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1. INTRODUCTION

In recent work [1] we have studied stochastic differential equations related to the free field and (¢*)-
fields in finite volume following the earlier work of Jona-Lasinio and Mitter [2]. In [3] we have studied
Lattice approximations to these stochastic differential equations and proved a limit theorem when the
lattice spacing goes to zero. We now describe the nature of the results we have obtained.

Let ACR?2 be a finite open rectangle and S' denote D'(A) the space of distributions on A and let S*
denote the space of tempered distributions on A. Let C; = (-A+I)"1, i = 1,2 with Dirichlet (resp. free)
boundary conditions on A. C;j, i = 1,2 are covariance operators and for C a covariance operator let
C(,") denote its integral kernel, C% its odh operator power and let ¢ denote the centered Gaussian
measure with variance operator C. Consider the following S'-valued stochastic differential equation

do(t) =-% C, p(dt +dw(®) (1.1)

¢0)=¢€ S, O0<e<l1

where W(t) is a Wiener process with covariance C}‘s. It is not difficult to prove that this equation has a

unique solution and has a path continuous version as an H-®-valued process on (0,es). Moreover ¢(°) is

ergodic and has Hc, as it unique invariant measure. The same claims can be made with C replaced by

C>. This procedure of creating a stochastic differential equation with unique invariant measure a desired
invariant measure is termed stochastic quantization. It is worth observing that the random field ¢(t) for
each tis a Markov random field and satisfies the Osterwalder-Schrader axioms. A proof of this will
follow from that of Nelson [4]. Note that we cannot take £=0 in equation (2.1), since the transition
probabilities p(t; ¢,.) of the process ¢ for different t's are no longer mutually absolutely continuous, a
fact needed to prove ergodicity of the process ¢()). The case €=1 is excluded since W(t) is then no
longer a genuine Wiener process.

Since the process ¢(-) is ergodic with unique invariant measure ey correlation functions
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E, Cl(T'p(xl)..@(xn)), ((9) denotes the gaussian random field with covariance He,) can be computed

by exchanging time and space averages. This is the basic idea behind Monte Carlo calculations of
statistics of the random field.
We study this differential equation in a space of distributions since the invariant measure Hc, can

only be supported in some space of distributions. This is a consequence of the Minlos Theorem. It can
be shown that the measure He, is supported in the space H-1(A), the dual of the Soboley space HI(A).

In [1] and [3], we have also studied the infinite-dimensional non-linear stochastic differential
equation
| G 1€ 3
do(t) = - E(C o) +C ) )dt +dw(t) (1.2)

with @(0) having initial law p given by:

(1.3)

In the above :(t)3: denotes Wick-ordering with respect to He, and has the explicit definition:

3 3 2
PO =@ (1) - 3(E o) )cp(l) (1.4)
He,
and is well-defined as an element of Lz(dpcl). Similarly :¢%: denotes Wick-ordering with respect to

e and the integral I:(p":dx is well-defined as an element of L2(dyuc) via an appropriate limiting
A
procedure. The fact that | is a well-defined probabability measure is a consequence of Nelson's estimate
[41.
The difficulty of studying equation (1.2) is that since the non-linear drift term :(t)3: is only defined
in some limiting sense we cannot interpret it in the Ito snese and hence we have to interpret it in a weak
sense. In [1] it is shown that the new measure P( defined by

T T
dp 1 3 lJ‘ 3 1e 3

o X - : s -— : % : > d
T cxp(2 bj‘<.(p (s):, dw(s)> 3 J <:97(s):,, C @ (s) o g s

+ %j ¢%0): ax)/z (1.5)
A
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where Z is a normalizing constant, is a well-defined probability measure. The proof uses both estimates
from quantum field theory and probabilistic arguments (in particular Novikov's criterion for an
exponential super-martingale to be a martingale).

In [1] a limit theorem at the process level when AT R2is also proved.

2. STOCHASTIC QUANTIZATION AND IMAGE ANALYSIS

Our interest in these problems arose from problems of image analysis. To see this note that the
measure yt corresponds to Hamiltonian

H = J [IIV(sz + mz o2+ l:cp‘:]dx .1)
A

where mg is the bare mass and A the coupling constant (taken both to be 1 in the previous section).
Corresponding to the Hamiltonian we can construct the limit Gibbs measure in the sense of Sinai (cf. [5)
and [4)).

Consider the following problems of Image Analysis.

Problem I.
Let Q C R2 be an open bounded set and let y € L=(Q) be given. We think of y as an observed

noisy image. We wish to construct an estimate ¢ € H!(Q) such that

(@)= J‘ [ - (plzdx + J.I vol Zdx
Q Q
is minimized.

It is natural to think of J(¢) as a conditional Hamiltonian Ho(¢ly) and construct a conditional
measure p(phy) by making appropriate probabilistic hypotheses on y (for example by associating an
Hamiltonian for ). To construct estimates we would have to compute statistics corresponding to the
measure p(¢hy) and this would be done using the ideas of stochastic quantization for both ¢ and y. A
start towards doing this has been made in [6).

Problem II.
Let QCR2, be bounded and open and let y € L=(Q). Consider the following variational problem.

Minimize

0.1 = fly-odx + [ gPax + 5 (D),
Q folly
where I is a closed set with I'c Q2 and 24(I") denotes the one-dimensional Hausdorff measure. The
interpretation of this functional is that we want to find an estimate ( 9, P) of the observed noisy image y
which preserves the discontinuities of the image, there are not too many discontinuities and f*isan

estimate of the discontinuities. It can be shown that a minimizing solution ( (3, ﬁ) exists [7], [8]. A

detailed study of the first variation of J has been done in [9].
It is not clear how to give a probabilistic interpretation to this problem. However, if we consider a
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lattice analog, then we can give a probabilistic interpretation by constructing a measure on the lattice
Z2x(Z2)*, where (Z2)* denotes the dual lattice. This was one of the motivations for our work reported
in [3). For details of this problem in a discrete space setting, see our paper [10] and the references cited
there.

3. RENORMALIZATION GROUP METHQODS AND A BELLMAN EQUATION

The main purpose of this section is to describe the renormalization group method of K.G. Wilson for
U-V cut-off removal as formulated by P.K. Mitter [11, 12]. A certain infinite-dimensional Hamilton-
Jacobi-Bellman equation arises in this context which has a natural control-theoretic interpretation.

Consider the linear parabolic equation in R x(0,T]

dp(x,t) = L:p‘(x,t) + 1 V(x,H)p5(x,t) 3.1)
€

1
pE(x,0) = pg(x) = K: exp(- : So(x))

Here € > 0, Sp(x) > 0, limo efn Kg =0 and LE is the formal adjoint of the diffusion operator
£

n n
2 0
L= 2.Y (32)
e 2 axf i1 ox,
We assume that f is a C™-function with bounded derivatives upto order 3, -V is a C=-function which is
bounded below by zero.

Following, for example, Fleming-Mitter [13], introduce the logaarithmic transformation
SE(x,t) = -€ln pE(x,t). (3.3)
Then S&(x,t) satisfies the Bellman-Hamilton-Jacobi equation

g- SE(x) - £ AS(x,0) + HYxLVS(x,0) = 0 (3.4)
t

$%(x,0) = - In pi(x),
and HE(x,t,p) = p'f(x) + %—Irpll2 - V(x,0).

Formally, letting € — 0, we obtain the Hamilton-Jacobi equation

g- S(x,t) + Hx,,VS(x,t) = 0, (3.5)
t

S(x,0) = Sy(x) .
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One can prove that eﬁ—TO € In p&(x,t) = -J(x,t) on compact subsets of R? x[0, T}, where J(x,t) is the value

function of a deterministic optimal control problem:

e
t
3Gt xg0 ) = Syxg) + —;—J‘Hu(s)llzds 3.6)
0
subject to
& _ fx(s) + u6) 3.7)
ds
x(0) = Xg

Let Uy = {(x0, u)lixy(0) = X0, xy(t) = x, ue L2(0,;RM}, and
J(x.t) = InfI(s xgwl(xg, w) e U ).

Then finally J satisfies (3.5). Note that this is a minimum energy optimum control problem. In a similar
manner, S&(x,t) has the interpretation of a value function for a Markovian stochastic opitmal control
problem [12].

We now return to the ideas of section 1. We consider the random field ¢(x) on R4, d>2 with
measure pc. The covariance C has a kernel C(x-y) given by the formula (in terms of Fourier

transforms)

C(x-y) = 1 = jddw -1; oty
2r) @

(the covariance operator is (-A)~! in contrast to the covariance operator (-A+I)"! in Section 1). Let the

measure o be defined by giving the kernel

@
d K2
dow jw.(x-
C‘(x.y) =J’ de_2 e“’( y)
2n) o

A computation gives the scaling properties

C (x-y) = x*7C, (x(x-y)), (3.8)

and if ¢ denotes the random field with measure oy given by covariance Cy and @ denotes the random

field with measure e, given by covariance Cj, then
a2
0(x) =x > ®(xx). (3.9)
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The measure Ho, is supported on smooth functions. By virtue of the above

d-2
(5
2
E, G0)- 400 =x © B, (@0xx)..00x) (3.10)

The problem of studying the behaviour of the n-point correlations for fixed xj,...,Xp as K = oo is

equivalent to studying the long distance (infinite volume limit) problem at a fixed cut-off.
Let V(9) be an even polynomial and consider the new measure with interaction Vg

dp_=dpc exp(-V,(9)) (.11)

and the corresponding characteristic function
Z (0= [ du_expo(0) (3.12)

There are two steps in the renormalization group method.

Step 1 (Scaling)
From (3.9),
d2
dp (@) = dp, (@) exp -Vo(x * ()] . (3.13)
Set
d2
Vol x* @) = 1°@0) ).
Then
z(H= j ducl@)exp(-q{,“’(w(-)) 3 ¢(fx>) (3.14)
2 4

where f‘(x) =x2  f(x'x).

Consider the transformation

1-ell, teR,.

We know,
%
d 1
do e cim.(x-y)

3 , and hence
Qn)’ o?

C,(x-y) =
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-o?
ddm c(F) i0.(x-y)
C;.l(x')') = 20’ w—z e (3.15)
Now Cj > ('.;_,_1 as operators.
Let €1 = Gy + C. (3.16)

In the above Cj is the covariance of the field @ at unit cut-off, Ce" 1 the covariance corresponding to

the lowered cut-off and Cl(h) the covariance corresponding to a fluctuating field.

From the (3.16) we have the decomposition ® = ¢(1) + §, { denoting the fluctuating field and ¢(1)

and { are independent Gaussian field. The covariance kernel of Cl(h) has exponential decay as

Ix-yl = oo,
We now integrate out the fluctuating field and scale back.

.[ diic, () exp(- @)= .[ d“C.«,,(q’(l))d“c.(h)e"p('"}ox)(q’ﬁo)

g2,
=Idp,cl (o)dp,cm) (g)exp[-qg"(c 2 oE') +t;)} .

The renormalization group transformation is defined by

d2
exp(-'l{x)(tb)) = J ducm (C)exp[-'l}ox)(e $ ¢>(e'l.) - C)] (3.17)
which sends
x) X)
L)

vg“) is called the effective potential.

A computation shows that 4 (dropping the superscript K) satisfies the infinite-dimensional
Bellman-Hamilton-Jacobi equation

oV '3 X%
it MR J.ddx [9—2— +x.V ]Q(x)) L
a 2 * 0(x)

529/ sV 8V }

t + 1 1

BD(x)BD(y)  SD(x) SD(y)

(3.18)

: J. d%. d% K(x-y)

where

d
[0 -4 -y) -
d 3 . (x y)e a:z.

K(x-y) = -
(2m)
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'l/OK) will have parameters which will have to be fixed so that we start at a critical surface. Studying the

fixed point of the renormalization group transformation is equivalent to studying the asymptotic behavior
of the equation (3.18) (at least in the small region).

Equation (3.18) has a stochastic control interpretation as suggested earlier in the section, and 'Vt(")

has the interpretation of a Bellman Value function. The machinery of non-linear semigroups may be

useful for this purpose.

4. NEW PROBLEMS

We would like to suggest that the ideas of the renormalization group method as exposed in the
previous section could be generalized to yield a dynamic renormalization group method which would be
relevant to problems of stochastic quantization. A program for this is described below.

We consider the stochastic differential equation (1.1). The solution of this equation for each t gives
us a Gaussian measure in path space. This path space Gaussian measure plays the role of the measure
uc of section 3. Cut-offs can be introduced for this measure and scaling properties analogous to (3.8)
and (3.9) obtained. Note that this Gaussian measure can be obtained via a Girsanov Transformation of
Wiener measure. The interaction measure is now introduced by a second Girsanov transformation as in
(1.5). The proposal is to proceed as in Section 3 where the renormalization group transformation is now
a transformation of Girsanov functionals thereby creating an effective Girsanov functional. The details
of this will be presented elsewhere.
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