Chez Pierre

Presents ...

Monday, February 24, 2020 12:00pm Noon

MIT Room 4-331

Ni Ni – University of California, Los Angeles

"MnBi₂Te₄.nBi₂Te₃: from intrinsic antiferromagnetic to ferromagnetic topological insulators"

Magnetic topological insulators provide an important materials platform to explore emergent quantum phenomena. Recently, MnBi₂Te₄ was discovered to be the first material realization of a van der Waals antiferromagnetic topological insulator (TI). In its two-dimensional limit, MnBi₂Te₄ manifests zero-field quantum anomalous Hall (QAH) effect up to 1.4 K and field-induced QAH effect at a record high temperature of 6.5 K above 7.6 T where all spins enter the forced ferromagnetic state. To realize the QAH effect at lower fields and higher temperatures, it is essential to search for intrinsic antiferromagnetic TIs with lower saturation fields or ferromagnetic TIs. In this talk, I will present our discovery of two new magnetic topological materials MnBi₂Te₄.nBi₂Te₃ (n=1 and 3) which consist of alternating [MnBi₂Te₄] and n[Bi₂Te₃] layers. I will show that by reducing the interlayer magnetic coupling with the increasing number of spacer [Bi₂Te₃] layers, MnBi₂Te₄.nBi₂Te₃ can be tuned from Z2 antiferromagnetic TIs (n=0,1,2) to ferromagnetic axion insulators. Additionally, the superlattice nature of MnBi₂Te₄.nBi₂Te₃ may make various heterostructures of [MnBi₂Te₄] and [Bi₂Te₃] layers possible by exfoliation, providing a rare tunable material platform to investigate various emergent phenomena arising from the interplay between magnetism and band topology.