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ADDING SUB-HOURLY OCCUPANCY PREDICTION, OCCUPANCY-SENSING CONTROL AND 
MANUAL ENVIRONMENTAL CONTROL TO WHOLE-BUILDING ENERGY SIMULATION 

 
Denis Bourgeois, Jon Hand, Iain Macdonald, Christoph Reinhart 

ABSTRACT 

A wide range of events in buildings occur at sub-hourly frequencies. Notable examples include 
daylight-sensing control and manual adjustment of blinds and lights in response to sub-hourly 
illuminance variations. Such short-term changes can produce notable shifts in instantaneous solar and 
equipment loads, in turn affecting electrical energy demand. Although sub-hourly time discretization is 
currently available in several whole building energy simulation programs, it remains challenging to 
model this level of complexity as traditional hourly utilization or diversity profiles describing occupancy, 
lighting and equipment loads remain the basic input data model. This paper provides a background 
review of models predicting occupancy, occupancy-sensing control and manual environmental control, 
and outlines their current addition to whole building energy simulation, in particular ESP-r. 

INTRODUCTION 

Sub-hourly time discretization presents an opportunity to reconsider several existing assumptions 
in building energy simulation. An example is the use of hourly meteorological input data. Walkenhorst 
et al. (2002) demonstrate that the predicted annual artificial lighting demand can be underestimated by 
up to 27% if daylighting simulations are based on 1-hour means instead of 1-min means of measured 
beam and diffuse irradiances. To this end, an adapted Skartveit and Olseth (1992) stochastic model, 
deriving short-term fluctuations from hourly time series irradiance data, is found in DAYSIM (Reinhart 
2001), a RADIANCE-based (Ward 1994; Ward Larson et al. 1998) dynamic daylight simulation 
method. Similar work is described in Janak and Macdonald (1999). Analogous work on stochastic 
modelling of short term wind velocity fluctuations is presented by Marques da Silva and Saraiva 
(2002). A number of these models should likely find their way in larger whole building energy 
simulation programs in the near future. 

This paper deals with another assumption that may need revising in the light of sub-hourly time 
discretization: how occupancy-related input data models are defined and used in whole-building 
energy simulation. Although whole building energy simulation programs such as ESP-r (ESRU 1999; 
Clarke 2001) or EnergyPlus (Crawley et al. 2001) offer sub-hourly simulation time-steps, diversity 
profiles of occupancy and related internal gains, such as lighting and equipment, constitute the main 
input data model; a solution passed down from the previous generation of hourly simulation programs. 
It is nevertheless possible in ESP-r to access sub-hourly input data through external files or 
databases, but this approach is usually appropriate for short, detailed test cell studies with measured 
data. There are at least three major impediments to extending the use of this approach to annual 
energy simulations: 

1. this would require pre-configuring data for many variables (various casual gains, optical sets for 
multiple window/blind configurations, etc.) for multiple zones, a risky and time-consuming exercise; 

2. the approach is essentially limited to input of meteorological, casual gain and mass flow data, i.e. 
other external variable input is simply not possible without major changes to the source code; and 
most importantly, 

3. the approach does not allow control over input, a potentially desirable option notably in cases where 
control might depend on the state of certain variables known only at run-time, e.g. room air 
temperature. As sub-hourly discretization increasingly becomes the norm, a more robust and 
integrated solution seems desirable. 
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BACKGROUND 

Dynamic building energy simulation customarily requires input of casual gain loads, typically 
comprising metabolic heat discharged from occupants, as well as from lighting and equipment 
receptacle loads. Absenteeism, occupant environmental preference and energy management features 
of various office equipment, are well-known factors that influence casual gain variations. Output 
variability is ordinarily defined by associating different sets of 24-hour diversity factors for weekdays, 
weekends, holidays, etc. to the maximum load of each end-use (occupants, lighting, equipment, etc.). 

Diversity factors are numbers between zero and one, and are used as multipliers of the user-
defined maximum. Some simulation programs use variants of this widely-used technique: ESP-r for 
instance requires profiles of actual loads expressed in W or W/m², instead of diversity factors of some 
nominal load. Many energy standards and codes either provide, or refer to, typical diversity profiles for 
performance-based compliance demonstrations (MNECB 1997; ASHRAE 90.1 2001). Abushakra et 
al. (2004) provide an overview of existing methods for deriving diversity profiles. 

Diversity profiles are often adequate as average input data models for large thermal zones 
containing multiple spaces. Using sub-hourly occupancy input loads (i.e. metabolic heat discharged by 
occupants), rather than hourly loads, would typically have little outcome on annual energy simulation 
results, given the thermal lag of building mass and mechanical systems. If daily patterns of lighting 
and office equipment use in a given building follow a typical trend for a given set of day-types (e.g. if 
lights and office equipment are solicited independently of weather patterns), then the impact of using 
sub-hourly input data would remain equally trivial on annual energy requirements. 

Recent developments in this area include findings from the ASHRAE Research Project 1093 
(Abushakra et al. 2001). The goal of ASHRAE RP-1093 was to compile a library of schedules and 
diversity factors based on measured electricity consumption data for use in energy simulations and 
peak cooling load calculations in office buildings. This research project derived multiple sets of 
diversity factors from measured lighting and receptacle loads in 32 office buildings (Claridge et al. 
2004). Occupancy was not monitored under RP-1093, yet another study from Claridge et al. (2001) 
established a strong correlation between observed occupancy levels and lighting loads, suggesting 
that valid occupancy diversity profiles may be derived from lighting diversity profiles using linear 
regression. 

One significant shortcoming of the RP-1093 diversity profiles, or any other similarly-derived profiles 
for that matter, is that they are derived independently of weather data. This may be a valid assumption 
when considering core zones, but hardly so for perimeter zones with either manual or daylighting 
controls, or a mix of both: for given occupancy levels and daylight illuminances, two differently-
oriented perimeter zones will clearly possess very distinct lighting loads if daylighting and/or manual 
control are available. Correlating occupancy from these lighting profiles would lead to obvious errors. 
Yet as many North American buildings have very low envelope-to-floor area ratios, these errors may 
be considered by some to be minor and applying diversity profiles (including occupancy) derived from 
monitored core zone lighting consumption may be considered acceptable. However, in cases where 
greater envelope-to-floor area ratios are found, or even in some cases where there are no core zones, 
the use of general diversity profiles may be difficult to justify. This would certainly be the case for 
building designs aiming at high daylight autonomy levels and/or offering outside views to most 
occupants, such as suggested by certain daylighting design guides or required by similar standards 
(DIN 5034 1999; DGCCB 2002). 

Other studies have shown that the use of hourly diversity profiles can lead to considerable errors 
when applying control strategies that are quite sensible to short-term variations in occupancy. 
Degelman (1999) suggests that fixed lighting profiles generate misleading information regarding 
electric demand charges when occupancy-sensing lighting controls are used, and puts forth a Monte 
Carlo approach to space occupancy prediction based on survey statistics, enhancing the accuracy of 
electrical energy demand estimation. 

Keith (1997) demonstrates how average profiles lead to overestimations of electrical energy 
savings and demand reduction through occupancy-sensing controls, which in turn lead to 
underestimations of heating loads for various U.S. locations. Keith proposes an on-line, field-based 
tool that modifies standard DOE-2.1E (Winkelmann et al. 1993) weekly profiles to introduce peakdays, 
thereby enhancing monthly peak demand estimations without increasing simulated energy 
consumption. 
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Newsham et al. (1995) describe a first version of the LIGHTSWITCH stochastic occupancy model, 
based on field data, to predict arrival, departure and temporary absence probabilities of individual 
occupants in office environments at 5-minute intervals. The short time-step accuracy of 
LIGHTSWITCH provides more realistic artificial lighting use as a function of daylighting and 
occupancy-sensing controls. Newsham et al. suggest carrying out multiple runs of LIGHTSWITCH to 
produce average lighting diversity profiles for DOE-2.1E.  

Another misleading occupancy-related assumption in building energy simulation is that occupants 
are often considered as "fixed metabolic heat generators passively experiencing the indoor 
environment" (Newsham 1994). Occupants instead respond to various environmental stimuli, which 
can trigger sudden manual changes in window blind settings and artificial light use, in turn affecting 
electrical energy use and demand. To this end, an adapted version of LIGHTSWITCH has been 
integrated into DAYSIM to predict short-term stochastic manual blind and artificial lighting control, 
closely linked to LIGHTSWITCH-predicted stochastic variations in occupancy. LIGHTSWITCH 
integrates a number of field-based occupant response probabilistic control laws for specific 
combinations of blind settings, daylighting controls and lighting control systems. Assumptions 
underlying the model are currently being validated and refined through a series of field studies which 
are carried out within the International Energy Agency’s Task 31, Daylighting Buildings in the 21st 
Century (http://www.iea-shc.org/task31/index.html). 

LIGHTSWITCH evidently provides DAYSIM with more realistic predictions of electrical energy 
savings and demand reduction. Yet even such an integrated approach has its drawbacks: the annual 
performance assessment of daylighting solutions and advanced lighting controls in DAYSIM is done in 
isolation from other related building and system domains. Manual changes in window blind settings for 
glare control, as well as manual adjustments in electric light use, will produce notable short-term 
changes in solar and internal gains, and eventually indoor climate control. Behavioural models 
predicting operable window use and eventually task-ambient conditioning systems (Morrow 1995; 
Arens et al. 1998) are also dependent on occupancy and their control may prove to be as significant in 
whole building energy simulation. 

SCOPE OF WORK 

The current development consists of a suite of occupancy-based predictive models (i.e. child 
processes) to be accessed at run-time by whole-building energy simulation programs (i.e. parent 
process). At the core is an occupancy predictive model, capable of tracking individual occupants within 
individual spaces. The LIGHTSWITCH occupancy model will be used in the current development as 
the default occupancy prediction model. Instead of defining diversity profiles for occupancy, individual 
occupancies are defined through probabilistic calculations of arrival, departure and intermediate 
absenteeism (Reinhart 2001). 

The second set of models called at run-time adjusts occupancy-sensing casual gains (e.g. 
occupancy-sensing lighting, task lighting, personal computers (PCs), etc.). Delay periods and multi-
stage power down profiles, as defined in most PCs (Roberson et al. 2002), are made available. 
Individual loads are either controlled based on any occupancy levels in a given room (e.g. as with 
occupancy-sensing lighting) or individual occupancies (e.g. as with PCs). 

The last set of models accessed at run-time consists of field-based predictive algorithms describing 
occupant response and control over various environmental settings, namely window blind and artificial 
lighting use (Reinhart 2001). A similar operable window control model is added within the scope of the 
principal author's PhD thesis. 

A modular plug-and-play approach is favoured to facilitate future code updating, as model 
assumptions are continually revised over time: future researchers/developers well-versed in coding 
behavioural models would likely feel more comfortable adding future facilities (i.e. child processes), 
without the requirement of mastering whole-building energy simulation programs. Notable 
contributions in building behavioural models include research from the Low Energy Architecture 
Research Unit (LEARN) (Nicol 2001). 

HOW IT WORKS IN ESP-r 

As mentioned previously, ESP-r is the chosen whole-building energy simulation program for the 
current development. As stated previously, ESP-r typically requires user-defined hourly diversity 
profiles of various casual gain input, e.g. occupancy, lighting and equipment loads. Lighting gains are 
optionally controlled at run-time in ESP-r, based on several available daylighting models (e.g. daylight 
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factors, RADIANCE-based daylight coefficients or direct coupling, etc.) and a number of related 
control laws. It is worth mentioning however that lighting output would evidently remain unchanged 
during the course of an hour if controls are based on traditional input parameters (e.g. hourly solar 
irradiance time series data). As suggested previously, sub-hourly control of lighting is possible if sub-
hourly irradiance data are obtainable and used as input in direct ESP-r/RADIANCE daylight coefficient 
or direct coupling approaches (Janak 1997). To correct this for hourly climate time series data, the 
ongoing development includes the addition of the Skartveit and Olseth (1992) stochastic model for 
deriving short-time fluctuations, as found in DAYSIM (Reinhart 2001). 

Figure 1 provides a flow chart representation of the occupancy-related models that update short-
term casual gain input and environmental control at run-time, and in the case of manual blind and light 
control, interact with ESP-r's daylighting models. Fields in grey indicate on-going developments, while 
the white areas represent potential future alternatives. Most loads found in individual office 
environments may be predicted using this technique. If certain load variations are difficult to describe 
based on simple occupancy patterns (i.e. vacant or occupied) such as the output of local pumps or 
fans or even standard office equipment such as photocopiers (the relationship between output and 
occupancies is likely more complex), then one may fall back on traditional diversity profiles. 

At run-time, various subroutine calls are carried out within the ESP-r integrated simulator to load 
future time-row casual gain input data in common data structures (a more detailed presentation of 
ESP-r simulation is found at the Energy Systems Research Unit (ESRU) main web page - 
http://www.esru.strath.ac.uk/). The current development introduces new object-type data structures to 
store future time-row occupancy-specific data for every zone, such as occupancy levels (e.g. the 
current number of individuals within individual thermal zones); the state of occupancy-sensing controls 
(e.g. on/off for lighting, ratios of maximum power for office equipment, etc.); the state of blinds (e.g. 
settings 1, 2, 3, etc.); lights (e.g. ratios of maximum power); windows (e.g. ratios of maximum free 
area); and finally counters for future events (e.g. the number of time-steps before forthcoming arrivals 
or departures, delay times for occupancy-sensing controls, etc.). 

At each time step, the ESP-r integrated simulator first checks if occupancy-related control is 
required within the simulation and then occupancy levels are subsequently updated, followed by 
adjustments to occupancy-sensing controlled equipment and fixtures, if required. The state of blinds, 
lights and windows are in turn updated, again if required. The ESP-r integrated simulator continues 
with simulation operations and uses the generated occupancy-specific data, as either multipliers or 
flags, to control the state of predefined casual gains or adjust various controls. The process begins 
again at the next time step. 

CONTRIBUTION 

The purpose of the current development is to explicitly take into account the whole-building energy 
simulation impact of short term occupancy variations and user preferences of various environmental 
settings. This impact may be more significant in certain cases than in others: as the influence of 
external boundary conditions is more greatly felt in buildings with high envelope-to-floor area ratios, 
the impact of manual control of blinds, lights and operable windows affecting energy and mass flows 
across building envelopes will clearly be more significant. 

Not only are savings in energy requirements more reliably predicted by taking into account the 
human variable, but monthly peak power demand estimation is greatly enhanced. This is 
opportunistic, as ESP-r currently offers detailed network electrical power flow modeling (Kelly 1998). 
Monthly peak demands are significant factors to consider, not only in regards to energy cost 
estimation, but in environmental terms as well. 

The addition of the LIGHTSWITCH stochastic manual blind and lighting model to ESP-r in 
particular offers simulation a more realistic input of occupant behaviour in regards to daylighting glare. 
Prediction of glare and the subsequent manual blind adjustments to remedy the situation would be 
quite helpful at run-time, constituting a practical yardstick for distinguishing good from poor daylighting 
designs, as well as passive solar energy harvesting concepts within occupied environments: a present 
shortcoming of existing tools. Furthermore, the stochastic operable window model would be useful for 
investigating the potential contribution of adaptive comfort models (de Dear et al. 1998; Humphreys et 
al. 1998; Hensen et al. 2001). 
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Figure 1 
Flow chart representation of sub-hourly occupancy-related models that update casual gain 

input and environmental control at run-time. 
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FUTURE ENHANCEMENTS 

One of the shortcomings of the current research described in this paper is the limited occupancy 
prediction capabilities. As indicated earlier, all previous occupancy-related control models are 
dependent on sub-hourly occupancy prediction. Previous field studies have amassed a collection of 
databases on occupancy patterns in office environments (Newsham et al. 1995; Keith 1997; 
Degelman 1999; Reinhart 2001), yet it is unclear for the moment how all or some of the data may, or 
should, be integrated within a single predictive model. Although the proposed suite of tools is capable 
of integrating several probabilistic calculation methods for predicting occupancy, a simpler version of 
the LIGHTSWITCH stochastic occupancy model, requiring minimum input, is added for the moment as 
the default model in ESP-r. 

The wish list of future developments, i.e. beyond the scope of the current research project, includes 
addressing the increasingly complex occupancy patterns found in office environments. Occupants 
tend to stray away from the traditional 9-to-5/five-day work week. They have flexible work hours, 
working earlier or later in the day, and even on weekends. They equally have the option of 
occasionally working outside their usual office environment, typically at home. Certain worker profiles 
have never shared the pattern of routine office occupancy to start with: salespeople, university faculty 
and research personnel are renowned for their mobility and their daily use of multiple spaces (e.g. 
university professors are likely to spend as much time in the office, in classrooms, in laboratories, in 
the field, on the conference circuit, etc.). 

If short-term predictive occupancy models are to constitute the general basis for future short-term 
occupancy-based controls in whole building energy simulation, additional modeling facilities will be 
required for tracking project-specific intra- and inter-building population movement, providing in turn 
zone-specific occupancy probabilities at run-time. Discrete event simulation is an interesting avenue 
for future developments in this area (Nassar et al. 2003). 
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