Precision Compton Polarimetry for the Q_{Weak} Experiment at Jefferson Lab

Wouter Deconinck

PAVI 2009 June 22–26, 2009

Q_{Weak} Experiment

Measurement of the Weak Charge of the Proton

- Elastic electron scattering off liquid hydrogen target
- Longitudinally polarized electrons, energy of 1.165 GeV
- Rapid electron helicity reversal (1 kHz) at GaAs source
- Current mode: Čerenkov quartz bars, asymmetry $\mathcal{A} \propto P_e$
- Tracking mode: Determination of Q² using drift chambers

Projected Uncertainties for 4% Measurement of Q_{Weak}

Statistical precision	3%
Hadronic structure (theoretical)	1.5%
Beam polarimetry (experimental)	1.5%
Other experimental uncertainties	≤ 1.0%

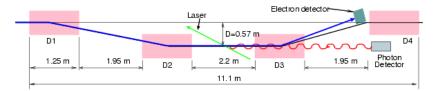
Q_{Weak} Experiment: Polarimetry

Requirements on Beam Polarimetry

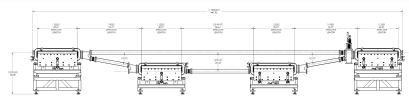
- Dominant experimental systematic uncertainty for Q_{Weak}
- Statistical precision of 1% after one hour
- Systematic uncertainty of 1% (for absolute measurements)

Upgrade of Existing Møller Polarimeter

- Operation limited to dedicated low current runs ($I < 8 \mu A$)
- Development of fast kicker magnet for higher currents


Construction of New Compton Polarimeter

- Will allow continuous measurements with high precision
- Systematic uncertainty of 1% (for absolute measurements)


Compton Polarimeter

Overview of subsystems

- Beam: 180 μ A at 1.165 GeV (upgradeable to 11 GeV)
- Chicane: interaction region 57 cm below straight beam line
- Laser system: 532 nm green laser
 - Original: RF-pulsed fiber laser with 20 W at 499 MHz
 - Revised: 10 W CW laser with low-gain cavity
- Photons: CsI scintillator in integrating mode ($k' \lesssim 50 \,\text{MeV}$)
- Electrons: Diamond strips with 200 μ m pitch ($d \lesssim 23$ mm)

Chicane and Beamline

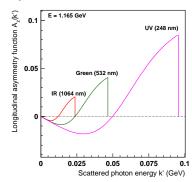
Motivation

- Displacing Compton photons away from electron beam
- Increased control over beam condition at interaction region

Chicane

- D = 57 cm for Q_{Weak}, smaller separation for 11 GeV
- Dipole magnets under construction, delivery after summer
- Interaction region and vacuum design in progress

Laser System

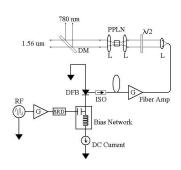

High laser intensity

- Of order 250 W of laser power needed for 1% per hour
- Narrow focussing (diameter ≤ 1 mm)

Short laser wavelength

- Higher Compton edge
- Larger electron separation

Photon energy	532 nm
Compton edge	50 MeV
Electron separation	23 mm
Asymmetry ${\cal A}$	1%


Laser System: Original Design

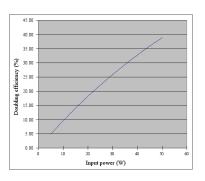
RF-pulsed fiber laser

- Gain-switched IR seed (499 MHz)
- ErYb-doped fiber amplifier (50 W)

Frequency-doubling crystal

Advantages

- High power and high duty cycle (50 ps pulses at 499 MHz)
- Off-the-shelf components: intended to be low maintenance


Laser System: Original Design

5 W prototype

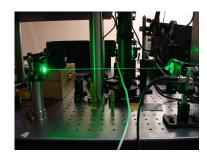
• 150 mW out, as expected

50 W fiber amplifier

- Very low doubling efficiency:
 6% at various repitition rates
- Expected efficiency 26%
- Very unreliable operation

Fiber amplifier option abandoned

- DC light component? (Amplified Spontaneous Emission)
- Pulsewidth or linewidth after amp too large for doubling?
- Necessary expertise/manpower not available at JLab


Laser System: New Design

CW laser with low-gain cavity

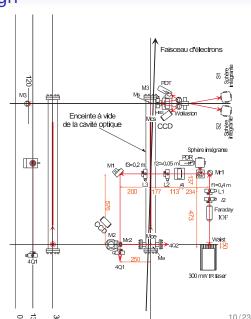
- 10 W Coherent VERDI laser (532 nm, green, CW)
- Low-gain cavity around interaction region (gain \approx 100)
- · Concern that linewidth is too large for reliable locking
- Comparison with Hall A: gain \approx 1000

UVa test setup (May 2009)

- First results successful
- Estimated linewidth 5 MHz, 1 MHz should be possible
- Instantaneous linewidth is only 100 kHz (that's good)

Laser System: New Design

Interaction region


- Laser system chosen
- Cavity-beam vacuum can design started
- Based on Hall A

Hall A design

- High-gain cavity
- IR laser system

Hall C design

- Low-gain cavity
- · Green laser system

Detectors

Mode of operation

- Independent measurements of photons and electrons
- Cross-calibration using coincident events
- Integration of deposited energy up to Compton edge

Photon detector

- Compton edge at 50 MeV, detection range 10–50 MeV
- Csl detector recovered from MIT-Bates polarimeter
- Online integration, but event-by-event possible

Electron detector

- Close to primary beam: ≤ 23 mm (2.5 MRad / 1000 hours)
- Diamond strip detector for radiation hardness

Csl Detector

Pure Csl scintillator crystal

- $10 \times 10 \times 30 \, \text{cm}^3$, slightly tapered, MIT-Bates polarimeter
- Emission maximum at 310 nm (fast), 20% at 500 nm (slow)
- Decay time: 16 ns (1000 ns), yield: 2000 γ /MeV (5% of NaI)
- Small yield dependence on temperature (0.6% / °C)

Photomultiplier tubes

- Fast rise time (< 3 ns), high gain (> 10⁶)
- 3 inch 8-dynode Photonis XP3462/B, gain = 10^6 @ HI γ S
- 2 inch 12-dynode Photonis XP2262, gain = 3 · 10⁷

Read-out electronics

250 MHz sampling ADC with integrated accumulators

Csl Detector

Poor surface quality

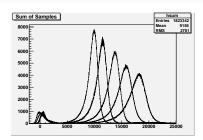
- Crystal surface opaque
- · Repolishing necessary

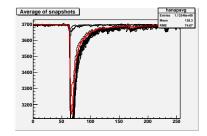
After polishing (June 2009)

- Transparency improved
- Ready to add PMT

Csl Detector: $HI\gamma S$

$HI\gamma S$ beam at Duke


- High Intensity γ Source
- Energy from 22 to 40 MeV
- Variable photon intensity


Photon rate (PMT limited)

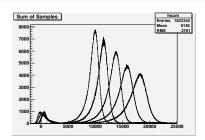
- 1 kHz and 10 kHz
- 100 kHz: multiple events

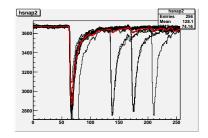
Read-out rate (FADC limited)

- · Accummulators always on
- 15 kHz sampled events, virtually no dead-time

Csl Detector: $HI\gamma S$

$HI\gamma S$ beam at Duke

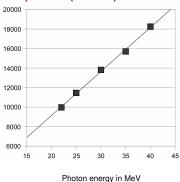

- High Intensity γ Source
- Energy from 22 to 40 MeV
- Variable photon intensity


Photon rate (PMT limited)

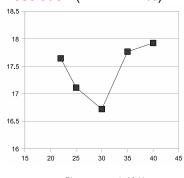
- 1 kHz and 10 kHz
- 100 kHz: multiple events

Read-out rate (FADC limited)

- · Accummulators always on
- 15 kHz sampled events, virtually no dead-time



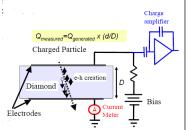
Csl Detector: $HI\gamma S$


Linearity and resolution

- Preliminary results btained before polishing
- Hope to repeat measurements with higher precision

Response (in a.u.)

Resolution (FWHM in %)

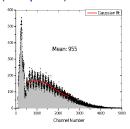

Photon energy in MeV

Electron Detector

Diamond strip detector

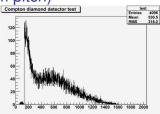
- Electron displacement at Compton edge is 23 mm
- Radiation hardness of diamond much better
- Advantages: lower leakage current, faster, lower noise
- Disadvantages: smaller signal

Solid state detectors

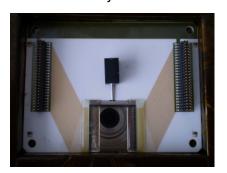

Detector characteristics

- 4 planes of 96 strips with 200 μm pitch
- Bias voltage 1000 V, full metallization on back side

Electron Detector: Prototype Tests with 90Sr

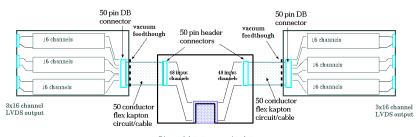

Mississippi (15 strips with 500 μ m pitch)

Winnipeg (37 strips with 200 μ m pitch)



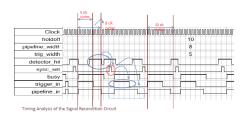
Electron Detector

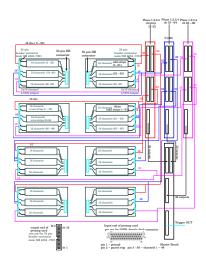
Production complete


- · All detector planes produced
- Minor delay due to wire bonding problems

Electron Detector: Read-out

Diamond detector on carrier plate


Pre-amplifier boards


- To be mounted on vacuum can
- Developed at TRIUMF, based on AGAM boards
- Gain increased (× 3–4) without increasing noise

Electron Detector: Read-out

Caen V1495 FPGA modules

- Planes processing: 3 region modules, one master module
- On board testing, integration with CODA in progress

Summary

Schedule for installation

- Now October 2009: Construction and testing
 - Photon and electron detector assembly
 - Read-out electronics development
 - Analysis and slow control software
- November 2009 April 2010: Installation
 - Beamline modifications: chicane, interaction region
 - Laser and detectors installation
- May 2010 October 2010: Q_{Weak} engineering running
 - · Commissioning at low current
- November 2010 May 2012: Q_{Weak} production running

Summary

Precision compton polarimetry for the Q_{Weak} experiment

- Polarimetry: dominant experimental systematic uncertainty
- 1% systematic uncertainty, 1% / hour statistical uncertainty

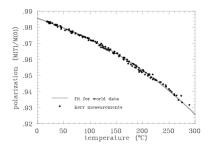
Status of the Compton polarimeter

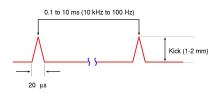
- Laser: 10 W CW laser with low-gain cavity in development
- Photon detector: CsI scintillator successfully tested (HI γ S)
 - · Crystal repolished for improved light output
 - · High rate data acquisition with online integration
- Electron detector: diamond planes produced
 - · Testing of planes is ongoing
 - FPGA-based trigger/read-out in development

Installation: November 2009 — Production: November 2010

Hall C Compton Group

Additional Material


Møller Polarimeter


Running strategy for Q_{Weak}

• Cross-checks between Møller and Compton polarimeter

Improvements: fast kicker

- Iron foil depolarization at high currents ($\Delta P = 1\%$ at 60°C)
- Fast kicker magnet tests: short periods of beam on target

Short kick, long cool-down

Møller Polarimeter: Kicker Tests

Iron wire target (December 2003)

- Kick frequency 100 Hz to 10 kHz, kick duration 20 μ s
- Wire too thick (25 μ m), random coincidences

Iron strip target (December 2004)

- Kick duration reduced to 10 μ s, current to 40 μ A
- Target wrinkled in 3 T field, scattered events

Iron foil target (2006)

Foil broke in target field

Future tests

Need 2-pass or lower... Dedicated beam time?

Møller Polarimeter during Q_{Weak}

Low beam energy → very high rates

- High rate: 150 kHz at 2 μ A on 4 μ m foil
- Foil of 1 μ m: 1% precision in 5 minutes

High rates → high random rates

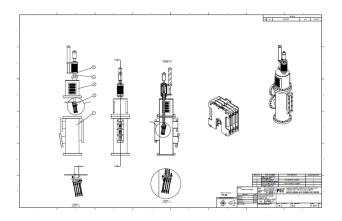
- At 100 μ A as many random as real coincidences
- Measurement time longer due to dilution

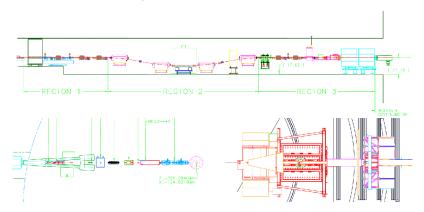
Suggestions

- Thinner foils (now 1 μ m, maybe 0.5 μ m)
- Shrink collimators to exclude coincidences
- Cross-check Møller at high and low current

Møller Polarimeter after Q_{Weak}

Ready for 12 GeV upgrade?


- No big changes to beamline should be needed after Q_{Weak}
- Second Møller quadrupole needed for 11 GeV operation
- Refurbished by Joe Beaufait and Bill Vulcan


Chicane

Vacuum can and integration

- Electron detector vacuum design in progress
- Interfaces relayed to JLab MEG

Beamline (excluding chicane)

Beamline layout almost finalized

- Some tweaks to design remain (bellows for alignment)
- Integration with chicane dipoles in progress