan May 2011
- "Run II" Nov 2011 May 2012

Beam: routine data-taking at 165 μ A , tests up to 180 μ A (scheduled for 150 μ A)

- : \approx 86-89% polarization
- : helicity-correlated properties acceptable

Some teething pains: Target pump, Toroid power supply, beam dump vacuum,...

At present: have "in hand" \approx 1/4 of proposed statistics

Initial Auxiliary measurements done:

- APV for Aluminum (target windows)
- APV for
- Parity-conserving transverse asymmetry

(each valuable and competitive measurements on their own)

See: R. Carlini, Session 3G

Electroweak Radiative Corrections

	Source QP _{Weak} Uncertainty				
	$\Delta \sin \theta_W (M_Z)$:	±0.0006		
	Zγ box Δ sin θ _W (Q) _{hadronic} WW, ZZ box - pQC Charge symmetry	D :	±0.0003 ±0.0001 0	Erler, Kurylov, Ramsey-Muso PRD 68(2003)016006.	
	Total	:	±0.0008	(C. <i>t.</i> Q ^p _{weak} ≈ 0.07)	
				``````````````````````````````````````	
Estima	ates of $Z\gamma$ box diagram of	n Q ^p _{weak}	(at our kin	ematics)	
Gorch	n <b>tein &amp; Horowitz</b> Phys. Rev. Lett. 102, 091806 (200	9)	~ 7%		
Sibirts	<b>sev, Blunden, Melnitchouk,</b> Phys. Rev. D 82, 013001 (2010)	Thomas	+1.5% <b>6.6</b> -0.6%		
Rislov	<b>v and Carlson</b> arXiv:1011.2397		8.0 ± 1.3%	See: C. Carlson, Session 1A	
<b>Gorch</b> t a	<b>tein, Horowitz, Ramsey-Mus</b> rrXiv:1102:3910	olf	7.6 ± 2.8%		

E08-011 Measurement of PV Asymmetry in e-D Deep Inelastic Scattering (PVDIS) Using a 6 GeV Beam at JLab

e-D PVDIS asymmetry:

$$A_{d} = (540 \ ppm)Q^{2} \frac{2C_{1u}[1 + R_{c}(x)] - C_{1d}[1 + R_{s}(x)] + Y(2C_{2u} - C_{2d})R_{v}(x)}{5 + R_{s}(x) + 4R_{c}(x)}$$

Standard Model Neutral Weak Couplings:  $C_{1q} = g_A^e g_V^q \qquad C_{2q} = g_V^e g_A^q$  $R_s(x) = \frac{2[s(x) + \bar{s}(x)]}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)} \qquad R_c(x) = \frac{2[c(x) + \bar{c}(x)]}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)} \qquad R_v(x) = \frac{u_v(x) + d_v(x)}{u(x) + \bar{u}(x) + d(x) + \bar{d}(x)}$ 

- E08-011: measured A_d at Q²=1.1 and 1.9 GeV², to statistical precision of 3% and 4%, respectively.
  - 100 microA, 90% polarized beam
  - 20-cm LD2 target, two standard spectrometers collecting electrons independently.
  - Custom-built scaler-counting DAQ with hardwarebased PID to accommodate ~500kHz rate
  - Ran in October-December 2009, expect to unblind the asymmetries by end of 2011.

See: Kai Pan, Session 1A

Thank you, X. Zheng

#### Expected Results on $C_{2q}$ from E08-011 all are 1 $\sigma$ limit



# **MOLLER** Apparatus



K. Kumar

Polarized Beam

- Unprecedented polarized luminosity
- unprecedented beam stability

#### Liquid Hydrogen Target

- 5 kW dissipated power (2 X Qweak)
- computational fluid dynamics
- * Toroidal Spectrometer
  - Novel 7 "hybrid coil" design
  - warm magnets, aggressive cooling
  - Integrating Detectors
    - build on Qweak and PREX
    - intricate support & shielding
    - radiation hardness and low noise

compact structure: plan to make apparatus and sheilding easily removable The MOLLER Project at Jefferson Laboratory

# **SoLID Spectrometer**

Gas Cerenkov Shashlyk Calorimeter Solenoidal detector for PVDIS at high x 5300 S 200 100 LH target 0 **Baffles** ANL design -100 -200 -300 400 -100 0 100 200 30 -400 -300 -200 Z, cm **GEM's** International Collaborators: China (Gem's) Italy (Gem's) JLab/UVA prototype Germany (Moller pol.) 35

**Babar Solenoid** 

# New project: P2

- Measurement of the weak charge of the proton at low Q²~0.0022 GeV²
- New detector
- Enhanced polarimetry (Brute force Moller, Double Mott => Mainz 0.5)
- Beam energy 137 MeV (low theoretical uncertainties due to two-boson-exchange)
- Precision goal:  $\Delta \sin^2 \Theta_w = 0.0003$  (1%)
- Time scale: 2015 2020



Thank you, S. Baunack.



**Outlook on sin^2\theta_{w}** 



In different TeV-scale new physics scenarios, the future points could be scattered about, ...even appearing on different sides of the curve!

#### **Summary**

- Parity-violating electron scattering is a useful tool to study hadron structure and to probe new physics beyond the standard model.
- The field is in an exciting period where past investments in the use of this technique for structure studies are transitioning to precision measurements of standard model parameters.
- Complementary to other neutral-current techniques (please come to session 3G, this afternoon)
- There are many opportunities and a long-term future in this exciting field.

#### Acknowledgments

- Thank you to:
  - D. Armstrong, S. Baunack, P. King, K. Kumar, J. Leacock, F. Maas, K. Paschke, M. Pitt, P. Souder, and X. Zheng for providing slides and information.