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Abstract

Artists, advertisers, and photographers are routinely presented with the task of
creating an image that a viewer will remember. While it may seem like image
memorability is purely subjective, recent work shows that it is not an inexplicable
phenomenon: variation in memorability of images is consistent across subjects,
suggesting that some images are intrinsically more memorable than others, inde-
pendent of a subjects’ contexts and biases. In this paper, we used the publicly
available memorability dataset of Isola et al. [13], and augmented the object and
scene annotations with interpretable spatial, content, and aesthetic image proper-
ties. We used a feature-selection scheme with desirable explaining-away proper-
ties to determine a compact set of attributes that characterizes the memorability of
any individual image. We find that images of enclosed spaces containing people
with visible faces are memorable, while images of vistas and peaceful scenes are
not. Contrary to popular belief, unusual or aesthetically pleasing scenes do not
tend to be highly memorable. This work represents one of the first attempts at
understanding intrinsic image memorability, and opens a new domain of investi-
gation at the interface between human cognition and computer vision.

1 Introduction

(a) (b) (c) (d) (e) (f)

Figure 1: Which of these images are the most memorable? See footnote 1 for the answer key.

When glancing at a magazine or browsing the Internet we are continuously exposed to photographs
and images. Despite this overflow of visual information, humans are extremely good at remembering
thousands of pictures and a surprising amount of their visual details [1, 15, 16, 25, 30]. But, while
some images stick in our minds, others are ignored or quickly forgotten. Artists, advertisers, and
photographers are routinely challenged by the question “what makes an image memorable?” and
are then presented with the task of creating an image that will be remembered by the viewer.

While psychologists have studied human capacity to remember visual stimuli [1,15,16,25,30], little
work has systematically studied the differences in stimuli that make them more or less memorable.
In a recent paper [13], we quantified the memorability of 2222 photographs as the rate at which
subjects detect a repeat presentation of the image a few minutes after its initial presentation. The
memorability of these images was found to be consistent across subjects and across a variety of
contexts, making some of these images intrinsically more memorable than others, independent of
the subjects’ past experiences or biases. Thus, while image memorability may seem like a quality
that is hard to quantify, our recent work suggests that it is not an inexplicable phenomenon.
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Figure 2: Distribution of memorability M of photographs with respect to unusualness U (left), aesthetics A
(middle) and subjects’ guess on how memorable an image is m (right). All 2222 images from the memorability
dataset were rated along these three aspects by 10 subjects each. Contrary to popular belief, unusual and
aesthetically pleasing images are not predominantly the most memorable ones. Also shown are example images
that demonstrate this (e.g. (f) shows an image that is very aesthetic, but not memorable). Clearly, which images
are memorable is not intuitive, as seen by poor estimates from subjects (g).

But then again, subjective intuitions of what make an image memorable may need to be revised. For
instance, look at the photographs of Figure 1. Which images do you think are more memorable?1

We polled various human and computer vision experts to get ideas as to what people think drives
memorability. Among the most frequent responses were unusualness (8 out of 16) and aesthetic
beauty (7 out of 16). Surprisingly, as shown in Figure 2, we find that these are weakly correlated
(and, in fact, negatively correlated) with memorability as measured in [13]. Further, when subjects
were asked to rate how memorable they think an image would be, their responses were weakly
(negatively) correlated to true memorability (Figure 2)!

While our previous work aimed at predicting memorability [13], here we aim to better understand
memorability. Any realistic use of the memorability of images requires an understanding of the key
factors that underly memorability; be it for cognitive scientists to discover the mechanisms behind
memory or for advertisement designers to create more effective visual media.

Thus, the goal of this paper is to identify a collection of human-understandable visual attributes that
are highly informative about image memorability. First, we annotate the memorability dataset [13]
with interpretable and semantic attributes. Second, we employ a greedy feature selection algorithm
with desirable explaining-away properties that allows us to explicitly determine a compact set of
characteristics that make an image memorable. Finally, we train automatic detectors that predict
these characteristics, which are in turn used to predict memorability.

2 Related work

Visual memory: People have been shown to have a remarkable ability to remember particular
images in long-term memory, be they everyday scenes, objects and events [30], or the shapes of
arbitrary forms [25]. As most of us would expect, image memorability depends on the user context
and is likely to be subject to some inter-subject variability [12]. However, in our previous work [13],
we found that despite this expected variability, there is also a large degree of agreement between
users. This suggests that there is something intrinsic to images that make some more memorable than
others, and in [13] we developed a computer vision algorithm to predict this intrinsic memorability.
While being a useful goal, prediction systems are often uninterpretable, giving us little insight into
what makes the image memorable. Hence in this work, we focus on identifying the characteristics of
images that make them memorable. A discussion of different models of memory retrieval [3,11,27]
and formation [22] are beyond the scope of this paper.

Attributes for interpretability: Attributes-based visual recognition has received a lot of attention
in computer vision literature in recent years. Attributes can be thought of as mid-level interpretable
features such as “furry” and “spacious”. Attributes are attractive because they allow for transfer-
learning among categories that share attributes [18]. Attributes also allow for descriptions of pre-
viously unseen images [8]. In this work, we exploit attributes to understand which properties of an
image make it memorable.

Predicting image properties: While image memorability is vastly unexplored, many other pho-
tographic properties have been studied in the literature, such as photo quality [21], saliency [14],
attractiveness [20], composition [10, 24], color harmony [5], and object importance [29]. Most re-
lated to our work is the recent work of Dhar et al. [7], who use attributes to predict the aesthetic
quality of an image. Towards the goal of improved prediction, they use a list of attributes known to
influence the aesthetic quality of an image. In our work, since it is not known what makes an image

1Images (a,d,e) are among the most memorable images in our dataset, while (b,c,f) are among the least.
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(a) ↑attractive (b) ↑funny (c) ↑makes-sad (d) ↑qual. photo (e) ↑peaceful

(f) ↓attractive (g) ↓funny (h) ↓makes-sad (i) ↓qual. photo (j) ↓peaceful

Figure 3: Example images depicting varying values of a subset of attributes annotated by subjects.

memorable, we use an exhaustive list of attributes, and use a feature selection scheme to identify
which attributes make an image memorable.

3 Attribute annotations

We investigate memorability using the memorability dataset from [13]. The dataset consists of 2222
natural images of everyday scenes and events selected from the SUN dataset [32], as well as mem-
orability scores for each image. The memorability scores were obtained via 665 subjects playing
a ‘memory game’ on Amazon’s Mechanical Turk. A series of natural images were flashed for 1
second each. Subjects were instructed to press a key whenever they detected a repeat presentation of
an image. The memorability score of an image corresponds to the number of subjects that correctly
detected a repeat presentation of the image. The rank correlation between two halves of the subjects
was found to be 0.75, providing evidence for intrinsic image memorability. Examples images from
this dataset can be seen throughout the paper.

The images in the memorability dataset come from ∼700 scene categories [32]. They have been
labeled via the LabelMe [26] online annotation tool, and contain about ∼1300 object categories.
While the scene and object categories depicted in an image may very well influence its memorability,
there are many other properties of an image that could be at play. To get a handle on these, we
constructed an extensive list of image properties or attributes, and had the 2222 images annotated
with these properties using Amazon’s Mechanical Turk. An organization of the attributes collected
is shown in Table 1. Binary attributes are listed with a ‘?’, while multi-valued attributes (on a scale
of 1-5) are listed with a ‘;’. Each image was annotated by 10 subjects for each of the attributes.
The average response across the subjects was stored as the value of the attribute for an image. The
‘Length of description’ attribute was computed as the average number of words subjects used to
describe the image (free-form). The spatial layout attributes were based on the work of Oliva and
Torralba [23]. Many of the aesthetic attributes are based on the work of Dhar et al. [7].

We noticed that images containing people tend to be highly memorable. However even among
images containing people, there is a variation in memorability that is consistent across subjects (split
half rank correlation = 0.71). In an effort to better understand memorability of images containing
people, we collected several attributes that are specific to people. These are listed in Table 2. The
annotations of these attributes were collected only on images containing people (and are considered
to be absent for images not containing people). This is compactly captured by the ‘contains a person’
attribute.

Some questions had multiple choice answers (for example, Age can take four values: child, teenager,
adult and senior). When applicable, the multiple choices are listed in parentheses in Table 2. Each
choice was treated as a separate binary attribute (e.g. is child). Some of the people-attributes were
referring to the entire image (‘whole image’) while others were referring to each person in the image
(‘per-person’). The per-person attributes were aggregated across all subjects and all people in the
image. See Figure 3 for example attribute annotations.
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Table 1: General attributes
Spatial layout: Enclosed space vs. Open space; Perspective view vs. Flat view; Empty space vs.
Cluttered space; Mirror symmetry vs. No mirror symmetry (cf. [23])
Aesthetics: Post-card like? Buy this painting? Hang-on wall? Is aesthetic? Pleasant vs. Unpleas-
ant; Unusual or strange vs. Routine or mundane; Boring vs. Striking colors; High quality (expert
photography) vs. Poor quality photo; Attractive vs. Dull photo; Memorable vs. Not memorable; Sky
present? Clear vs. Cloudy sky; Blue vs. Sunset sky; Picture of mainly one object vs. Whole scene;
Single focus vs. Many foci; Zoomed-in vs. Zoomed-out; Top down view vs. Side view (cf. [7])
Emotions: Frightening? Arousing? Funny? Engaging? Peaceful? Exciting? Interesting? Mysteri-
ous? Strange? Striking? Makes you happy? Makes you sad?
Dynamics: Action going on? Something moving in scene? Picture tells a story? About to happen?
Lot going on? Dynamic scene? Static scene? Have a lot to say; Length of description
Location: Famous place? Recognize place? Like to be present in scene? Many people go here?
Contains a person?

Enclosed space 

Person: face visible 
Person: eye contact 

Number of people in image 
Sky 

0.36 

922 Features 

Attributes 
Scenes 
Objects 
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Figure 4: Correlation of attribute, scene, and object an-
notations with memorability. We see that the attributes
are most strongly correlated with memorability. Many of
the features are correlated with each other (e.g. face vis-
ible and eye contact), suggesting a need for our feature
selection strategy to have explaining-away properties.

For further analysis, we utilize the most fre-
quent 106 of the∼1300 objects present in the
images (their presence, count, area in the im-
age, and for a subset of these objects, area
occupied in four quadrants of the image), 237
of the ∼700 scene categories, and the 127
attributes listed in Tables 1 and 2. We also
append image annotations with a scene hi-
erarchy provided with the SUN dataset [32]
that groups similar categories into a meta-
category (e.g.indoor), as well as an object hi-
erarchy derived from the WordNet [9], that
includes meta-categories such as organism
and furniture. The scene hierarchy resulted
in 19 additional scene meta-categories, while
the object hierarchy resulted in 134 additional
meta-categories. From here on, we will re-
fer to all these annotations as features. We
have a total of 923 features. The goal now
is to determine a concise subset of these fea-
tures that characterizes the memorability of
an image. Since all our features are human-
interpretable, this allows us to gain an understanding of what makes an image memorable. Figure 4
shows the correlation of different feature types with memorability.

4 Feature selection

Our goal is to identify a compact set of features that characterizes the memorability of an image.
We note that several of our features are redundant. Some by design (such as pleasant and aesthetic)
to better capture subjective notions, but others due to contextual relationships that prevail in our
visual world (e.g. outdoor images typically contain sky). Hence, it becomes crucial that our feature
selection algorithm has explaining away properties so as to determine a set of distinct characteristics
that make an image memorable. Not only is this desirable via the Occam’s razor view, it is also
practical from an applications stand-point.

Moreover, we note that some features in our set subsume other features. For example, since the
person attributes (e.g. hair-color) are only labeled for images containing people, they include the
person presence / absence information in them. If a naive feature selection approach picked ‘hair-
color’ as an informative feature, it would be unclear whether the mere presence or absence of a
person in the image is what contributes to memorability, or if the color of the hair really matters.
This issue of miscalibration of information contained in a feature also manifests itself in a more
subtle manner. Our set of features include inherently multi-valued information (e.g. mood of the
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Table 2: Attributes describing people in image

Visibility (per-person): Face visible? Making eye-contact?
Demographics (per-person): Gender (male, female)? Age (child, teenager, adult, senior)? Race
(Caucasian, SouthEast-Asian, East-Asian, African-American, Hispanic)?
Appearance (per-person): Hair length (short, medium, long, bald)? Hair color (blonde, black,
brown, red, grey)? Facial hair?
Clothing (per-person): Attire (casual, business-casual, formal)? Shirt? T-shirt? Blouse? Tie?
Jacket? Sweater? Sweat-shirt? Skirt? Trousers? Shorts? A uniform?
Accessories (per-person): Dark eye-glasses? Clear eye-glasses? Hat? Earrings? Watch? Wrist
jewelry? Neck jewelry? Belt? Finger Ring(s)? Make-up?
Activity (per-person): Standing? Sitting? Walking? Running? Working? Smiling? Eating?
Clapping? Engaging in art? Professional activity? Buying? Selling? Giving a speech? Holding?
Activity (whole image): Sports? Adventurous? Tourist? Engaging in art? Professional? Group?
Subject (whole image): Audience? Crowd? Group? Couple? Individual? Individuals interacting?
Scenario (whole image): Routine/mundane? Unusual/strange? Pleasant? Unpleasant? Top-down?

image), as well as inherently binary information like “a car is present in the image”. It is important
to calibrate the features by the amount of information captured by them.

Employing an information-theoretic approach to feature selection allows us to naturally capture both
these goals: selecting a compact set of non-redundant features and calibrating features based on the
information they contain.

4.1 Information-theoretic

We formulate our problem as that of selecting features that maximize mutual information with mem-
orability, such that the total number of bits required to encode all selected features (i.e. the number
of bits required to describe an image using the selected features) does not exceed B. Formally,

F ∗ = arg max I (F ;M)
s.t. C(F ) ≤ B (1)

where F is a subset of the features, I (F ;M) is the mutual information between F and memorability
M , B is the budget (in bits), and C(F ) is the total number of bits required to encode F . We assume
that each feature is encoded independently, and thus

C(F ) =
n∑

i=1

C(fi), fi ∈ F (2)

where C(fi) is the number of bits required to encode feature fi, computed as H(fi), the entropy of
feature fi across the training images.

This optimization is combinatorial in nature, and is NP-hard to solve. Fortunately, the work of
Krause et al. [17] and Leskovec et al. [19] provides us with a computationally feasible algorithm
to solve the problem. Krause et al. [17] showed mutual information to be a submodular function.
A greedy optimization scheme to maximize submodular functions was shown to be optimal, with a
constant approximation factor of (1 − 1

e ); i.e. no polynomial time algorithm can provide a tighter
bound. Subsequently, Leskovec et al. [19] presented a similar greedy algorithm to select features,
where each feature has a different cost associated with it (as in our set-up). The algorithm selects
features with the maximum ratio of improvement in mutual information to their cost, while the total
cost of the features does not exceed the allotted budget. In parallel, the cost-less version of the
greedy algorithm is also used to select features (still not exceeding budget). Finally, of the two, the
set of features that provides the higher mutual information is retained. This solution is at most a
constant factor 1

2 (1 − 1
e ) away from the optimal solution [19]. Moreover, Leskovec et al. [19] also

provided a lazy evaluation scheme that provides significant computation benefits in practice, while
still maintaining the bound.
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However, this lazy-greedy approach still requires the computation of mutual information between
memorability and subsets of features. At each iteration, the additional information provided by a
candidate feature fi over an existing set of features F would be the following:

IG (fi) = I (F ∪ fi;M)− I (F ;M) (3)

This computation is not feasible given our large number of features and limited training data. Hence,
we greedily add features that maximize an approximation to the mutual information between a subset
of features and memorability, as also employed by Ullman et al. [31]. The additional information
provided by a candidate feature fi over an existing set of features F is approximated as:

ÎG (fi) = min
j

(I (fj ∪ fi;M)− I (fj ;M)) , fj ∈ F (4)

The ratio of this approximation to the cost of the feature is used as the score to evaluate the usefulness
of features during greedy selection. Intuitively, this ensures that the feature selected at each itera-
tion maximizes the per-bit minimal gain in mutual information over each of the individual features
already selected.

In order to maximize the mutual information (approximation) beyond the greedy algorithm, we
employ multiple passes on the feature set. Given a budget B, we first greedily add features using
a budget of 2B, and then greedily remove features (that reduce the mutual information the least)
until we fall within the allotted budget B. This allows for the features that were added greedily
early on in the forward pass, but are explained away by subsequently added features, to be dropped.
These forward and backward passes are repeated 4 times each. Note that at each pass, the objective
function cannot decrease, and the final solution is still guaranteed to have a total cost within the
allotted budget B.

4.2 Predictive

The behavior of the above approximation to mutual information has not been formally studied.
While this may provide a good means to prune out many candidate features, it is unclear how close
to optimal the selections will be. Feature selection within the realm of a predictive model allows us
to better capture features that achieve a concrete and practical measure of performance: “which set
of features allows us to make the best predictions about an image’s memorability?” While selecting
such features would be computationally expensive to do over all our 923 features, using a pruned set
of features obtained via information-theoretic selection makes this feasible. We employ a support
vector regressor (SVR, [28]) as our predictive model.

Given a set of features selected by the information-theoretic method above, we greedily select fea-
tures (again, while maintaining a budget) that provide the biggest boost in regression performance
(Spearman’s rank correlation between predicted and ground truth memorabilities) over the training
set. The same cost-based lazy-greedy selection algorithm is used as above, except with only a single
pass over the feature set. This is inspired from the recent work of Das et al. [6], who analyzed
the performance of greedy approaches to maximize submodular-like functions. They found that the
submodularity ratio of a function is the best predictor of how well a greedy algorithm performs.
Moreover, they found that in practice, regression performance has a high submodularity ratio, justi-
fying the use of a greedy approach.

An alternative to greedy feature selection would be to learn a sparse-regressor. However, the param-
eter that controls the sparsity of the vector is not intuitive and interpretable. In the greedy feature
selection approach, the budget of bits, which is interpretable, can be explicitly enforced.

5 Results

Attribute annotations help: We first tested the degree to which each general feature-type annota-
tion in our feature set is effective at predicting memorability. We split the dataset from [13] into
2/3 training images scored by half the subjects and 1/3 test images scored by the left out half of
the subjects. We trained ε-SVRs [4] to predict memorability, using grid search to select cost and
ε hyperparameters. For the new attributes we introduced, and for the object and scene hierarchy
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features, we used RBF kernels, while for the rest of the features we used the same kernel functions
as in [13]. We report performance as Spearman’s rank correlation (ρ) between predicted and ground
truth memorabilities averaged over 10 random splits of the data.

Table 3: Performance (rank correlation)
of different types of features at predicting
image memorability.

Feature type Perf
Object annotations 0.494
Scene annotations 0.415

Attribute annotations 0.528
Objects + Scenes + Attributes 0.554

Results are shown in Table 3. We found that our new
attributes annotations performed quite well (ρ = 0.528):
they outperform higher dimensional object and scene
annotations.

Feature selection: We next selected the individual best
features in our set according to the feature selection al-
gorithms described above. To compute feature entropy
and mutual information, we used histogram estimators
on our training data, with 7 bins per feature and 10 bins
for memorability. Using these estimators, and measur-
ing feature set cost according to (2), our entire set of 923 features has a total cost of 252 bits. We
selected reduced feature sets by both running information-theoretic selection and predictive selec-
tion on our 2/3 training splits, for budgets ranging from 1 to 100-bits.

1 2 3 4 5 6 7

0.10
0.15
0.20
0.25
0.30
0.35
0.40
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0.55
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2

Figure 5: Regression performance vs.
log bit budget of various types of fea-
ture selection. The diminishing returns
(submodular-like) behavior is evident.

For predictive selection, we further split our training set in half
and trained SVRs on one half to predict memorability on the
other half. At each iteration of selection, we greedily selected
the feature that maximized predictive performance averaged
over 3 random splits trials, with predictive performance again
measured as rank correlation between predictions and ground
truth memorabilities. Since predictive selection is computa-
tional expensive, we reduced our candidate feature set by first
pruning with information-theoretic selection. We took as can-
didates the union of all features that were selected using our
information-theoretic approach for a budgets 1,2,...,100 bits.
Taking this union, rather than just the features selected at a
100-bit budget, ensures that candidates were not missed when
they are only effective in small budget sets.

Next, we validated our selections on our 1/3 test set. We
trained SVRs using each of our selected feature sets and made
predictions on the test set. Both selection algorithms create feature sets that are similarly effective
at predicting memorability (Figure 5). Using just a 16-bit budget, information-theoretic selection
achieves ρ = 0.472, and predictive selection achieves ρ = 0.490 (this budget resulted in selected
sets with 6 to 11 features). This performance is comparable to the performance we get using much
costlier features, such as our full list of object annotations (540 features, ∼106 bits, ρ = 0.490). As
a baseline, we also compared against randomly selecting feature sets up to the same budget, which,
for 16 bits, only gives ρ = 0.119.

Table 4: Information-theoretic and predictive fea-
ture selections for a budget of 10 bits. Correlations
with memorability are listed after each feature (arrow
indicates direction of correlation). Selections and
correlations run on entire dataset.

Information-theoretic Predictive
↑ enclosed space 0.39 ↑ enclosed space 0.39
↑ face visible 0.37 ↑ face visible 0.37
↓ peaceful -0.33 ↑ tells a story 0.18
↓ sky present -0.35 ↑ recognize place 0.16

↓ peaceful -0.33

We created a final list of features by run-
ning the above feature selection methods
on the entire dataset (no held out data)
for a budget of 10 bits. This produced
the sets listed in Table 4. If one is trying
to understand memorability, these fea-
tures are a good place to start. In Fig-
ure 6, we explore these features further
by hierarchically clustering our images
according to predictive set. Each cluster
can be thought of as specifying type of
image with respect to memorability. For
example, on the far right we have highly memorable “pictures of people in an enclosed space” and
on the far left we have forgettable “peaceful, open, unfamiliar spaces, devoid of people.”

Automatic prediction: While our focus in this paper is on understanding memorability, we hope
that by understanding the phenomenon we may also be able to build better automatic predictors of
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0.84

0.77 0.85 0.72 0.66

0.63  0.67 0.57 0.63

  enclosed_space > 0.47

  peaceful > 0.75   face_visible > 0.47

  face_visible > 0.21   face_visible > 0.30   peaceful > 0.75

  recognize_place > 0.45   recognize_place > 0.55

(a) Hierarchical clustering

Figure 6: Hierarchical clustering of images in ‘memorability space’ as achieved via a regression-tree [2], along
with examples images from each cluster. Memorability of each cluster given at the leaf nodes, and also depicted
as shade of cluster image borders (darker borders correspond to lower memorability than brighter borders).

it. The only previous work predicting memorability is our recent paper [13]. In that paper, we made
predictions on the basis of a suite of global image features – pixel histograms, GIST, SIFT, HOG,
SSIM [13]. Running the same methods on our current 2/3 data splits achieves ρ = 0.468. Here we
attempt to do better by using our selected features as an abstraction layer between raw images and
memorability.

Table 5: Performance (rank
correlation) of automatic
memorability prediction
methods.

Features Perf.
Direct [13] 0.468

Indirect 0.436
Direct + indirect 0.479

We trained a suite of SVRs to predict annotations from images, and
another SVR to predict memorability from these predicted anno-
tations. For image features, we used the same methods as [13].
For the annotation types, we used the feature types selected by our
100-bit predictive selection on 2/3 training sets. To predict the an-
notations for each image in our training set, we split the training
set in half and predicted annotations for one half by training on the
other half, and vice versa, covering both halves with predictions.
We then trained a final SVR to predict memorability on the test set
in three ways: 1) using only image features (Direct), 2) using only predicted annotations (Indirect),
and 3) using both (Direct + Indirect) (Table 5). Combining indirect predictions with direct predic-
tions performed best (ρ = 0.479), slightly outperforming the direct prediction method of our previous
work [13] (ρ = 0.468).

6 Conclusion

The goal of this work was to characterize aspects of an image that make it memorable. Understand-
ing these characteristics is crucial for anyone hoping to work with memorability, be they psychol-
ogists, advertisement-designers, or photographers. We augmented the object and scene annotations
of the dataset of Isola et al. [13] with attribute annotations describing the spatial layout, content,
and aesthetic properties of the images. We employed a greedy feature selection scheme to obtain
compact lists of features that are highly informative about memorability and highly predictive of
memorability. We found that images of enclosed spaces containing people with visible faces are
memorable, while images of vistas and peaceful settings are not. Contrary to popular belief, unusu-
alness and aesthetic beauty attributes are not associated with high memorability – in fact, they are
negatively correlated with memorability – and these attributes are not among our top few selections,
indicating that other features more concisely describe memorability (Figure 4).

Through this work, we have begun to uncover some of the core features that contribute to image
memorability. Understanding how these features interact to actually produce memories remains an
important direction for future research. We hope that by parsing memorability into a concise and
understandable set of attributes, we have provided a description that will interface well with other
domains of knowledge and may provide fodder for future theories and applications of memorability.
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