
1/21

Computing High-Precision Lewis Weights

Maryam Fazel 1, Yin Tat Lee 1, Swati Padmanabhan1, and
Aaron Sidford2

1University of Washington; 2Stanford University

2/21

Problem Statement

3/21

Warmup: John Ellipsoid

I Smallest ellipsoid enclosing a given set of points {ai}mi=1 ∈ Rn

I Algorithmic tool in cutting-plane method
I Applied in minimizing error covariance matrix
I To compute, find M � 0 such that

minimizeM�0 det(M−1)
subject to a>1 Ma1 ≤ 1,

...
a>mMam ≤ 1.

I Optimal ellipsoid is M−1 =
∑m

i=1 w iaia
>
i , where

a>i (A>diag(w)A)−1ai = 1.

Theoretical Computer Science,
Mathematical OptimizationStatistics,
Machine Learning

3/21

Warmup: John Ellipsoid
I Smallest ellipsoid enclosing a given set of points {ai}mi=1 ∈ Rn

I Algorithmic tool in cutting-plane method
I Applied in minimizing error covariance matrix
I To compute, find M � 0 such that

minimizeM�0 det(M−1)
subject to a>1 Ma1 ≤ 1,

...
a>mMam ≤ 1.

I Optimal ellipsoid is M−1 =
∑m

i=1 w iaia
>
i , where

a>i (A>diag(w)A)−1ai = 1.

Theoretical Computer Science,
Mathematical OptimizationStatistics,
Machine Learning

3/21

Warmup: John Ellipsoid
I Smallest ellipsoid enclosing a given set of points {ai}mi=1 ∈ Rn

I Algorithmic tool in cutting-plane method

I Applied in minimizing error covariance matrix
I To compute, find M � 0 such that

minimizeM�0 det(M−1)
subject to a>1 Ma1 ≤ 1,

...
a>mMam ≤ 1.

I Optimal ellipsoid is M−1 =
∑m

i=1 w iaia
>
i , where

a>i (A>diag(w)A)−1ai = 1.

Theoretical Computer Science,
Mathematical OptimizationStatistics,

Machine Learning

3/21

Warmup: John Ellipsoid
I Smallest ellipsoid enclosing a given set of points {ai}mi=1 ∈ Rn

I Algorithmic tool in cutting-plane method
I Applied in minimizing error covariance matrix

I To compute, find M � 0 such that

minimizeM�0 det(M−1)
subject to a>1 Ma1 ≤ 1,

...
a>mMam ≤ 1.

I Optimal ellipsoid is M−1 =
∑m

i=1 w iaia
>
i , where

a>i (A>diag(w)A)−1ai = 1.

Theoretical Computer Science,
Mathematical OptimizationStatistics,
Machine Learning

3/21

Warmup: John Ellipsoid
I Smallest ellipsoid enclosing a given set of points {ai}mi=1 ∈ Rn

I Algorithmic tool in cutting-plane method
I Applied in minimizing error covariance matrix
I To compute, find M � 0 such that

minimizeM�0 det(M−1)
subject to a>1 Ma1 ≤ 1,

...
a>mMam ≤ 1.

I Optimal ellipsoid is M−1 =
∑m

i=1 w iaia
>
i , where

a>i (A>diag(w)A)−1ai = 1.

Theoretical Computer Science,
Mathematical OptimizationStatistics,
Machine Learning

3/21

Warmup: John Ellipsoid
I Smallest ellipsoid enclosing a given set of points {ai}mi=1 ∈ Rn

I Algorithmic tool in cutting-plane method
I Applied in minimizing error covariance matrix
I To compute, find M � 0 such that

minimizeM�0 det(M−1)
subject to a>1 Ma1 ≤ 1,

...
a>mMam ≤ 1.

I Optimal ellipsoid is M−1 =
∑m

i=1 w iaia
>
i , where

a>i (A>diag(w)A)−1ai = 1.

Theoretical Computer Science,
Mathematical OptimizationStatistics,
Machine Learning

4/21

More Generally: Lewis Ellipsoid

Problem Statement 1

Find the Lewis Ellipsoid M � 0 that satisfies

minimizeM�0 det(M−1)

subject to
∑m

i=1(a>i Mai)
p/2 ≤ 1

.

p =∞ gives
John Ellipsoid

I Lewis ellipsoid satisfies M−1 =
∑m

i=1 wiaia
>
i , where

a>i (A>diag(w)1−2/pA)−1ai=w
2/p
i .

w ∈ Rm
≥0

“Lewis weights”

Existence proved
by D.R. Lewis in 1978

I Applications:

I sampling important rows of data matrix,
I computing the Lee-Sidford self-concordant barrier

Statistics, Machine Learning Mathematical Optimization

4/21

More Generally: Lewis Ellipsoid minimizeM�0 det(M−1)
subject to a>i Mai ≤ 1,∀i

Problem Statement 1

Find the Lewis Ellipsoid M � 0 that satisfies

minimizeM�0 det(M−1)

subject to
∑m

i=1(a>i Mai)
p/2 ≤ 1

.

p =∞ gives
John Ellipsoid

I Lewis ellipsoid satisfies M−1 =
∑m

i=1 wiaia
>
i , where

a>i (A>diag(w)1−2/pA)−1ai=w
2/p
i .

w ∈ Rm
≥0

“Lewis weights”

Existence proved
by D.R. Lewis in 1978

I Applications:

I sampling important rows of data matrix,
I computing the Lee-Sidford self-concordant barrier

Statistics, Machine Learning Mathematical Optimization

4/21

More Generally: Lewis Ellipsoid

Problem Statement 1

Find the Lewis Ellipsoid M � 0 that satisfies

minimizeM�0 det(M−1)

subject to
∑m

i=1(a>i Mai)
p/2 ≤ 1

.

p =∞ gives
John Ellipsoid

I Lewis ellipsoid satisfies M−1 =
∑m

i=1 wiaia
>
i , where

a>i (A>diag(w)1−2/pA)−1ai=w
2/p
i .

w ∈ Rm
≥0

“Lewis weights”

Existence proved
by D.R. Lewis in 1978

I Applications:

I sampling important rows of data matrix,
I computing the Lee-Sidford self-concordant barrier

Statistics, Machine Learning Mathematical Optimization

4/21

More Generally: Lewis Ellipsoid

Problem Statement 1

Find the Lewis Ellipsoid M � 0 that satisfies

minimizeM�0 det(M−1)

subject to
∑m

i=1(a>i Mai)
p/2 ≤ 1

.

p =∞ gives
John Ellipsoid

I Lewis ellipsoid satisfies M−1 =
∑m

i=1 wiaia
>
i , where

a>i (A>diag(w)1−2/pA)−1ai=w
2/p
i .

w ∈ Rm
≥0

“Lewis weights”

Existence proved
by D.R. Lewis in 1978

I Applications:

I sampling important rows of data matrix,
I computing the Lee-Sidford self-concordant barrier

Statistics, Machine Learning Mathematical Optimization

4/21

More Generally: Lewis Ellipsoid

Problem Statement 1

Find the Lewis Ellipsoid M � 0 that satisfies

minimizeM�0 det(M−1)

subject to
∑m

i=1(a>i Mai)
p/2 ≤ 1

.

p =∞ gives
John Ellipsoid

I Lewis ellipsoid satisfies M−1 =
∑m

i=1 wiaia
>
i , where

a>i (A>diag(w)1−2/pA)−1ai=w
2/p
i .

w ∈ Rm
≥0

“Lewis weights”

Existence proved
by D.R. Lewis in 1978

I Applications:

I sampling important rows of data matrix,
I computing the Lee-Sidford self-concordant barrier

Statistics, Machine Learning Mathematical Optimization

4/21

More Generally: Lewis Ellipsoid

Problem Statement 1

Find the Lewis Ellipsoid M � 0 that satisfies

minimizeM�0 det(M−1)

subject to
∑m

i=1(a>i Mai)
p/2 ≤ 1

.

p =∞ gives
John Ellipsoid

I Lewis ellipsoid satisfies M−1 =
∑m

i=1 wiaia
>
i , where

a>i (A>diag(w)1−2/pA)−1ai=w
2/p
i .

w ∈ Rm
≥0

“Lewis weights”

Existence proved
by D.R. Lewis in 1978

I Applications:
I sampling important rows of data matrix,

I computing the Lee-Sidford self-concordant barrier

Statistics, Machine Learning Mathematical Optimization

4/21

More Generally: Lewis Ellipsoid

Problem Statement 1

Find the Lewis Ellipsoid M � 0 that satisfies

minimizeM�0 det(M−1)

subject to
∑m

i=1(a>i Mai)
p/2 ≤ 1

.

p =∞ gives
John Ellipsoid

I Lewis ellipsoid satisfies M−1 =
∑m

i=1 wiaia
>
i , where

a>i (A>diag(w)1−2/pA)−1ai=w
2/p
i .

w ∈ Rm
≥0

“Lewis weights”

Existence proved
by D.R. Lewis in 1978

I Applications:
I sampling important rows of data matrix,
I computing the Lee-Sidford self-concordant barrier

Statistics, Machine Learning Mathematical Optimization

5/21

Optimization Perspective

Problem Statement 2

Lewis weights are the solution to the convex program

argminw≥0 − log det(A>diag(w)A) + 1
1+α1

>w1+α.

α = 2
p−2

I Optimality condition of the above program is

a>i (A>diag(w)1−2/pA)−1ai = w
2/p
i .

5/21

Optimization Perspective

Problem Statement 2

Lewis weights are the solution to the convex program

argminw≥0 − log det(A>diag(w)A) + 1
1+α1

>w1+α.

α = 2
p−2

I Optimality condition of the above program is

a>i (A>diag(w)1−2/pA)−1ai = w
2/p
i .

5/21

Optimization Perspective minimizeM�0 det(M−1)

subject to
∑m

i=1(a>i Mai)
p/2 ≤ 1.

Problem Statement 2

Lewis weights are the solution to the convex program

argminw≥0 − log det(A>diag(w)A) + 1
1+α1

>w1+α.

α = 2
p−2

I Optimality condition of the above program is

a>i (A>diag(w)1−2/pA)−1ai = w
2/p
i .

6/21

Our Goal

I A high precision algorithm to compute w satisfying w≈εw

I For many applications, approximate Lewis weights suffice!
I High-precision Lewis weights useful in computing volume of

polytope.

I Runtime measured in number of leverage score computations
I Concretely:

Compute `p Lewis weights with poly log(1/ε) leverage scores.

(1− ε)wi ≤ w i ≤ (1 + ε)wiRuntime poly log(1/ε)

sampling

σi (w) = wi · a>i (A>diag(w)A)−1ai

6/21

Our Goal

I A high precision algorithm to compute w satisfying w≈εw

I For many applications, approximate Lewis weights suffice!
I High-precision Lewis weights useful in computing volume of

polytope.

I Runtime measured in number of leverage score computations
I Concretely:

Compute `p Lewis weights with poly log(1/ε) leverage scores.

(1− ε)wi ≤ w i ≤ (1 + ε)wiRuntime poly log(1/ε)

sampling

σi (w) = wi · a>i (A>diag(w)A)−1ai

6/21

Our Goal

I A high precision algorithm to compute w satisfying w≈εw

I For many applications, approximate Lewis weights suffice!
I High-precision Lewis weights useful in computing volume of

polytope.

I Runtime measured in number of leverage score computations
I Concretely:

Compute `p Lewis weights with poly log(1/ε) leverage scores.

(1− ε)wi ≤ w i ≤ (1 + ε)wiRuntime poly log(1/ε)

sampling

σi (w) = wi · a>i (A>diag(w)A)−1ai

6/21

Our Goal

I A high precision algorithm to compute w satisfying w≈εw
I For many applications, approximate Lewis weights suffice!

I High-precision Lewis weights useful in computing volume of
polytope.

I Runtime measured in number of leverage score computations
I Concretely:

Compute `p Lewis weights with poly log(1/ε) leverage scores.

(1− ε)wi ≤ w i ≤ (1 + ε)wiRuntime poly log(1/ε)

sampling

σi (w) = wi · a>i (A>diag(w)A)−1ai

6/21

Our Goal

I A high precision algorithm to compute w satisfying w≈εw
I For many applications, approximate Lewis weights suffice!
I High-precision Lewis weights useful in computing volume of

polytope.

I Runtime measured in number of leverage score computations
I Concretely:

Compute `p Lewis weights with poly log(1/ε) leverage scores.

(1− ε)wi ≤ w i ≤ (1 + ε)wiRuntime poly log(1/ε)

sampling

σi (w) = wi · a>i (A>diag(w)A)−1ai

6/21

Our Goal

I A high precision algorithm to compute w satisfying w≈εw
I For many applications, approximate Lewis weights suffice!
I High-precision Lewis weights useful in computing volume of

polytope.

I Runtime measured in number of leverage score computations

I Concretely:

Compute `p Lewis weights with poly log(1/ε) leverage scores.

(1− ε)wi ≤ w i ≤ (1 + ε)wiRuntime poly log(1/ε)

sampling

σi (w) = wi · a>i (A>diag(w)A)−1ai

6/21

Our Goal

I A high precision algorithm to compute w satisfying w≈εw
I For many applications, approximate Lewis weights suffice!
I High-precision Lewis weights useful in computing volume of

polytope.

I Runtime measured in number of leverage score computations
I Concretely:

Compute `p Lewis weights with poly log(1/ε) leverage scores.

(1− ε)wi ≤ w i ≤ (1 + ε)wiRuntime poly log(1/ε)

sampling

σi (w) = wi · a>i (A>diag(w)A)−1ai

7/21

Prior Work on Computing Lewis Weights

8/21

Contrasting Our Results with Previous Work

Year Authors Range of p # Leverage Score Computations Total Run Time

2015 Cohen, Peng p ∈ (0, 4) O(1
1−|1−p/2| log(logmε)) O(1

|1−p/2|mn2 log(logmε))

2015 Cohen, Peng p ≥ 4 Ω(n) Ω(mn3 log
(
m
ε

)
)

2015 Cohen, Peng p ≥ 4 N/A O(nnz(A)
ε + cpn

O(p))

2016 Lee p ≥ 4 1
ε log(m/n) O

((
1
εnnz(A) + n3

ε3

)
log(m/n)

)
2019 Lee, Sidford p ≥ 4 O(p2√n) O(p2mn2.5polylog(mε))

2021 Our result p ≥ 4 O(p3 log(mε)) O(p3mn2 log(mε))

I Previously: high-precision algorithm only for 0 ≤ p < 4

I We provide a high-precision algorithm for p ≥ 4.
I Therefore, there now exists a high-precision algorithm for all

p > 0.

8/21

Contrasting Our Results with Previous Work

Year Authors Range of p # Leverage Score Computations Total Run Time

2015 Cohen, Peng p ∈ (0, 4) O(1
1−|1−p/2| log(logmε)) O(1

|1−p/2|mn2 log(logmε))

2015 Cohen, Peng p ≥ 4 Ω(n) Ω(mn3 log
(
m
ε

)
)

2015 Cohen, Peng p ≥ 4 N/A O(nnz(A)
ε + cpn

O(p))

2016 Lee p ≥ 4 1
ε log(m/n) O

((
1
εnnz(A) + n3

ε3

)
log(m/n)

)
2019 Lee, Sidford p ≥ 4 O(p2√n) O(p2mn2.5polylog(mε))

2021 Our result p ≥ 4 O(p3 log(mε)) O(p3mn2 log(mε))

I Previously: high-precision algorithm only for 0 ≤ p < 4
I We provide a high-precision algorithm for p ≥ 4.

I Therefore, there now exists a high-precision algorithm for all
p > 0.

8/21

Contrasting Our Results with Previous Work

Year Authors Range of p # Leverage Score Computations Total Run Time

2015 Cohen, Peng p ∈ (0, 4) O(1
1−|1−p/2| log(logmε)) O(1

|1−p/2|mn2 log(logmε))

2015 Cohen, Peng p ≥ 4 Ω(n) Ω(mn3 log
(
m
ε

)
)

2015 Cohen, Peng p ≥ 4 N/A O(nnz(A)
ε + cpn

O(p))

2016 Lee p ≥ 4 1
ε log(m/n) O

((
1
εnnz(A) + n3

ε3

)
log(m/n)

)
2019 Lee, Sidford p ≥ 4 O(p2√n) O(p2mn2.5polylog(mε))

2021 Our result p ≥ 4 O(p3 log(mε)) O(p3mn2 log(mε))

I Previously: high-precision algorithm only for 0 ≤ p < 4
I We provide a high-precision algorithm for p ≥ 4.
I Therefore, there now exists a high-precision algorithm for all

p > 0.

9/21

Prior Work: Cohen-Peng’15

I Repeatedly, wi ← (a>i (A>diag(w)1−2/pA)−1ai)
p/2 for all i .

I The above map is a contraction only for p < 4.

I Other approaches: mirror descent, homotopy method, ...

9/21

Prior Work: Cohen-Peng’15

I Repeatedly, wi ← (a>i (A>diag(w)1−2/pA)−1ai)
p/2 for all i .

I The above map is a contraction only for p < 4.

I Other approaches: mirror descent, homotopy method, ...

9/21

Prior Work: Cohen-Peng’15

I Repeatedly, wi ← (a>i (A>diag(w)1−2/pA)−1ai)
p/2 for all i .

I The above map is a contraction only for p < 4.
For p ≥ 4, solve the convex program

minimizeM�0 det(M−1)

subject to
∑

i∈[m](a
>
i Mai)

p/2 ≤ 1.

I Other approaches: mirror descent, homotopy method, ...

9/21

Prior Work: Cohen-Peng’15

I Repeatedly, wi ← (a>i (A>diag(w)1−2/pA)−1ai)
p/2 for all i .

I The above map is a contraction only for p < 4.
For p ≥ 4, solve the convex program

minimizeM�0 det(M−1)

subject to
∑

i∈[m](a
>
i Mai)

p/2 ≤ 1.

I Other approaches: mirror descent, homotopy method, ...

10/21

Our Contributions

11/21

Our Technical Outline

We compute Lewis weights by solving:

argminw≥0 − log det(A>diag(w)A) + 1
1+α1

>w1+α.

α = 2
p−2

I Standard high-accuracy algorithms don’t apply
I Identify a “rounding” condition that allows geometric decrease

in error
I Maintain the rounding condition in constant number of steps

Leverages upper &
lower quadratics

11/21

Our Technical Outline

We compute Lewis weights by solving:

argminw≥0 − log det(A>diag(w)A) + 1
1+α1

>w1+α.

α = 2
p−2

I Standard high-accuracy algorithms don’t apply

I Identify a “rounding” condition that allows geometric decrease
in error

I Maintain the rounding condition in constant number of steps

Leverages upper &
lower quadratics

11/21

Our Technical Outline

We compute Lewis weights by solving:

argminw≥0 − log det(A>diag(w)A) + 1
1+α1

>w1+α.

α = 2
p−2

I Standard high-accuracy algorithms don’t apply
I Identify a “rounding” condition that allows geometric decrease

in error

I Maintain the rounding condition in constant number of steps

Leverages upper &
lower quadratics

11/21

Our Technical Outline

We compute Lewis weights by solving:

argminw≥0 − log det(A>diag(w)A) + 1
1+α1

>w1+α.

α = 2
p−2

I Standard high-accuracy algorithms don’t apply
I Identify a “rounding” condition that allows geometric decrease

in error

I Maintain the rounding condition in constant number of steps

Leverages upper &
lower quadratics

11/21

Our Technical Outline

We compute Lewis weights by solving:

argminw≥0 − log det(A>diag(w)A) + 1
1+α1

>w1+α.

α = 2
p−2

I Standard high-accuracy algorithms don’t apply
I Identify a “rounding” condition that allows geometric decrease

in error
I Maintain the rounding condition in constant number of steps

Leverages upper &
lower quadratics

12/21

Our Algorithm

1. Initialize w (0) = n/m.

2. For k = 1, 2, 3, . . . ,T iterations, do:
I w̃ (k) ← Round(w (k−1)) // rounding condition

I w (k) ← Descent(w̃ (k), [m], 1) //make progress

3. Set wR ← Round(wT)

4. Return ŵ where ŵi ← (a>i (AWRA)−1ai)
1/α.

13/21

Our First Technical Building Block: Descent

The descent step:

[Descent(w ,C , η)]i := wi

[
1 + ηi · ρi (w)−1

ρi (w)+1

]
.

ρi (w) =
a>i (A>diag(w)A)−1ai

wα
i

for i ∈ C ⊆ {1, 2, . . . ,m}

I Inspired by Newton step
I Quasi-Newton step using approximate Hessian
I Key properties:

I C = [m] and “rounding” condition satisfied: fast progress
I Otherwise, fixes the “rounding” condition

13/21

Our First Technical Building Block: Descent

The descent step:

[Descent(w ,C , η)]i := wi

[
1 + ηi · ρi (w)−1

ρi (w)+1

]
.

ρi (w) =
a>i (A>diag(w)A)−1ai

wα
i

for i ∈ C ⊆ {1, 2, . . . ,m}
I Inspired by Newton step

I Quasi-Newton step using approximate Hessian
I Key properties:

I C = [m] and “rounding” condition satisfied: fast progress
I Otherwise, fixes the “rounding” condition

13/21

Our First Technical Building Block: Descent

The descent step:

[Descent(w ,C , η)]i := wi

[
1 + ηi · ρi (w)−1

ρi (w)+1

]
.

ρi (w) =
a>i (A>diag(w)A)−1ai

wα
i

for i ∈ C ⊆ {1, 2, . . . ,m}
I Inspired by Newton step
I Quasi-Newton step using approximate Hessian

I Key properties:

I C = [m] and “rounding” condition satisfied: fast progress
I Otherwise, fixes the “rounding” condition

13/21

Our First Technical Building Block: Descent

The descent step:

[Descent(w ,C , η)]i := wi

[
1 + ηi · ρi (w)−1

ρi (w)+1

]
.

ρi (w) =
a>i (A>diag(w)A)−1ai

wα
i

for i ∈ C ⊆ {1, 2, . . . ,m}
I Inspired by Newton step
I Quasi-Newton step using approximate Hessian
I Key properties:

I C = [m] and “rounding” condition satisfied: fast progress
I Otherwise, fixes the “rounding” condition

13/21

Our First Technical Building Block: Descent

The descent step:

[Descent(w ,C , η)]i := wi

[
1 + ηi · ρi (w)−1

ρi (w)+1

]
.

ρi (w) =
a>i (A>diag(w)A)−1ai

wα
i

for i ∈ C ⊆ {1, 2, . . . ,m}
I Inspired by Newton step
I Quasi-Newton step using approximate Hessian
I Key properties:

I C = [m] and “rounding” condition satisfied: fast progress

I Otherwise, fixes the “rounding” condition

13/21

Our First Technical Building Block: Descent

The descent step:

[Descent(w ,C , η)]i := wi

[
1 + ηi · ρi (w)−1

ρi (w)+1

]
.

ρi (w) =
a>i (A>diag(w)A)−1ai

wα
i

for i ∈ C ⊆ {1, 2, . . . ,m}
I Inspired by Newton step
I Quasi-Newton step using approximate Hessian
I Key properties:

I C = [m] and “rounding” condition satisfied: fast progress
I Otherwise, fixes the “rounding” condition

14/21

Our Second Technical Building Block: Rounding

The rounding condition:

maxi∈[m] ρi (w) ≤ 1 + α, where ρi (w) = σi (w)

w1+α
i

.

σi (w) = wi · a>i (A>WA)−1ai

I Updating wi updates ∇iF(w) ≈ wα
i for small ρi (w).

I Critical in upper bounding F(w)−F(w).

I Critical to turning poly(1/ε) runtime into polylog(1/ε).

I Rounding implies a certain ellipsoid being inside a polytope.

14/21

Our Second Technical Building Block: Rounding

The rounding condition:

maxi∈[m] ρi (w) ≤ 1 + α, where ρi (w) = σi (w)

w1+α
i

.

σi (w) = wi · a>i (A>WA)−1ai

I Updating wi updates ∇iF(w) ≈ wα
i for small ρi (w).

I Critical in upper bounding F(w)−F(w).

I Critical to turning poly(1/ε) runtime into polylog(1/ε).

I Rounding implies a certain ellipsoid being inside a polytope.

14/21

Our Second Technical Building Block: Rounding

The rounding condition:

maxi∈[m] ρi (w) ≤ 1 + α, where ρi (w) = σi (w)

w1+α
i

.

σi (w) = wi · a>i (A>WA)−1ai

I Updating wi updates ∇iF(w) ≈ wα
i for small ρi (w).

I Critical in upper bounding F(w)−F(w).

I Critical to turning poly(1/ε) runtime into polylog(1/ε).

I Rounding implies a certain ellipsoid being inside a polytope.

14/21

Our Second Technical Building Block: Rounding

The rounding condition:

maxi∈[m] ρi (w) ≤ 1 + α, where ρi (w) = σi (w)

w1+α
i

.

σi (w) = wi · a>i (A>WA)−1ai

I Updating wi updates ∇iF(w) ≈ wα
i for small ρi (w).

I Critical in upper bounding F(w)−F(w).
I Critical to turning poly(1/ε) runtime into polylog(1/ε).

I Rounding implies a certain ellipsoid being inside a polytope.

14/21

Our Second Technical Building Block: Rounding

The rounding condition:

maxi∈[m] ρi (w) ≤ 1 + α, where ρi (w) = σi (w)

w1+α
i

.

σi (w) = wi · a>i (A>WA)−1ai

I Updating wi updates ∇iF(w) ≈ wα
i for small ρi (w).

I Critical in upper bounding F(w)−F(w).
I Critical to turning poly(1/ε) runtime into polylog(1/ε).

I Rounding implies a certain ellipsoid being inside a polytope.

14/21

Our Second Technical Building Block: Rounding
The rounding condition:

maxi∈[m] ρi (w) ≤ 1 + α, where ρi (w) = σi (w)

w1+α
i

.

σi (w) = wi · a>i (A>WA)−1ai

I Updating wi updates ∇iF(w) ≈ wα
i for small ρi (w).

I Critical in upper bounding F(w)−F(w).
I Critical to turning poly(1/ε) runtime into polylog(1/ε).

I Rounding implies a certain ellipsoid being inside a polytope.

Rounding Algorithm:
1. while C = {i : ρi (w) > 1 + α} 6= ∅,

I w ← Descent(w ,C , 1
α)

2. Return w

15/21

Analysis of Algorithm:Descent Step

Want to bound iteration complexity of Descent steps, where

Descent(w ,C , η)]i := wi

[
1 + ηi · ρi (w)−1

ρi (w)+1

]
for i ∈ C ⊆ {1, 2, . . . ,m}

Lemma 1: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(α−1 log(m/ε)).

Proof Idea: Upper bound on sub-optimality, lower bound on
progress.

15/21

Analysis of Algorithm:Descent Step

Want to bound iteration complexity of Descent steps, where

Descent(w ,C , η)]i := wi

[
1 + ηi · ρi (w)−1

ρi (w)+1

]
for i ∈ C ⊆ {1, 2, . . . ,m}

Lemma 1: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(α−1 log(m/ε)).

Proof Idea: Upper bound on sub-optimality, lower bound on
progress.

15/21

Analysis of Algorithm:Descent Step

Want to bound iteration complexity of Descent steps, where

Descent(w ,C , η)]i := wi

[
1 + ηi · ρi (w)−1

ρi (w)+1

]
for i ∈ C ⊆ {1, 2, . . . ,m}

Lemma 1: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(α−1 log(m/ε)).

Proof Idea: Upper bound on sub-optimality, lower bound on
progress.

16/21

Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(α−1 log(m/ε)).

F(w)−F(w) ≤ O(α−1)
∑m

i=1 w
1+α
i

(ρi (w)−1)2
ρi (w)+1

F(w+)−F(w) ≤
∑m

i=1−ηiw
1+α
i

(ρi (w)−1)2
ρi (w)+1 .

F(w+)−F(w) ≤ F(w)−F(w)− 1
α

∑m
i=1 w

1+α
i

(ρi (w)−1)2
ρi (w)+1

≤ (1− O(α))(F(w)−F(w)).

16/21

Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(α−1 log(m/ε)).

F(w)−F(w) ≤ O(α−1)
∑m

i=1 w
1+α
i

(ρi (w)−1)2
ρi (w)+1

F(w+)−F(w) ≤
∑m

i=1−ηiw
1+α
i

(ρi (w)−1)2
ρi (w)+1 .

F(w+)−F(w) ≤ F(w)−F(w)− 1
α

∑m
i=1 w

1+α
i

(ρi (w)−1)2
ρi (w)+1

≤ (1− O(α))(F(w)−F(w)).

16/21

Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(α−1 log(m/ε)).

F(w)−F(w) ≤ O(α−1)
∑m

i=1 w
1+α
i

(ρi (w)−1)2
ρi (w)+1

F(w+)−F(w) ≤
∑m

i=1−ηiw
1+α
i

(ρi (w)−1)2
ρi (w)+1 .

F(w+)−F(w) ≤ F(w)−F(w)− 1
α

∑m
i=1 w

1+α
i

(ρi (w)−1)2
ρi (w)+1

≤ (1− O(α))(F(w)−F(w)).

16/21

Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(α−1 log(m/ε)).

F(w)−F(w) ≤ O(α−1)
∑m

i=1 w
1+α
i

(ρi (w)−1)2
ρi (w)+1

F(w+)−F(w) ≤
∑m

i=1−ηiw
1+α
i

(ρi (w)−1)2
ρi (w)+1 .

F(w+)−F(w) ≤ F(w)−F(w)− 1
α

∑m
i=1 w

1+α
i

(ρi (w)−1)2
ρi (w)+1

≤ (1− O(α))(F(w)−F(w)).

17/21

Analysis of Algorithm: Round Step

Want to bound iteration complexity within one Round step.

Lemma 3: Round while loop iterations

The number of iterations inside the while loop in one Round
step is O(α−2 log(ρmax(w)).

Proof Sketch: Combine Round’s termination condition ρmax(w) ≤
1 + α with the maximum increase in ρmax(w) per while loop .

17/21

Analysis of Algorithm: Round Step

Want to bound iteration complexity within one Round step.

Lemma 3: Round while loop iterations

The number of iterations inside the while loop in one Round
step is O(α−2 log(ρmax(w)).

Proof Sketch: Combine Round’s termination condition ρmax(w) ≤
1 + α with the maximum increase in ρmax(w) per while loop .

17/21

Analysis of Algorithm: Round Step

Want to bound iteration complexity within one Round step.

Lemma 3: Round while loop iterations

The number of iterations inside the while loop in one Round
step is O(α−2 log(ρmax(w)).

Proof Sketch: Combine Round’s termination condition ρmax(w) ≤
1 + α with the maximum increase in ρmax(w) per while loop .

18/21

Round Step Complexity of while Loop: Bounding ρmax(w)

Lemma 4: Round change in ρmax(w)

Let w+ be the state of w after one while loop of Round. Then,

ρmax(w+) ≤
(
1 +

α

1 + α

)−α
ρmax(w).

w+
i = wi +

wi

3

(
ρi (w)− 1
ρi (w) + 1

)
//Descent on i ∈ C

≥ wi +
wi

3α

(
α

2 + α

)
//x → x − 1

x + 1
is monotone for x ≥ 1

Combine with wi = w+
i for all i /∈ C implies w+ ≥ w . Hence:

ρi (w
+) = [w+

i]−α
[
A(A>diag(w+)A)−1A>

]
ii
≤
[
1 +

α

3(2 + α)

]−α
ρi (w)

18/21

Round Step Complexity of while Loop: Bounding ρmax(w)

Lemma 4: Round change in ρmax(w)

Let w+ be the state of w after one while loop of Round. Then,

ρmax(w+) ≤
(
1 +

α

1 + α

)−α
ρmax(w).

w+
i = wi +

wi

3

(
ρi (w)− 1
ρi (w) + 1

)
//Descent on i ∈ C

≥ wi +
wi

3α

(
α

2 + α

)
//x → x − 1

x + 1
is monotone for x ≥ 1

Combine with wi = w+
i for all i /∈ C implies w+ ≥ w . Hence:

ρi (w
+) = [w+

i]−α
[
A(A>diag(w+)A)−1A>

]
ii
≤
[
1 +

α

3(2 + α)

]−α
ρi (w)

18/21

Round Step Complexity of while Loop: Bounding ρmax(w)

Lemma 4: Round change in ρmax(w)

Let w+ be the state of w after one while loop of Round. Then,

ρmax(w+) ≤
(
1 +

α

1 + α

)−α
ρmax(w).

w+
i = wi +

wi

3

(
ρi (w)− 1
ρi (w) + 1

)
//Descent on i ∈ C

≥ wi +
wi

3α

(
α

2 + α

)
//x → x − 1

x + 1
is monotone for x ≥ 1

Combine with wi = w+
i for all i /∈ C implies w+ ≥ w . Hence:

ρi (w
+) = [w+

i]−α
[
A(A>diag(w+)A)−1A>

]
ii
≤
[
1 +

α

3(2 + α)

]−α
ρi (w)

18/21

Round Step Complexity of while Loop: Bounding ρmax(w)

Lemma 4: Round change in ρmax(w)

Let w+ be the state of w after one while loop of Round. Then,

ρmax(w+) ≤
(
1 +

α

1 + α

)−α
ρmax(w).

w+
i = wi +

wi

3

(
ρi (w)− 1
ρi (w) + 1

)
//Descent on i ∈ C

≥ wi +
wi

3α

(
α

2 + α

)
//x → x − 1

x + 1
is monotone for x ≥ 1

Combine with wi = w+
i for all i /∈ C implies w+ ≥ w . Hence:

ρi (w
+) = [w+

i]−α
[
A(A>diag(w+)A)−1A>

]
ii
≤
[
1 +

α

3(2 + α)

]−α
ρi (w)

19/21

Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation

Denote:
R := Steps in Round,
D := Steps of Descent

Throughout the algorithm, D = O(α−1 log(m/ε))

Between two Descent calls: R := O(α−2 log(ρmax(w)))

Initial iteration: R := O(α−2 log(m/n))

Between two Round calls:
Minimum increase in w ,
Maximum increase in ρmax(w)

Therefore, over D iterations: R := O(D · α−2 log(m/n))

19/21

Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation

Denote:
R := Steps in Round,
D := Steps of Descent

Throughout the algorithm, D = O(α−1 log(m/ε))

Between two Descent calls: R := O(α−2 log(ρmax(w)))

Initial iteration: R := O(α−2 log(m/n))

Between two Round calls:
Minimum increase in w ,
Maximum increase in ρmax(w)

Therefore, over D iterations: R := O(D · α−2 log(m/n))

19/21

Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation

Denote:
R := Steps in Round,
D := Steps of Descent

Throughout the algorithm, D = O(α−1 log(m/ε))

Between two Descent calls: R := O(α−2 log(ρmax(w)))

Initial iteration: R := O(α−2 log(m/n))

Between two Round calls:
Minimum increase in w ,
Maximum increase in ρmax(w)

Therefore, over D iterations: R := O(D · α−2 log(m/n))

19/21

Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation

Denote:
R := Steps in Round,
D := Steps of Descent

Throughout the algorithm, D = O(α−1 log(m/ε))

Between two Descent calls: R := O(α−2 log(ρmax(w)))

Initial iteration: R := O(α−2 log(m/n))

Between two Round calls:
Minimum increase in w ,
Maximum increase in ρmax(w)

Therefore, over D iterations: R := O(D · α−2 log(m/n))

19/21

Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation

Denote:
R := Steps in Round,
D := Steps of Descent

Throughout the algorithm, D = O(α−1 log(m/ε))

Between two Descent calls: R := O(α−2 log(ρmax(w)))

Initial iteration: R := O(α−2 log(m/n))

Between two Round calls:
Minimum increase in w ,
Maximum increase in ρmax(w)

Therefore, over D iterations: R := O(D · α−2 log(m/n))

19/21

Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation

Denote:
R := Steps in Round,
D := Steps of Descent

Throughout the algorithm, D = O(α−1 log(m/ε))

Between two Descent calls: R := O(α−2 log(ρmax(w)))

Initial iteration: R := O(α−2 log(m/n))

Between two Round calls:
Minimum increase in w ,
Maximum increase in ρmax(w)

Therefore, over D iterations: R := O(D · α−2 log(m/n))

19/21

Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation

Denote:
R := Steps in Round,
D := Steps of Descent

Throughout the algorithm, D = O(α−1 log(m/ε))

Between two Descent calls: R := O(α−2 log(ρmax(w)))

Initial iteration: R := O(α−2 log(m/n))

Between two Round calls:
Minimum increase in w ,
Maximum increase in ρmax(w)

Therefore, over D iterations: R := O(D · α−2 log(m/n))

20/21

Our Contribution

Lemma 5: Our Main Result (Informal)

Given a full-rank A ∈ Rm×n and p ≥ 4, we compute ε-
approximate `p Lewis weights in O(p3 log(mp/ε)) oracle calls.

I Our algorithm has both a parallel and a sequential version.
I Computing gradient of Lee-Sidford barrier to high-precision in

polylogarithmic depth.

20/21

Our Contribution

Lemma 5: Our Main Result (Informal)

Given a full-rank A ∈ Rm×n and p ≥ 4, we compute ε-
approximate `p Lewis weights in O(p3 log(mp/ε)) oracle calls.

I Our algorithm has both a parallel and a sequential version.

I Computing gradient of Lee-Sidford barrier to high-precision in
polylogarithmic depth.

20/21

Our Contribution

Lemma 5: Our Main Result (Informal)

Given a full-rank A ∈ Rm×n and p ≥ 4, we compute ε-
approximate `p Lewis weights in O(p3 log(mp/ε)) oracle calls.

I Our algorithm has both a parallel and a sequential version.
I Computing gradient of Lee-Sidford barrier to high-precision in

polylogarithmic depth.

21/21

Thank You!

	Problem Statement
	Prior Work on Computing Lewis Weights
	Our Contributions
	Thank You!

