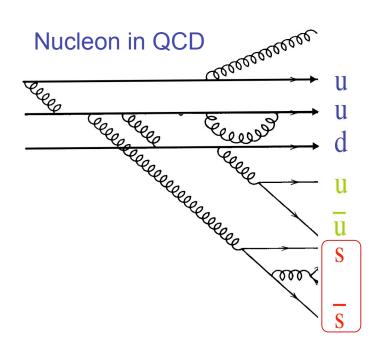

Parity-Violating Electron Scattering on Hydrogen and Deuterium at Backward Angles: GO Experiment

David S. Armstrong
College of William & Mary

For the GO Collaboration

PAVI 09 Bar Harbor MA June 22-26 2009


Outline

- Parity violation in electron scattering
- Vector Strange Form Factors: G_E^s and G_M^s
- Experimental Effort
- Results from GO at backward angles:
 - Separated form factors at $Q^2 = 0.23$, $0.63 (GeV/c)^2$
 - Other physics results
- Implications & Conclusions

"There is no excellent beauty that hath not some strangeness in the proportion"

Francis Bacon 1561-1626

Strangeness in the nucleon

•
$$P = uud + u\overline{u} + d\overline{d} + s\overline{s} + g + \dots$$

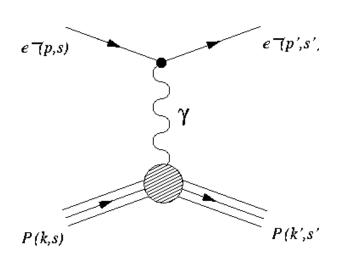
« sea »

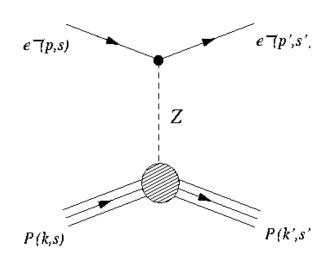
- s quark: clean candidate to study the sea
- How much do virtual $S\overline{S}$ pairs contribute to the structure of the nucleon ?

Momentum: 4% (DIS)

Spin: 0 to -10% (polarized DIS)

Mass: 0 to 30% (π N-sigma term)


(significant uncertainties on the latter two)


also: OZI violations in
$$p\overline{p} \rightarrow \frac{\phi \gamma}{\omega \gamma}$$

Goal: Determine the contributions of the strange quark sea ($S\overline{S}$) to the charge and magnetization distributions in the nucleon :

Vector "strange form factors": G_E^s and G_M^s

Parity Violating Electron Scattering Weak NC Amplitudes

Interference: $\sigma \sim |M^{EM}|^2 + |M^{NC}|^2 + 2Re(M^{EM*})M^{NC}$

Interference with EM amplitude makes Neutral [[] Current (NC) amplitude accessible

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{\left| M_{PV}^{NC} \right|}{\left| M^{EM} \right|} \sim \frac{Q^2}{\left(M_Z \right)^2}$$

Small (~10⁻⁶) cross section asymmetry isolates weak interaction

Nucleon Form Factors

Adopt Sachs FF:

$$G_E^{\gamma} = F_1^{\gamma} + \tau F_2^{\gamma} \qquad G_M^{\gamma} = F_1^{\gamma} + F_2^{\gamma}$$

$$G_M^{\gamma} = F_1^{\gamma} + F_2^{\gamma}$$

(Roughly: Fourier transforms of charge and magnetization)

NC and EM probe same hadronic flavor structure, with different couplings:

$$G_{E/M}^{\gamma} = \frac{2}{3} G_{E/M}^{u} - \frac{1}{3} G_{E/M}^{d} - \frac{1}{3} G_{E/M}^{s}$$

$$G_{E/M}^{Z} = \left(1 - \frac{8}{3}\sin^{2}\theta_{W}\right)G_{E/M}^{u} - \left(1 - \frac{4}{3}\sin^{2}\theta_{W}\right)G_{E/M}^{d} - \left(1 - \frac{4}{3}\sin^{2}\theta_{W}\right)G_{E/M}^{s}$$

 $G^{Z}_{F/M}$ provide an important benchmark for testing non-perturbative QCD structure of the nucleon

Charge Symmetry

One expects the neutron to be an isospin rotation of the proton*:

$$G_{E/M}^{p,u} = G_{E/M}^{n,d}, \qquad G_{E/M}^{p,d} = G_{E/M}^{n,u}, \qquad G_{E/M}^{p,s} = G_{E/M}^{n,s}$$

$$G_{E/M}^{\gamma,p} = \frac{2}{3}G_{E/M}^{u} - \frac{1}{3}G_{E/M}^{d} - \frac{1}{3}G_{E/M}^{s} \longrightarrow G_{E/M}^{\gamma,n} = \frac{2}{3}G_{E/M}^{d} - \frac{1}{3}G_{E/M}^{u} - \frac{1}{3}G_{E/M}^{s}$$

$$G_{E/M}^{\gamma,p} = \frac{2}{3}G_{E/M}^{d} - \frac{1}{3}G_{E/M}^{u} - \frac{1}{3}G_{E/M}^{s} - \frac$$

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \propto \frac{M_Z M_{\gamma}}{\left| M_{\gamma} \right|^2} = -\frac{G_F Q^2}{\sqrt{2}\pi\alpha} F(G_{E/M}^p, G_{E/M}^n, G_{E/M}^s, G_A)$$

^{*} recent work: B. Kubis & R. Lewis Phys. Rev. C 74 (2006) 015204

Isolating individual form factors: vary kinematics or target

For a proton:

$$A = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{A_E + A_M + A_A}{\sigma_p} \qquad \text{~few parts per million}$$

$$A_E = \varepsilon G_E^p G_E^Z, \qquad A_M = \tau G_M^p G_M^Z, \qquad A_A = -\left(1 - 4\sin^2\theta_W\right) \varepsilon G_M^p G_A^e$$

Forward angle Backward angle

$$G_{E,M}^{Z} = (1 - 4\sin^{2}\theta_{W})(1 + R_{V}^{p})G_{E,M}^{p} - (1_{3} + R_{V}^{n})G_{E,M}^{n} - G_{E,M}^{s}$$

$$G_{A}^{e} = -\tau_{3}(1 + R_{A}^{T=1})G_{A} + \sqrt{3}R_{A}^{T=0}G_{A}^{s} + \Delta s$$

For ⁴He: G_F^s alone

$$A_{PV} = \frac{G_F Q^2}{\pi \alpha \sqrt{2}} \left[\sin^2 \theta_W + \frac{G_E^s}{2(G_E^p + G_E^n)} \right]$$

$$A_d = \frac{\sigma_p A_p + \sigma_n A_n}{\sigma_e^s}$$

For deuteron:

enhanced G_A^e sensitivity

$$A_d = \frac{\sigma_p A_p + \sigma_n A_n}{\sigma_d}$$

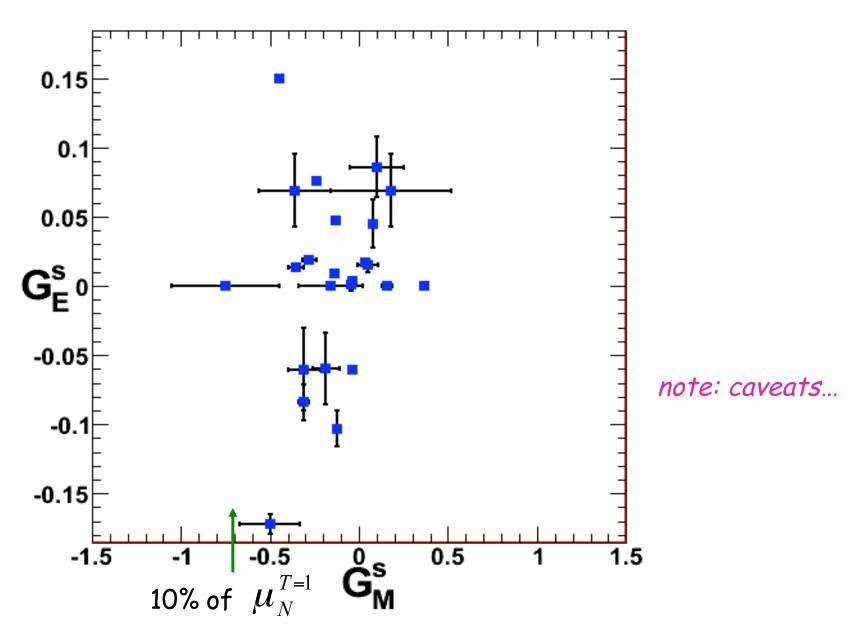
Theoretical Approaches to Strange Form Factors

Models - a non-exhaustive list:

kaon loops, vector dominance, Skyrme model, chiral quark model, dispersion relations, NJL model, quark-meson coupling model, chiral bag model, HBChPT, chiral hyperbag, QCD equalities, ...

- no consensus on magnitudes or even signs of $G_{\scriptscriptstyle E}^{\scriptscriptstyle S}$ and $G_{\scriptscriptstyle M}^{\scriptscriptstyle S}$!

Only model-independent statement: $G_E^s(Q^2=0)=0$


$$G_E^s(Q^2=0)=0$$

a challenging problem in non-perturbative QCD

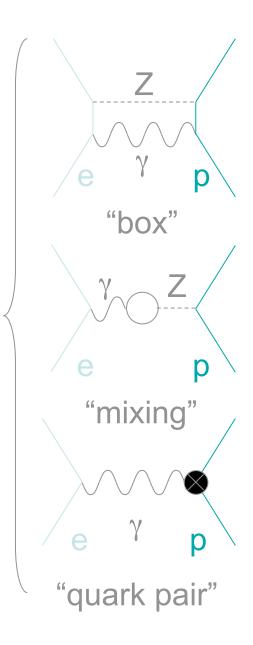
What about QCD on the lattice?

- Dong, Liu, Williams PRD **58**(1998)074504
- Lewis, Wilcox, Woloshyn PRD 67(2003)013003
- Leinweber, et al. PRL 94(2005) 212001; PRL 97 (2006) 022001 situation is unsettled

Strangeness Models

The Axial Current Contribution

· Recall:


$$A^{PV} \propto \frac{A_E + A_M + A_A}{2\sigma_{unp}}$$

$$A_{E} = \varepsilon(\theta) G_{E}^{\gamma} G_{E}^{Z}, A_{M} = \tau G_{M}^{\gamma} G_{M}^{Z}$$

$$A_{A} = -\left(1 - 4\sin^{2}\theta_{W}\right) \varepsilon'(\theta) G_{M}^{\gamma} G_{A}^{e}$$

$$G_{A}^{e} = -\tau_{3}(1 + R_{A}^{T=1})G_{A} + \sqrt{3}R_{A}^{T=0}G_{A}^{8} + \Delta s$$

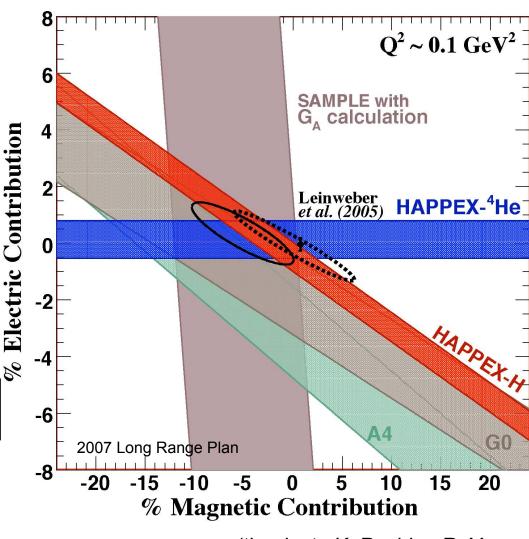
- Effective axial form factor: $G_A^e(Q^2)$
- related to form factor measured in neutrino scattering
- also contains "anapole" form factor
- determine isovector piece by combining proton and neutron (deuteron) measurements

Parity-Violating Electron Scattering Program

Expt/Lab	Target/	Q^2	A _{phys}	Sensitivity	Status
SAMPLE/Bates	Angle	(GeV ²)	(ppm)		
SAMPLE I	LH ₂ /145	0.1	-6	μ_{s} + 0.4 G_{A}	2000
SAMPLE II	LD ₂ /145	0.1	-8	μ_s + 2G _A	2004
SAMPLE III	LD ₂ /145	0.04	-4	μ_s + 3G _A	2004
HAPPEx/JLab					
HAPPEx	LH ₂ /12.5	0.47	-15	$G_{E} + 0.39G_{M}$	2001
HAPPEx II, III	LH ₂ /6	0.11	-1.6	$G_E + 0.1G_M$	2006, 2007
HAPPEx He	⁴ He/6	0.11	+6	G_E	2006, 2007
HAPPEx	LH ₂ /14	0.63	-24	$G_E + 0.5G_M$	(2009)
A4/Mainz					
	LH ₂ /35	0.23	-5	$G_E + 0.2G_M$	2004
	LH ₂ /35	0.11	-1.4	$G_E + 0.1G_M$	2005
	LH ₂ /145	0.23	-17	$G_E + \eta G_M + \eta' G_A$	2009
	LH ₂ /35	0.63	-28	$G_E + 0.64G_M$	(2009)
G0/JLab					
Forward	LH ₂ /35	0.1 to 1	-1 to -40	$G_E + \eta G_M$	2005
Backward	LH ₂ /LD ₂ /110	0.23, 0.63	-12 to -45	$G_E + \eta G_M + \eta' G_A$	2009

Summary of data at $Q^2 = 0.1 \text{ GeV}^2$

Solid ellipse:


K. Pashke, private comm, [same as J. Liu, et al PRC 76, 025202 (2007)], uses theoretical constraints on the axial form factor

Dashed ellipse:

R. Young, et al. PRL 97 (2006) 102002, does not constrain G_A with theory

note: Placement of SAMPLE band on depends on choice for G_A

% contrib =
$$\frac{G_{E,M}^s}{G_{E,M}^p} \times \left(-\frac{1}{3}\right) \times 100$$

(thanks to K. Pashke, R. Young)

GO Collaboration

California Institute of Technology, Carnegie Mellon University,
College of William and Mary, Grinnell College,
Institut de Physique Nucléaire d'Orsay,
Laboratoire de Physique Subatomique et de Cosmologie-Grenoble,
Louisiana Tech University, New Mexico State University, Ohio University,
Thomas Jefferson National Accelerator Facility, TRIUMF, University of Illinois,
University of Kentucky, University of Manitoba, University of Maryland,
University of Winnipeg, University of Zagreb, Virginia Tech,
Yerevan Physics Institute

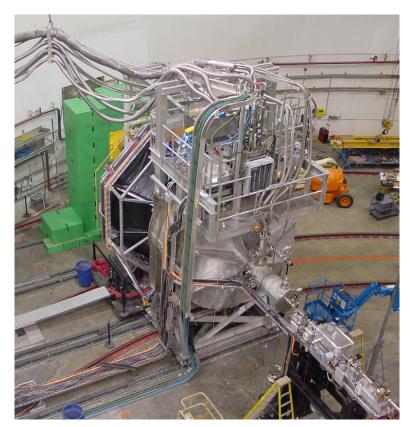
Graduate Students:

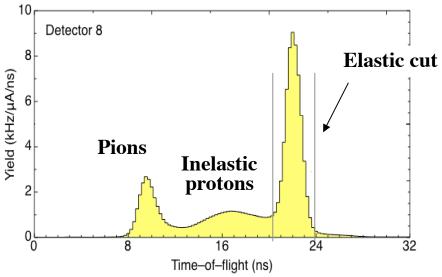
C. Capuano (W&M), A. Coppens (Manitoba), C. Ellis (Maryland), J. Mammei (VaTech), M. Muether (Illinois), J. Schaub (New Mexico State), M. Versteegen (Grenoble); S. Bailey (Ph.D. Jan. 07 W&M)

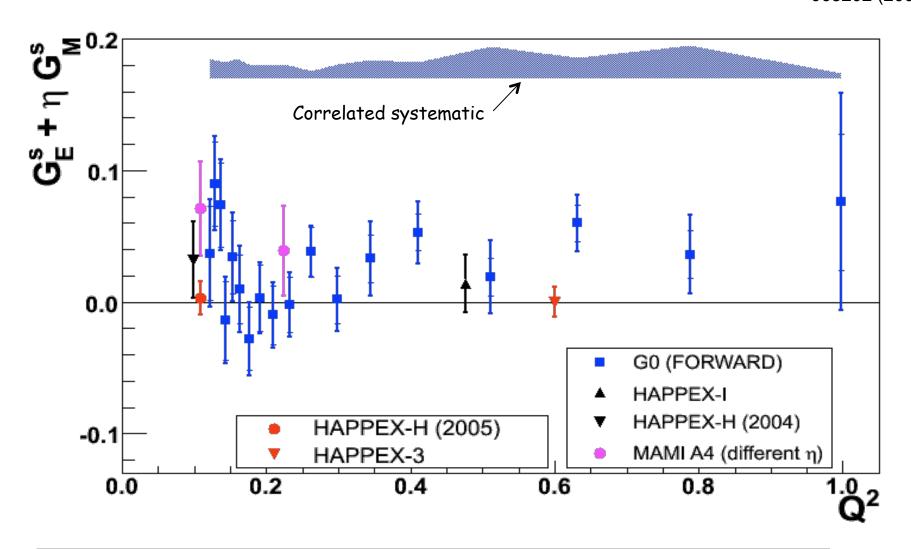
Analysis Coordinator: Fatiha Benmokhtar (Maryland & CMU)
Spokesperson: Doug Beck (UIUC)

GO Collaboration

California Institute of Technology, Carnegie Mellon University,
College of William and Mary, Grinnell College,
Institut de Physique Nucléaire d'Orsay,
Laboratoire de Physique Subatomique et de Cosmologie-Grenoble,
Louisiana Tech University, New Mexico State University, Ohio University,
Thomas Jefferson National Accelerator Facility, TRIUMF, University of Illinois,
University of Kentucky, University of Manitoba, University of Maryland,
University of Winnipeg, University of Zagreb, Virginia Tech,
Yerevan Physics Institute

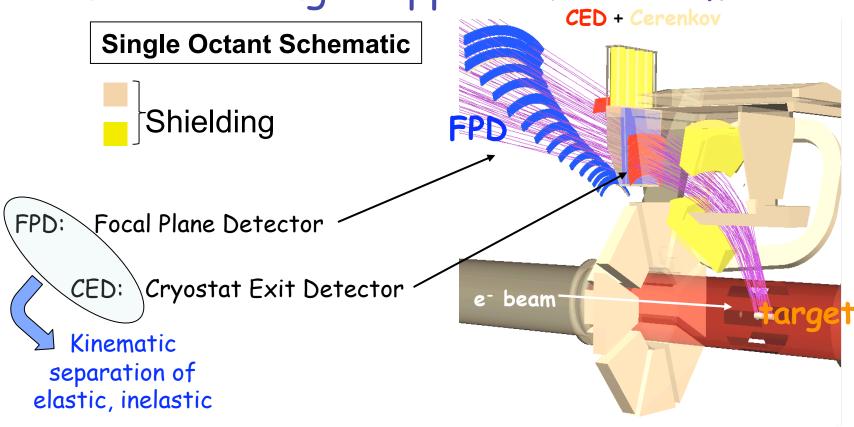


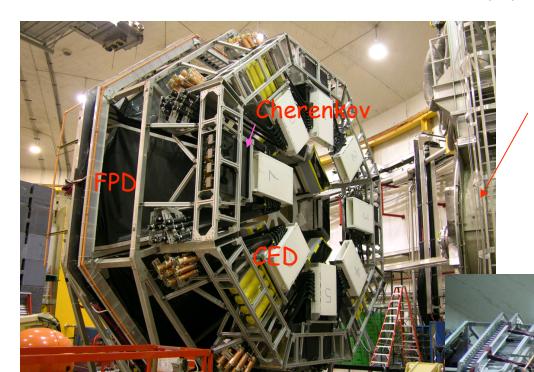

G⁰ (JLab - Hall C)


- Superconducting toroidal magnetic spectrometer
- 16 "Rings" of detectors

Forward angle mode (completed):

- LH₂: $E_e = 3.0 \text{ GeV}$ Recoil proton detection (52° < θ_p < 76°) • 0.12 \(\text{Q}^2 \) \(\text{1.0} \) (GeV/c)²
- Counting experiment separate
 backgrounds via time-of-flight



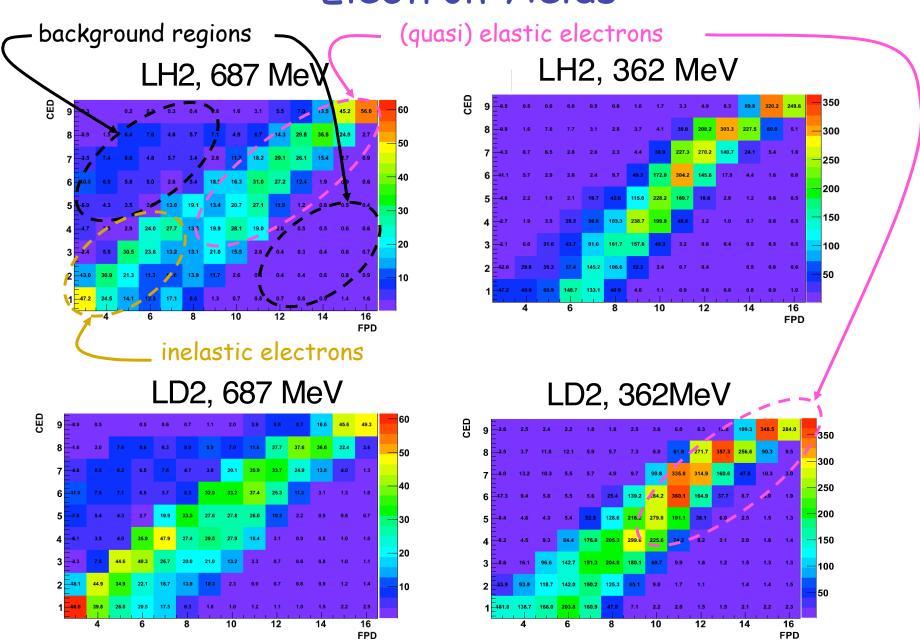

 $G_E^s = G_M^s = 0$ Hypothesis excluded at 89% C.L.

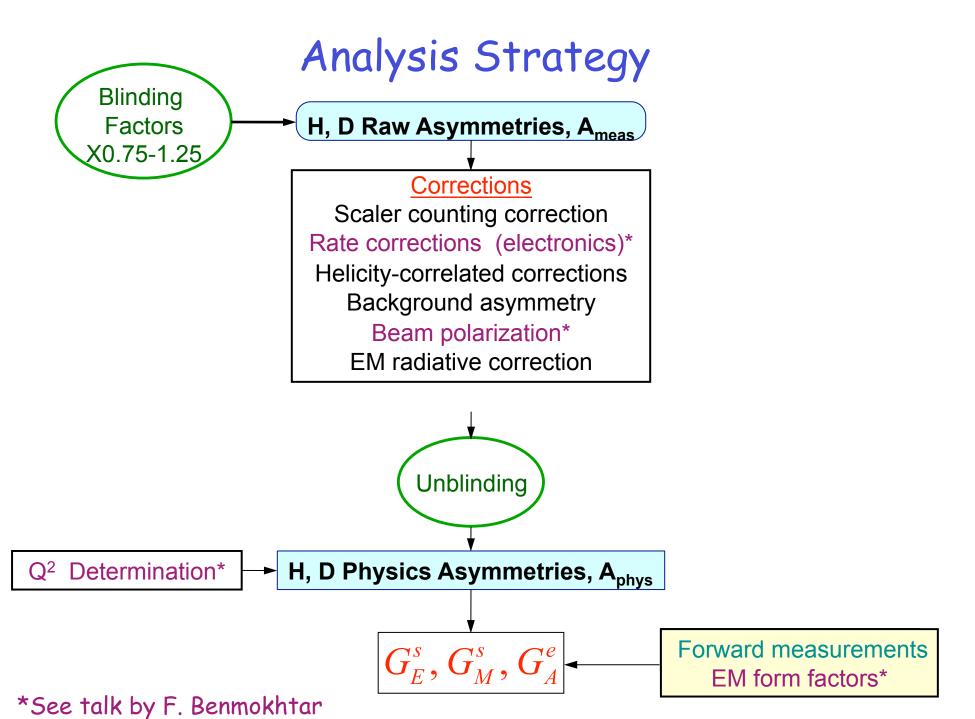
GO Back Angle Apparatus: schematic

- Polarized electron beam at 362, 687 MeV, I \sim 20-60 μ A
- Target: 20 cm LH₂, LD₂
- Elastic, inelastic scattering at ~108°, $\Delta\Omega$ ~ 0.5 sr
- · Electron/pion separation using aerogel Cerenkov

Back Angle Apparatus

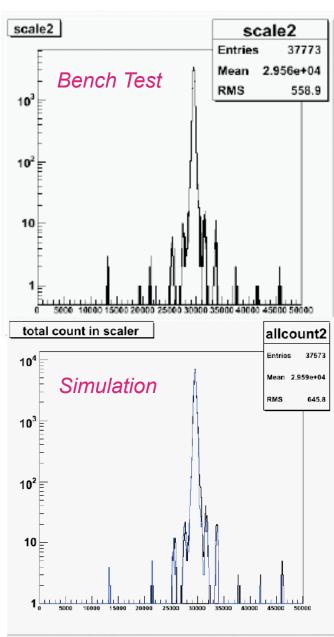
Superconducting Magnet


FPD (1 octant)



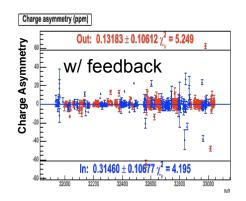
Target system installation

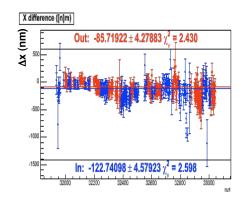
Detector package

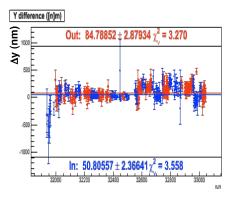

Electron Yields

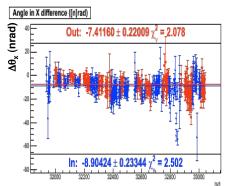
Scaler Counting Problem

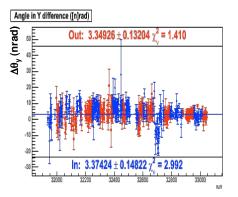
- Electronics sorts detector coincidences
 (CED; and FPD;) into separate scaler channels
 - FPGA-based system in North American electronics (4 octants)
- Error in FPGA programming, two short
 (~3 ns) pulses could be sent to scaler in < 7 ns
 - ~ 1% of events have such pulse pairs (worst case)
- Such pulse pairs sometimes cause scaler to drop or add bits
 - Detailed simulation of ASIC with propagation delays between (flip flop) elements
- Effect on asymmetry is $< 0.01 A_{phys}$
 - Test by cutting data
 - compare with French octants, and with data after FPGA fixed

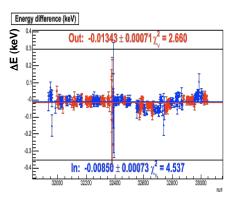

Polarized Beam Properties


85.8% Polarization*


*(see F. Benmokhtar's talk)


- Polarization reversal: 30 Hz, random quartets (+--+, -++-)
- Slow helicity reversal: $\lambda/2$ wave plate IN and OUT
- Helicity-correlated properties:


Beam Parameter	Achieved (OUT-IN)/2				
charge asymmetry	0.09 +/- 0.08 ppm				
x position difference	-19 +/- 3 nm				
y position difference	-17 +/- 2 nm				
x angle difference	-0.8 +/- 0.2 nrad				
y angle difference	0.0 +/- 0.1 nrad				
energy difference	2.5 +/- 0.5 eV				
Beam halo (out 6 mm)	$< 0.3 \times 10^{-6}$				



Run Number

Correcting Beam Asymmetries

$$A_{\text{raw}} = A_{\text{det}} - A_{\text{Q}} + \sum_{i=1,5} \beta_i \Delta x_i$$

Determine Slopes from

- •natural beam jitter (regression)
- •beam modulation (coil pulsing)

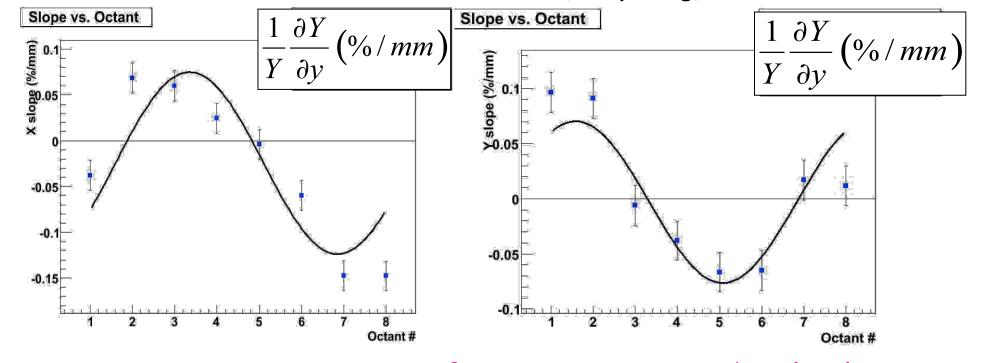
Independent methods provide a cross-check. Each subject to different systematic errors.

Regression:

- Natural beam motion, measure yield vs. beam parameter
- Simultaneous fit establishes independent sensitivities

Coil Pulsing:

- Induce non-HC beam motion with coils, measure dS/dC_i , dx_i/dC_i
- Relate slopes to dS/dx_i

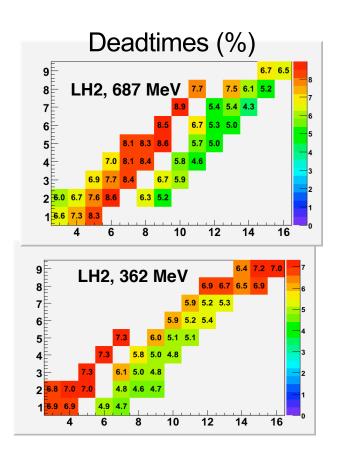

Sensitivities ~5x smaller than at forward angle

Correcting Beam Asymmetries

$$A_{\text{raw}} = A_{\text{det}} - A_{\text{Q}} + \sum_{i=1,5} \beta_{i} \Delta x_{i}$$

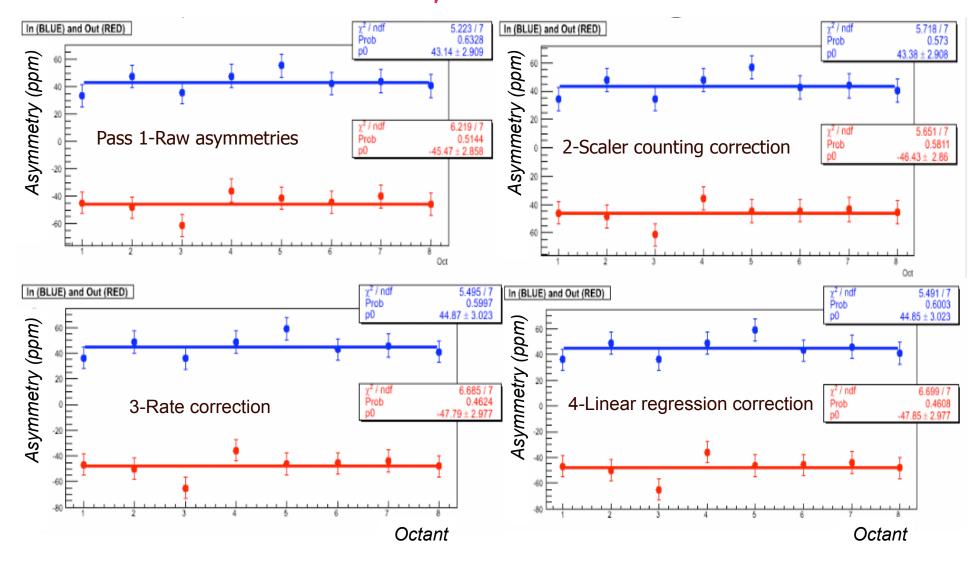
Determine Slopes from

- •natural beam jitter (regression)
- ·beam modulation (coil pulsing)


Consistent sensitivities from regression and coil pulsing

Net false asymmetry ~ 0.1 ppm

Rate Corrections*


- Counting experiment: must correct yields for Random Coincidences
 & Deadtime before calculating asymmetry
- Randoms: small except for 687 MeV LD2 (higher pion rate)
 - Direct (out-of-time) measurement
 - Deadtime corrections: Simulated complete electronics chain using measured singles rates, etc.

Data set	Correction to Yield (%)	Asymmetry Correction (ppm)	systematic error (ppm)
H 362	6	0.3	0.06
H 687	7	1.4	0.17
D 362	13	0.7	0.2
D 687	9	6	1.8

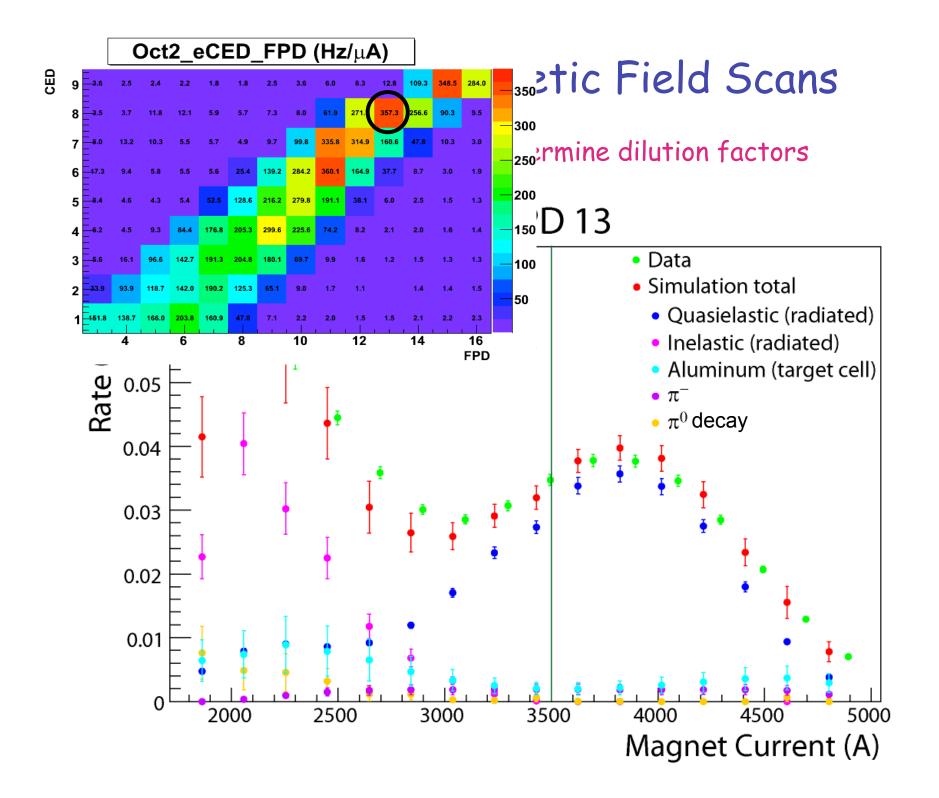
Elastic Asymmetries

- Hydrogen, 687 MeV (similar for all target/energy combos)
- · Effect of rate, helicity-correlated corrections:

Backgrounds

- Primary background from aluminum target windows
 - about 12% of yield for all target/energy combinations
 - carries same asymmetry as deuterium (within ~ 2%)
- π^- contamination in D at 687 MeV
 - 5% contribution (measured), nearly zero asymmetry (measured)
- Hydrogen

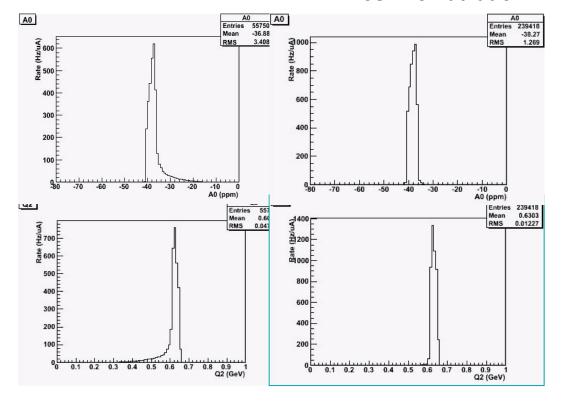
$$A_{el} = \frac{A_{meas} - f_{Al}A_{Al} - f_{other}A_{other}}{1 - f_{Al} - f_{other}}$$


Deuterium:

$$A_{el} = \frac{A_{meas} - f_{pion}A_{pion} - f_{other}A_{other}}{1 - f_{pion} - f_{other}},$$
 with
$$f_{other} \sim 2 \pm 2\%, A_{other} = 0$$

Backgrounds: Magnetic Field Scans

Use simulation shapes to help determine dilution factors


Other Corrections to Asymmetries

- Beam normal single-spin asymmetry (transverse asymmetry)
 - Any small transverse component in beam polarization + imperfect detector azimuthal symmetry + beam-normal spin asymmetry = false asymmetry
 - Measured asymmetry directly with transverse beam → see J. Mammei's talk

Net correction < .01 ppm

EM radiative corrections [Tsai (1971)]

LH2 687 with Radiation LH2 687 no Radiation

GEANT: Calculate asymmetry based on kinematics at vertex after radiation, compare to tree level; both calculated after dE/dx in target

Tgt/Energy	A _{0 rc} A _{0 tree}	RC _{correction}
LD2 687	-46.6 -48.43	3.7%
LD2 362	-13.64 -14.17	3.9%
LH2 687	-36.81 -38.22	3.8%
LH2 362	-10.1 -10.49	3.9%

Asymmetry Uncertainties (1)

· Hydrogen, 687 MeV

	Value (ppm)	Stat (ppm)	Sys Pt (ppm)	Sys Gl (ppm)	Total (ppm)
Measured Asymmetry	-38.14	2.43			
Background Asymmetry	-38.27		0.40		
Dilution Correction	-30.27		0.47	0.52	
Transverse Correction				0.008	
Rate Correction	-38.39		0.17		
Beam Polarization	-44.76		0.52	0.53	
EM Radiative Correction	-46.14		0.16		
Physics Asymmetry	-46.14	2.43	0.84	0.75	2.68

Asymmetry Uncertainties (2)

· Deuterium, 687 MeV

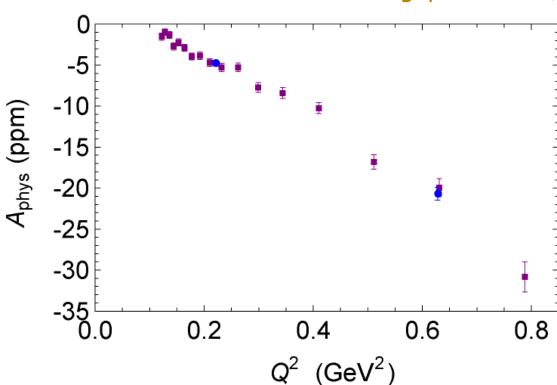
	Value (ppm)	Stat (ppm)	Sys Pt (ppm)	Sys Gl (ppm)	Total (ppm)
Measured Asymmetry	-44.02	3.34			
Background Asymmetry	-46.05		0.050		
Dilution Correction	-40.03		0.38		
Transverse Correction			0.009	0.008	
Rate Correction	-46.35		1.82		
Beam Polarization	-54.03		0.62	0.64	
EM Radiative Correction	-55.87		0.19		
Physics Asymmetry	-55.87	3.34	1.98	0.64	3.92

Asymmetry Uncertainties (3)

· Hydrogen, 362 MeV

	Value (ppm)	Stat (ppm)	Sys Pt (ppm)	Sys Gl (ppm)	Total (ppm)
Measured Asymmetry	-9.941	0.872			
Background Asymmetry	-9.441		0.034		
Dilution Correction	-9.441		0.109	0.362	
Transverse Correction			0.025	0.008	
Rate Correction	-9.444		0.090		
Beam Polarization	-11.010		0.223	0.132	
EM Radiative Correction	-11.416		0.022	0.000	
Physics Asymmetry	-11.416	0.872	0.268	0.385	0.990

Asymmetry Uncertainties (4)


· Deuterium, 362 MeV

	Value (ppm)	Stat (ppm)	Sys Pt (ppm)	Sys Gl (ppm)	Total (ppm)
Measured Asymmetry	-14.047	0.813			
Background Asymmetry	-14.114				
Dilution Correction	-14.114		0.020		
Transverse Correction			0.038	0.008	
Rate Correction	-14.152		0.232		
Beam Polarization	-16.498		0.331	0.197	
EM Radiative Correction	-17.018		0.059		
Physics Asymmetry	-17.018	0.813	0.411	0.197	0.932

Determining Form Factors

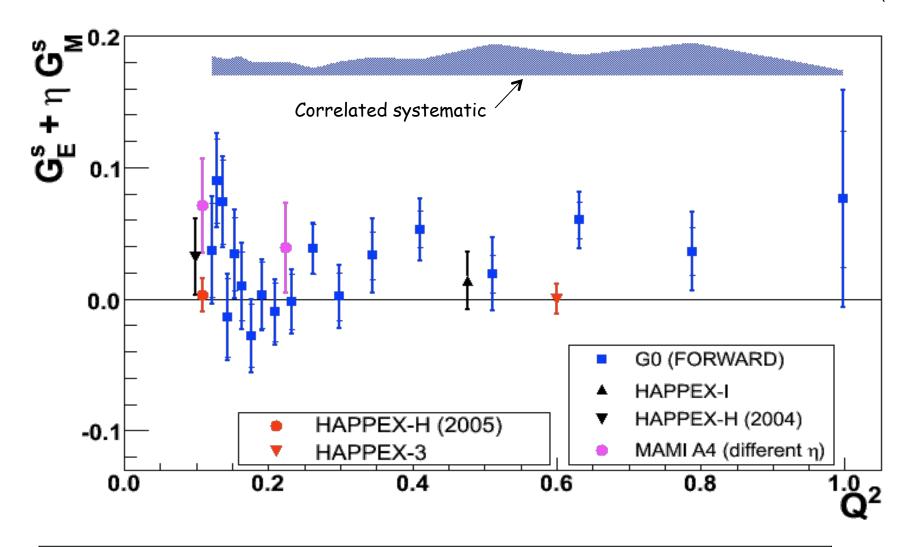
- Starting from asymmetries, need
 - Effective Q² determination* simulation
 - Deuteron model (Schiavilla, priv. comm.)
 - Electromagnetic form factors* (Kelly PRC 70 (2004))
 - Electroweak Radiative corrections
 - check on 2-boson corrections*
 (Arrington, Blunden, Melnitchouk, et al.; Zhou, Kao & Yang, priv. comm.)

Interpolation of GO forward angle data:

*see F. Benmokhtar's talk

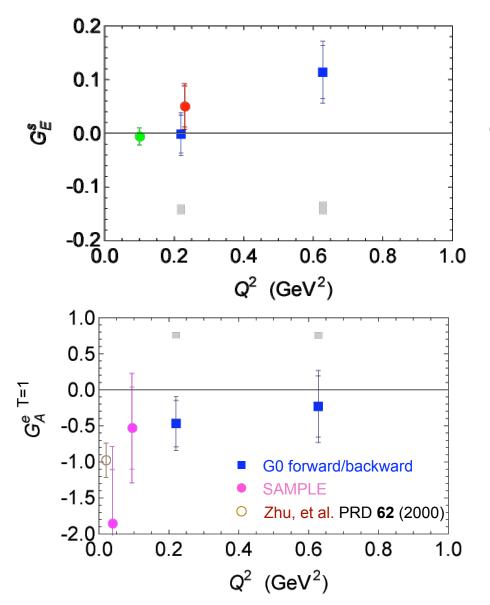
Deuteron Model

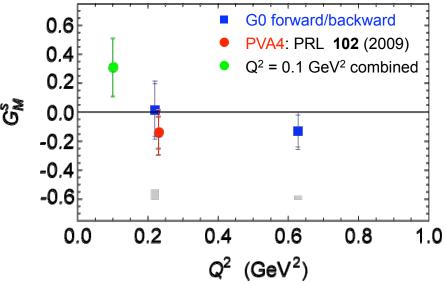
· Calculation from R. Schiavilla


 $A_{phys} = a_0 + a_1 G_E^s + a_2 G_M^s + a_3 G_A^e$

- includes FSI and 2-body effects

Forward Angle Results - reminder

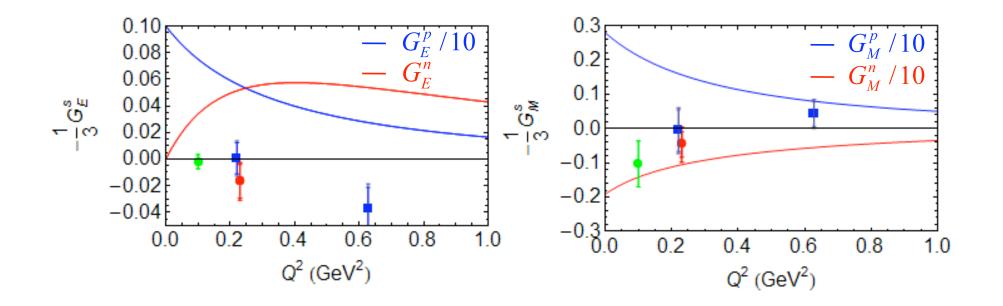

EM form factors: J.J.Kelly, PRC **70**, 068202 (2004)



$$G_E^s = G_M^s = 0$$
 Hypothesis excluded at 89% C.L.

Backward Angle Results: Preliminary

Using interpolation of GO forward measurements


Global uncertainties

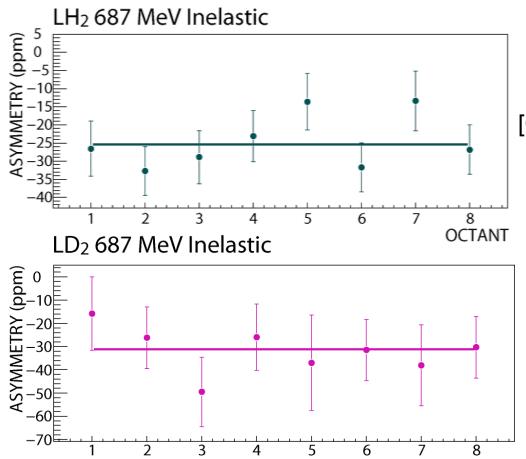
assumes:

$$G_{A,NS}^{T=0}(Q^2) = R_A^{T=0} \frac{3F - D}{2} G_A^{dipole}(Q^2)$$

 $G_{A,NS}^{T=0}(Q^2 = 0) = 0.070$

Also assumes: no CSV

Contributions to Overall Form Factors



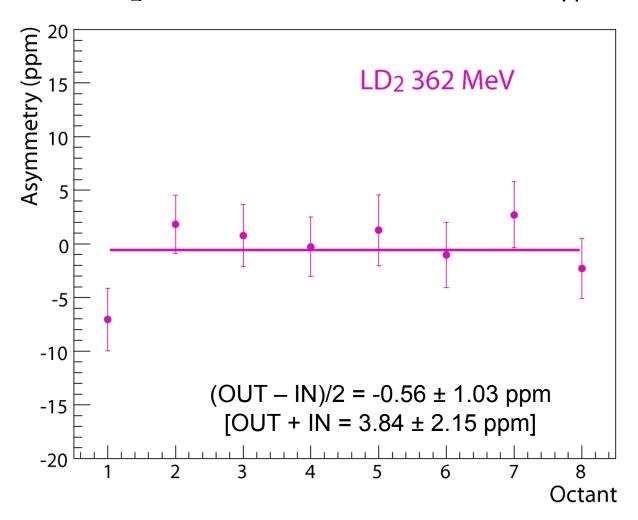
- NEXT STEP: fit 33 separate asymmetry measurements for H, D, He targets
 - at this point, not all data at quite the same level...
 consistent EM form factors, radiative corrections, CSV...

Preliminary Inelastic Asymmetries

 $G_A^{N\Delta}(Q^2)$: Isovector ($\Delta I=1$), spin-flip form factor - encodes space/spin structure in transition to I=3/2 resonance, analogous to $G_A(Q^2)$

OCTANT

 $[OUT + IN = 0.07 \pm 5.1 ppm]$


Raw data: Backgrounds, radiative corrections not yet included

$$[OUT + IN = -9.9 \pm 10.5 ppm]$$

We seek theory guidance for the deuteron case

Preliminary Pion Asymmetries

- Measure inclusive π from D target, dominated by photoproduction
- Asymmetry at Q^2 =0 not zero \rightarrow constrain small asymmetry " d_{Δ} "
- d_{Λ} related to the anomalous $\Delta S = 1$ hyperon decays

working on systematic uncertainties (~ 0.5 ppm):

Summary

- Comparison of electromagnetic and weak neutral elastic form factors allows determination of strange quark contribution
 - large distance scale dynamics of the sea
- Small positive G_E^s at higher Q^2 , G_M^s consistent with zero, small quenching of G_A^e , consistent with theory
 - next step: global fit to all 33 asymmetries
- First measurement of neutral current $N\Delta$ transition around $Q^2 = 0.3 \ GeV^2$
- First measurement of PV asymmetry in inclusive $\pi^{\text{-}}$ production at low Q^2
- see J. Mammei's talk: First measurements of transverse asymmetries in
 - back angle elastic scattering from H, D targets
 - Inclusive π production

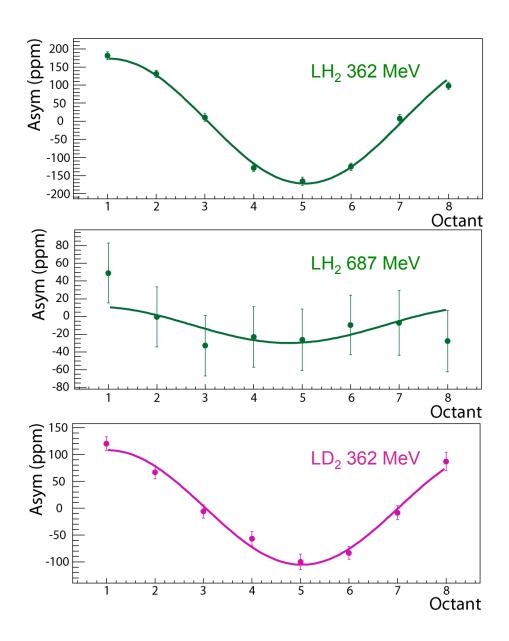
"Do not infest your mind with beating on the strangeness of this business" - W. Shakespeare (The Tempest)

Backup Slides

Form Factor Uncertainties (1)

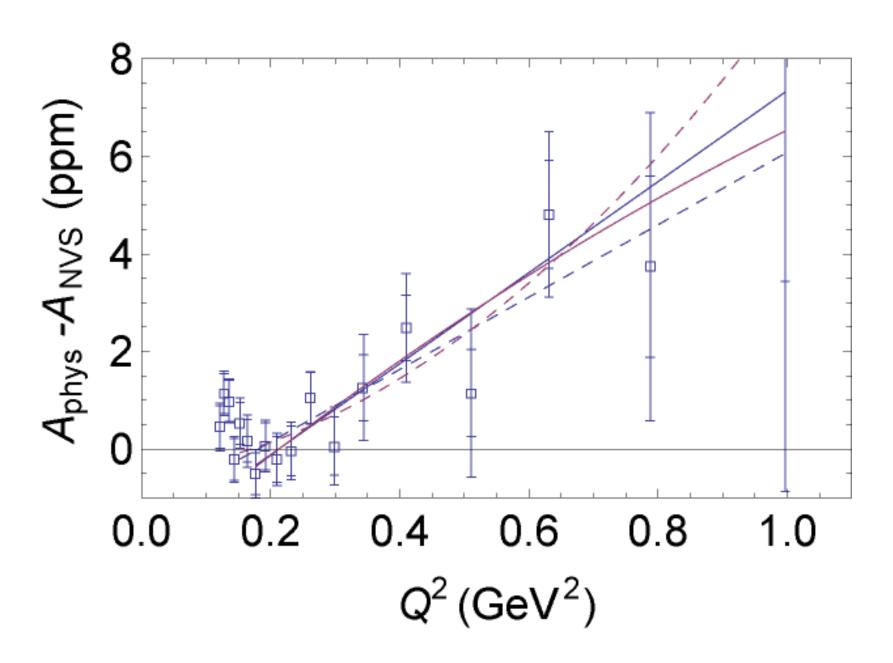
Pt-pt systematics

	$Q^2 = 0.22 \text{ GeV}^2$			$Q^2 = 0.63 \text{GeV}^2$		
	GE	G_{M}^{S}	G_A^e	G _E	G_{M}^{S}	G_{A}^{e}
BackwardH Energy			6.72´10 ⁻⁴			
Backward D Energy			1.04´10 ²			
Forward Q ²			8.69´10¯ ³			
BackwardH Q ²			3.22´10¯ ³			
Backward D Q^2			5.05´10⁻²			
C	1.17´10¯ ³	5.22´10⁻⁴	9.55´10´ ³	2.94 ´ 10 ^{- 3}	2.54´10⁻ ⁴	3.88 ´ 10 ^{- 3}
GM GM	1.58 ´ 10 ^{- 3}	4.13′10 ⁻³	7.18´10¯ ³	3.76´10¯ ³	4.73´10¯ ³	7.21´10¯ ³
G <u>F</u>			7.36´10¯ ³			
G_{M}^{n}			3.71´10⁻²			
a ^D	4.08 ´ 10 ^{- 3}	2.63´10¯²	7.05´10⁻²	1.3´10¯ ³	3.23´10¯ ³	1.44 ´ 10 ^{- 2}
aE	5.57´10 ⁻⁵	3.59 ′ 10 ⁴	9.62´10¯ ⁴	1.75´10⁻ ⁴	4.37 ′ 10 ′ 4	1.95´10 ⁻³
aD aED aM	3.11 ´ 10 ^{- 4}	2.01 ~ 10 3	5.38 ´ 10 ⁻³	1.04 ´ 10 ^{- 4}	2.59 ′ 10 ⁴	1.16´10¯ ³
a_A^D			3.13´10¯²			
Total	8.62´10 ⁻³	4.09´10¯²	1.01 ´ 10 ¹	1.05 ´ 10 ^{- 2}	1.56´10¯ ²	4.45´10 ⁻²


Form Factor Uncertainties (2)

Global systematics

	$Q^2 = 0.22 \text{ GeV}^2$			$Q^2 = 0.63 \text{GeV}^2$			
	GE	G_{M}^{s}	G^{e}_A	GE	G_{M}^{S}	G_{A}^{e}	
ForwardH Energy							
G _A s	6.13´10¯ ⁴	3.96´10¯ ³	1.44´10¯ ³	5.5´10¯ ⁴	1.37´10¯ ³	6.48 10 4	
EWRad. Corr.	2.52´10¯ ³	1.63´10¯ ²	5.93´10⁻³	2.26´10¯ ³	5.63´10¯ ³	2.66´10¯³	
Total	2.59´10¯ ³	1.67´10¯ ²	6.1 ´ 10 ⁻³	2.33 ´ 10 ⁻³	5.79´10¯ ³	2.74´10¯ ³	


Preliminary Transverse Asymmetries

· Background, radiative corrections not included

need theory for em radiative corrections

Forward Angle Data

What is the Anapole Moment?

As first noted by Zel'dovich (Sov. Phys. JETP 6 (58) 1184), a parity-violating coupling of the photon can occur

$$\langle p' | J_{\mu}^{\gamma}(Q^{2}) | p \rangle = \overline{u}(p') \left(F_{1}(Q^{2}) \gamma_{\mu} - i \frac{F_{2}(Q^{2})}{2M} \sigma_{\mu\nu} q^{\nu} + \frac{F_{4}(Q^{2})}{M^{2}} \left(q^{2} \gamma_{\mu} - q q_{\mu} \right)_{5} - i \frac{F_{E}(Q^{2})}{2M} \sigma_{\mu\nu} q^{\nu} \gamma_{5} \right) u(p)$$

where F_A and F_E are the anapole (parity-violating, time-reversal conserving) and electric dipole (parity- and time-reversal- violating) moments, respectively

· At low Q2 the corresponding interaction energy is

(Musolf and Holstein, Phys. Rev. D 43 (91) 2956)

$$L_{anapole} = -e^2 \frac{F_A}{M^2} \psi \gamma_{\mu} \gamma_5 \psi \ j_{\mu} \sim -e^2 \frac{F_A}{M^2} \vec{\sigma} \cdot \vec{j}$$

 The classical analog of the anapole moment is that property of a toroidal magnetic field that leads to a torque in an external current field

Validity of charge symmetry assumption

$$u \iff d$$

$$G_{E,M}^{u,p} = G_{E,M}^{d,n} \qquad G_{E,M}^{d,p} = G_{E,M}^{u,n} \qquad G_{E,M}^{s,p} = G_{E,M}^{s,n}$$

Size of charge symmetry breaking effects in some n,p observables:

- n p mass difference \rightarrow $(m_n m_p)/m_n \sim 0.14\%$
- polarized elastic scattering \vec{n} + p, \vec{p} +n $\Delta A = A_n A_p = (33 \pm 6) \times 10^{-4}$ Vigdor et al, PRC <u>46</u>, 410 (1992)
- Forward backward asymmetry n + p \rightarrow d + π^0 $A_{\rm fb}$ ~ (17 ± 10)x 10⁻⁴ Opper et al., nucl-ex 0306027 (2003)
- → For vector FF: theoretical CSB estimates indicate < 1% violations Miller PRC 57, 1492 (1998) Lewis & Mobed, PRD 59, 073002(1999)

Recent: effects could be large as statistical error on HAPPEx data! B. Kubis & R. Lewis Phys. Rev. C 74 (2006) 015204

Two Photon Exchange - recent work

H.Q. Zhou, C.W. Kao and S.N. Yang arXiv:0708.4297 2-Sept 2007

Beyond single boson exchange in electroweak interference:

- $\gamma\gamma$ and γZ box (+crossing diagrams) \rightarrow interfere with single γ & Z exchange
- Only elastic intermediate states adopted
 [as in Blunden, Melnitchouk & Tjon PRL 91, 12304 (2003)]
- Find: for HAPPEx and PVA4 kinematics (Q2<0.5 GeV, ϵ >0.83) γZ box dominates the two boson effects
- All analyses to data used γZ at Q²=0 [Marciano & Sirlin PRD 27, 27 (1983)] Find: This grossly overestimates effect
 - Extracted $G_E^s + \beta G_M^s$ tend to be reduced

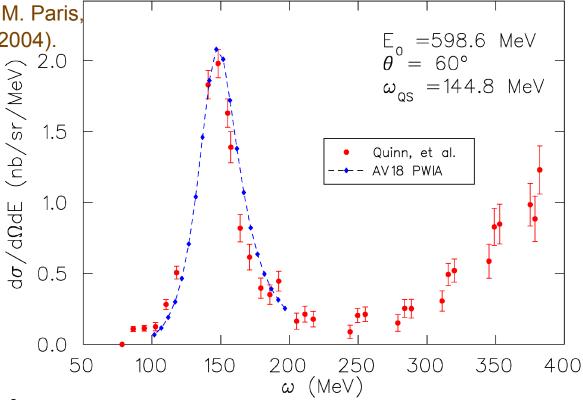
Recent global fits and theory

- 1. Global Fit: R.D. Young, et al. Phys.Rev.Lett. 97 (2006) 10200
 - all data Q² < 0.30, leading moments of G_M^s , G_E^s
 - float G_A^e separately for n, p

$$G_M^s = -0.01 \pm 0.25$$
 $G_E^s = 0.002 \pm 0.018$

- 2. Global Fit: J. Liu, R.D. McKeown, M. Ramsey-Musolf arXiv:0706.0226
 - all data Q² < 0.164, leading moments of G_M^s , G_E^s
 - constrain G_A^e to data and radiative corrections (χ PT theory of Zhu et al.)

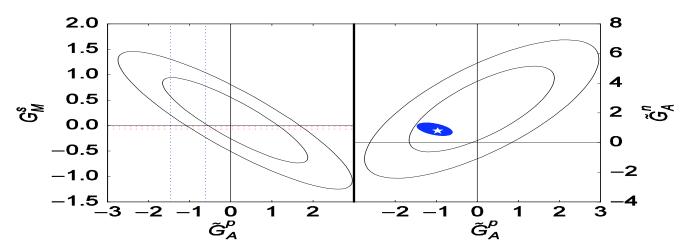
$$G_M^s = 0.29 \pm 0.21$$
 $G_E^s = -0.008 \pm 0.016$


- 3. Two Boson exchange: H.Q. Zhou, C.W. Kao and S.N. Yang arXiv:0708.4297
 - γZ box dominates the two boson effects at HAPPex, PVA4 kinematics
 - \rightarrow reduces extracted $G_E^s + \beta G_M^s$ (not yet put into global fits)

Deuterium model comparison to cross section data

calculation from R. Schiavilla see also

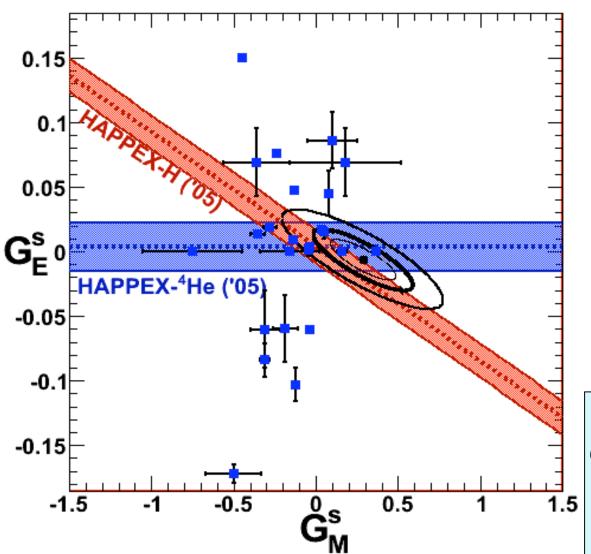
R.S., J. Carlson, and M. Paris, PRC70, 044007 (2004).


- AV18 NN potential
- relativistic kinematicsJ.J. Kelly fit to nucleon form factors

data from:

- S. Dytman, et al., Phys. Rev. C 38, 800 (1988)
- B. Quinn, et al., Phys. Rev. C 37, 1609 (1988)

Effect of "floating" axial radiative corrections



$$\tilde{G}_{A}^{p,n} = G_{A}^{e} = -\tau_{3}(1 + R_{A}^{T=1})G_{A} + \sqrt{3}R_{A}^{T=0}G_{A}^{8} + \Delta s$$

R.D. Young, et al. Phys.Rev.Lett. 97 (2006) 102002

Data from $Q^2 < 0.3$, (pre-HAPPEx 2005),

World Data near Q² ~0.1 GeV²

$$G_{M}^{s} = 0.28 \pm 0.20$$

$$\downarrow$$

$$21\% \text{ of } \mu_{N}^{T=0}$$

$$\left\langle r^2 \right\rangle_E^p = 0.766 \pm 0.012 f \, m^2$$
$$\left\langle r^2 \right\rangle_E^s = 0.002 \pm 0.015 f \, m^2$$

Lattice: Leinweber et al.

$$G_M^s = -0.046 \pm 0.022$$

1.5
$$G_E^s = +0.001 \pm 0.006$$

$G_A^{N\Delta}$ and its relevance

- $G_A^{N\Delta}(Q^2)$: Isovector ($\Delta I=1$), spin-flip form factor encodes space/spin structure in the transition to the I=3/2 resonance, analogous to $G_A(Q^2)$
 - Filters away isoscalar s-sbar currents (i.e. strange quark effects)
 - Complementary to Electromagnetic N $\rightarrow \Delta$ form factors
 - Axial currents dominates v scattering cross section at moderate energies
 - $oldsymbol{\cdot}$ eg. $ext{v}_{oldsymbol{e}}$ appearance experiments such as NOvA
 - Alvarez-Ruso et al. PRC 76, 068501 (2007) " $G_A^{N\Delta}$... largest source of uncertainty in neutral current pion production"

Axial Matrix element in $N\rightarrow\Delta$ determined by 4 transition form factors:

G_A digression

- $G_A(Q^2)$: "elastic" axial form factor
- 1. $G_A(0) = g_a = 1.2695 \pm 0.0029$ neutron beta decay
- 2. Quasi-elastic anti-neutrino charged-current scattering

$$G_A(Q^2) = g_a/(1-Q^2/M_A^2)^2$$
 $m_A = 1.001 \pm 0.020 \text{ GeV}$

3. Pion electroproduction + Adler-Gilman relation $m_A = 1.068 \pm 0.017$ GeV

reconciled in $HB\chi PT$ Bernard, Kaiser, Meissner PRL 69, 1877 (1992)

pion loop corrections change pion electroproduction result to $m_A = 1.012 \pm 0.017$ GeV

Connecting A_{PV}^{inel} to $G_A^{N\Delta}$

- Consider single pion electroproduction (below 2π threshold):
 - → multipole and isospin expansion
 - A_{PV}^{inel} arises, as usual, from γ -Z interference

$$A_{PV}^{inel} = -\frac{1}{2}A_0 (A_{(1)}^{\pi} + A_{(2)}^{\pi} + A_{(3)}^{\pi})$$

where

 $A^{\pi}_{(1)}$ = axial vector electron x vector/isovector (I=1/2, 3/2) \longleftarrow EM FF data (resonant and non-resonant pieces)

 $A^{\pi}_{(2)}$ = axial vector electron x vector/isovector (I=1/2) EM FF data (non-resonant pieces)

 $A^{\pi}_{(3)}$ = vector electron x axial hadronic matrix element (resonant and non-resonant pieces)

The resonant part of this axial hadronic matrix element depends on $G_A^{N\Delta}$

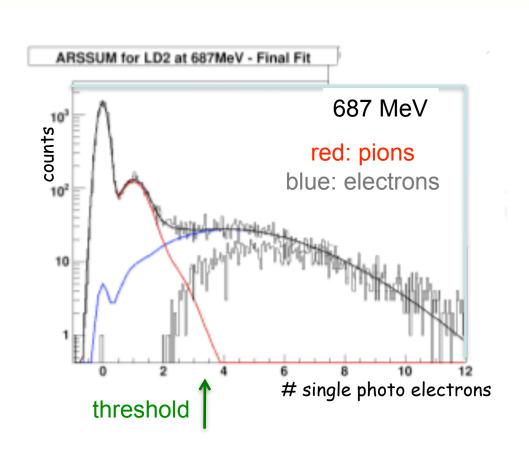
Note: for inclusive scattering, the non-resonant and resonant parts can interfere!

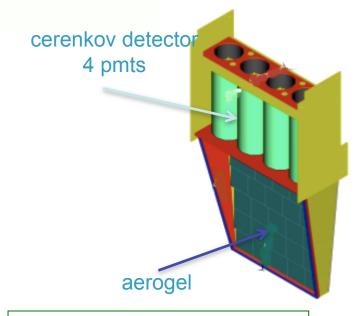
(aargh...)

⁴He: Nuclear Effects - newer results

Vaviani, Schiavilla, Kubis, Lewis, et al.

- include isospin-breaking effects in nucleon as/per Kubis & Lewis χ PT (Phys. Rev. C 74 (2006) 015204)
 - include nuclear isospin-breaking effects:
 - ⁴He wavefunction from Hyperspherical Harmonic expansion
 - wide variety of modern NN potentials (include isospin breaking terms from both strong and Coulomb effects)

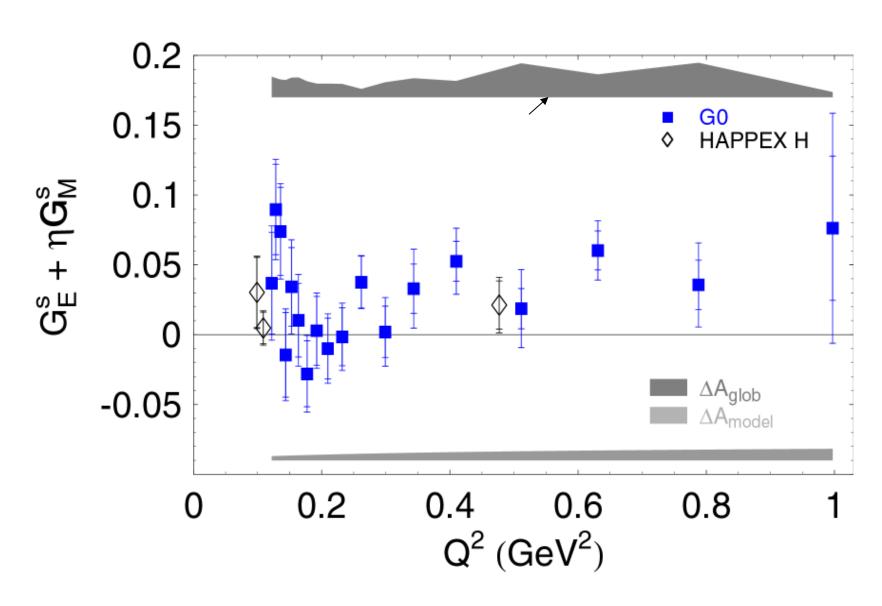

Results: isospin-breaking effects are \approx 30% of experimental error on $\,G_{\scriptscriptstyle E}^{\scriptscriptstyle S}$


- verified that MEC effects are small at low Q²

Correction due to misidentified pions

3 Ways to calculate

- runs with special beam structure providing timing reference allowing particle TOF
 - PMT Multiplicity (two versus three of the cerenkov PMT's firing)
 - Pulse heights (waveform digitized)

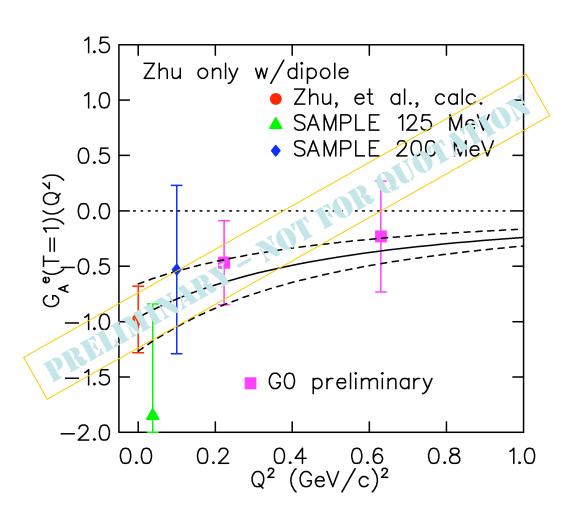


 π^- contamination to electron yield $(A_\pi \sim 0)$ D 362: 0.5%

D 687: 4%

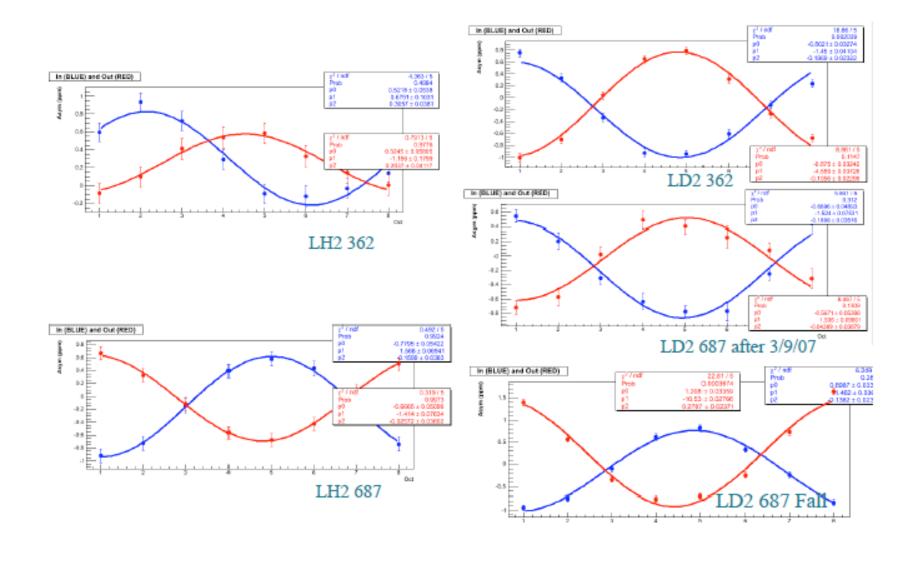
Correlated systematic

Anapole form factor $F^{\gamma}_{\ A}(Q^2)$


Three scenarios

1. $F_A(Q^2)$ is like $G_A(Q^2)$

2. $F_A(Q^2)$ is flat (Riska, NPA 678 (2000) 79)


3. $F_A(Q^2) \sim 1 + Q^2$ (Maekawa, Viega, van Kolck, PLB 488 (2000) 167)

— (shown here are the most extreme set of model parameters)
োচ ক্রিটি গুটি গুটি প্র

Lumi Asymmetries

Small angle detectors - asymmetry expected to be ~0.1 ppm

