Computing High-Precision Lewis Weights

Maryam Fazel 1, Yin Tat Lee 1, Swati Padmanabhan 1, and Aaron Sidford 2

¹University of Washington; ²Stanford University

Problem Statement

▶ Smallest ellipsoid enclosing a given set of points $\{a_i\}_{i=1}^m \in \mathbb{R}^n$

3/21

Warmup: John Ellipsoid

- ▶ Smallest ellipsoid enclosing a given set of points $\{a_i\}_{i=1}^m \in \mathbb{R}^n$
- Algorithmic tool in cutting-plane method

Theoretical Computer Science, Mathematical Optimization

3/21

- ▶ Smallest ellipsoid enclosing a given set of points $\{a_i\}_{i=1}^m \in \mathbb{R}^n$
- Algorithmic tool in cutting-plane method
- Applied in minimizing error covariance matrix

3/21

- ▶ Smallest ellipsoid enclosing a given set of points $\{a_i\}_{i=1}^m \in \mathbb{R}^n$
- Algorithmic tool in cutting-plane method
- Applied in minimizing error covariance matrix
- ▶ To compute, find $M \succeq 0$ such that

3/21

- ▶ Smallest ellipsoid enclosing a given set of points $\{a_i\}_{i=1}^m \in \mathbb{R}^n$
- Algorithmic tool in cutting-plane method
- Applied in minimizing error covariance matrix
- ▶ To compute, find $M \succeq 0$ such that

Find the Lewis Ellipsoid $M \succeq 0$ that satisfies

computing the Lee-Sidford self-concordant barrier

–(Mathematical Optimization)

5/21

Optimization Perspective

Optimization Perspective

Lewis weights are the solution to the convex program

$$\operatorname{argmin}_{w\geq 0} - \log \det(A^{\top}\operatorname{diag}(w)A) + \frac{1}{1+\alpha}\mathbf{1}^{\top}w^{1+\alpha}.$$

> Optimality condition of the above program is

$$a_i^{\top}(A^{\top}\mathrm{diag}(\overline{w})^{1-2/p}A)^{-1}a_i = \overline{w}_i^{2/p}.$$

Lewis weights are the solution to the convex program

$$\operatorname{argmin}_{w\geq 0} - \log \det(A^{\top}\operatorname{diag}(w)A) + \frac{1}{1+\alpha} \mathbf{1}^{\top} w^{1+\alpha}.$$

Optimality condition of the above program is

$$a_i^{\top}(A^{\top}\mathrm{diag}(\overline{w})^{1-2/p}A)^{-1}a_i=\overline{w}_i^{2/p}.$$

Runtime measured in number of leverage score computations

$$\sigma_i(w) = w_i \cdot a_i^\top (A^\top \operatorname{diag}(w)A)^{-1} a_i$$

Concretely:

Compute ℓ_p Lewis weights with $\operatorname{poly} \log(1/\varepsilon)$ leverage scores.

Prior Work on Computing Lewis Weights

Contrasting Our Results with Previous Work

Year	Authors	Range of p	# Leverage Score Computations	Total Run Time
2015	Cohen, Peng	$p \in (0,4)$	$O(\frac{1}{1- 1-p/2 }\log(\frac{\log m}{\varepsilon}))$	$O(\frac{1}{ 1-p/2 }mn^2\log(\frac{\log m}{\varepsilon}))$
2015	Cohen, Peng	$p \ge 4$	$\Omega(n)$	$\Omega(mn^3 \log\left(\frac{m}{\varepsilon}\right))$
2015	Cohen, Peng	$p \ge 4$	N/A	$O(\frac{\mathrm{nnz}(A)}{\varepsilon} + c_p n^{O(p)})$
2016	Lee	$p \ge 4$	$rac{1}{arepsilon}\log(m/n)$	$O\left(\left(\frac{1}{\varepsilon}\mathrm{nnz}(A)+\frac{n^3}{\epsilon^3}\right)\log(m/n)\right)$
2019	Lee, Sidford	$p \ge 4$	$O(p^2\sqrt{n})$	$O(p^2 m n^{2.5} \text{polylog}(\frac{m}{\varepsilon}))$
2021	Our result	$p \ge 4$	$O(p^3 \log(\frac{m}{\varepsilon}))$	$O(p^3mn^2\log(\frac{m}{\varepsilon}))$

▶ Previously: high-precision algorithm only for $0 \le p < 4$

Contrasting Our Results with Previous Work

Year	Authors	Range of p	# Leverage Score Computations	Total Run Time
2015	Cohen, Peng	$p \in (0,4)$	$O(\frac{1}{1- 1-p/2 }\log(\frac{\log m}{\varepsilon}))$	$O(\frac{1}{ 1-p/2 }mn^2\log(\frac{\log m}{\varepsilon}))$
2015	Cohen, Peng	$p \ge 4$	$\Omega(n)$	$\Omega(mn^3 \log{(\frac{m}{\varepsilon})})$
2015	Cohen, Peng	$p \ge 4$	N/A	$O(\frac{\operatorname{nnz}(A)}{\varepsilon} + c_p n^{O(p)})$
2016	Lee	$p \ge 4$	$rac{1}{arepsilon}\log(m/n)$	$O\left(\left(\frac{1}{\varepsilon}\mathrm{nnz}(A)+\frac{n^3}{\epsilon^3}\right)\log(m/n)\right)$
2019	Lee, Sidford	$p \ge 4$	$O(p^2\sqrt{n})$	$O(p^2 m n^{2.5} \text{polylog}(\frac{m}{\epsilon}))$
2021	Our result	$p \ge 4$	$O(p^3 \log(\frac{m}{\varepsilon}))$	$O(p^3mn^2\log(\frac{m}{\varepsilon}))$

> Previously: high-precision algorithm only for $0 \le p < 4$

▶ We provide a high-precision algorithm for $p \ge 4$.

Contrasting Our Results with Previous Work

Year	Authors	Range of p	# Leverage Score Computations	Total Run Time
2015	Cohen, Peng	$p \in (0,4)$	$O(\frac{1}{1- 1-p/2 }\log(\frac{\log m}{\varepsilon}))$	$O(\frac{1}{ 1-p/2 }mn^2\log(\frac{\log m}{\varepsilon}))$
2015	Cohen, Peng	$p \ge 4$	$\Omega(n)$	$\Omega(mn^3 \log{(\frac{m}{\varepsilon})})$
2015	Cohen, Peng	$p \ge 4$	N/A	$O(\frac{\mathrm{nnz}(A)}{\varepsilon} + c_p n^{O(p)})$
2016	Lee	$p \ge 4$	$rac{1}{arepsilon}\log(m/n)$	$O\left(\left(\frac{1}{\varepsilon}\mathrm{nnz}(A)+\frac{n^3}{\epsilon^3}\right)\log(m/n)\right)$
2019	Lee, Sidford	$p \ge 4$	$O(p^2\sqrt{n})$	$O(p^2 m n^{2.5} \text{polylog}(\frac{m}{\epsilon}))$
2021	Our result	$p \ge 4$	$O(p^3 \log(\frac{m}{\varepsilon}))$	$O(p^3mn^2\log(\frac{m}{\varepsilon}))$

- > Previously: high-precision algorithm only for $0 \le p < 4$
- ▶ We provide a high-precision algorithm for $p \ge 4$.
- Therefore, there now exists a high-precision algorithm for all p > 0.

▶ Repeatedly, $w_i \leftarrow (a_i^\top (A^\top \operatorname{diag}(w)^{1-2/p} A)^{-1} a_i)^{p/2}$ for all *i*.

- ▶ Repeatedly, $w_i \leftarrow (a_i^\top (A^\top \operatorname{diag}(w)^{1-2/p} A)^{-1} a_i)^{p/2}$ for all *i*.
- ▶ The above map is a contraction only for p < 4.

▶ Repeatedly, $w_i \leftarrow (a_i^\top (A^\top \operatorname{diag}(w)^{1-2/p} A)^{-1} a_i)^{p/2}$ for all *i*.

▶ The above map is a contraction only for p < 4.

For $p \ge 4$, solve the convex program

$$\begin{array}{ll} \mathsf{minimize}_{M\succ 0} & \det(M^{-1}) \\ \mathsf{subject to} & \sum_{i\in[m]}(a_i^\top M a_i)^{p/2} \leq 1. \end{array}$$

▶ Repeatedly, $w_i \leftarrow (a_i^\top (A^\top \operatorname{diag}(w)^{1-2/p} A)^{-1} a_i)^{p/2}$ for all *i*.

▶ The above map is a contraction only for p < 4.

For $p \ge 4$, solve the convex program

$$\begin{array}{ll} \mathsf{minimize}_{M\succ 0} & \det(M^{-1}) \\ \mathsf{subject to} & \sum_{i\in[m]} (a_i^\top M a_i)^{p/2} \leq 1. \end{array}$$

> Other approaches: mirror descent, homotopy method, ...

Our Contributions

Our Technical Outline

We compute Lewis weights by solving:

 $\operatorname{argmin}_{w\geq 0} - \log \det(A^{\top}\operatorname{diag}(w)A) + \frac{1}{1+\alpha}1^{\top}w^{1+\alpha}.$

Our Technical Outline

We compute Lewis weights by solving:

$$\operatorname{argmin}_{w\geq 0} - \log \det(A^{\top}\operatorname{diag}(w)A) + \frac{1}{1+\alpha} 1^{\top} w^{1+\alpha}.$$

Standard high-accuracy algorithms don't apply
Our Technical Outline

We compute Lewis weights by solving:

 $\operatorname{argmin}_{w\geq 0} - \log \det(A^{ op}\operatorname{diag}(w)A) + \frac{1}{1+lpha}1^{ op}w^{1+lpha}.$

- Standard high-accuracy algorithms don't apply
- Identify a "rounding" condition that allows geometric decrease in error

Our Technical Outline

We compute Lewis weights by solving:

$$\operatorname{\mathsf{argmin}}_{w\geq 0} \quad -\log \det(\mathcal{A}^{ op}\operatorname{diag}(w)\mathcal{A}) + rac{1}{1+lpha}\mathbf{1}^{ op}w^{1+lpha}.$$

- Standard high-accuracy algorithms don't apply
- Identify a "rounding" condition that allows geometric decrease in error

Leverages upper & lower quadratics

Our Technical Outline

We compute Lewis weights by solving:

 $\operatorname{argmin}_{w\geq 0} \quad -\log \det(\mathcal{A}^{ op}\operatorname{diag}(w)\mathcal{A}) + \frac{1}{1+lpha}\mathbf{1}^{ op}w^{1+lpha}.$

- Standard high-accuracy algorithms don't apply
- Identify a "rounding" condition that allows geometric decrease in error
- Maintain the rounding condition in constant number of steps

Our Algorithm

Key properties:

 \triangleright C = [m] and "rounding" condition satisfied: fast progress

- \triangleright C = [m] and "rounding" condition satisfied: fast progress
- Otherwise, fixes the "rounding" condition

The rounding condition:

$$\begin{aligned}
\sigma_i(w) &= w_i \cdot a_i^\top (A^\top WA)^{-1} a_i \\
\\
max_{i \in [m]} \rho_i(w) &\leq 1 + \alpha, \text{ where } \rho_i(w) = \frac{\sigma_i(w)}{w_i^{1+\alpha}}.
\end{aligned}$$

The rounding condition:

$$\begin{aligned}
\sigma_i(w) &= w_i \cdot a_i^\top (A^\top WA)^{-1} a_i \\
\\
max_{i \in [m]} \rho_i(w) &\leq 1 + \alpha, \text{ where } \rho_i(w) = \frac{\sigma_i(w)}{w_i^{1+\alpha}}.
\end{aligned}$$

▶ Updating w_i updates $\nabla_i \mathcal{F}(w) \approx w_i^{\alpha}$ for small $\rho_i(w)$.

The rounding condition:

$$\begin{aligned}
\sigma_i(w) &= w_i \cdot a_i^\top (A^\top WA)^{-1} a_i \\
\\
max_{i \in [m]} \rho_i(w) &\leq 1 + \alpha, \text{ where } \rho_i(w) = \frac{\sigma_i(w)}{w_i^{1+\alpha}}.
\end{aligned}$$

Updating w_i updates ∇_iF(w) ≈ w_i^α for small ρ_i(w).
 Critical in upper bounding F(w) - F(w̄).

The rounding condition:

$$\begin{aligned}
\sigma_i(w) &= w_i \cdot a_i^\top (A^\top WA)^{-1} a_i \\
\\
max_{i \in [m]} \rho_i(w) &\leq 1 + \alpha, \text{ where } \rho_i(w) = \frac{\sigma_i(w)}{w_i^{1+\alpha}}.
\end{aligned}$$

Updating w_i updates ∇_iF(w) ≈ w_i^α for small ρ_i(w).
 Critical in upper bounding F(w) - F(w).
 Critical to turning poly(1/ε) runtime into polylog(1/ε).

The rounding condition:

$$\begin{aligned}
\sigma_i(w) &= w_i \cdot a_i^\top (A^\top WA)^{-1} a_i \\
\\
max_{i \in [m]} \rho_i(w) &\leq 1 + \alpha, \text{ where } \rho_i(w) = \frac{\sigma_i(w)}{w_i^{1+\alpha}}.
\end{aligned}$$

Updating w_i updates ∇_iF(w) ≈ w_i^α for small ρ_i(w).
 Critical in upper bounding F(w) - F(w).
 Critical to turning poly(1/ε) runtime into polylog(1/ε).
 Rounding implies a certain ellipsoid being inside a polytope.

Our Second Technical Building Block: Rounding The rounding condition: $\sigma_i(w) = w_i \cdot a_i^{\top} (A^{\top} WA)^{-1} a_i$ $\max_{i \in [m]} \rho_i(w) \le 1 + \alpha$, where $\rho_i(w) = \frac{\sigma_i(w)}{w_i^{1+\alpha}}$.

- Updating w_i updates $\nabla_i \mathcal{F}(w) \approx w_i^{\alpha}$ for small $\rho_i(w)$.
- Critical in upper bounding $\mathcal{F}(w) \mathcal{F}(\overline{w})$.
 - ▶ Critical to turning $poly(1/\epsilon)$ runtime into $polylog(1/\epsilon)$.
- Rounding implies a certain ellipsoid being inside a polytope.

Rounding Algorithm:

1. while
$$C = \{i : \rho_i(w) > 1 + \alpha\} \neq \emptyset$$
,
 $\blacktriangleright w \leftarrow \text{Descent}(w, C, \frac{1}{\alpha})$

2. Return w

Analysis of Algorithm: Descent Step

Want to bound iteration complexity of **Descent** steps, where

$$\mathbf{Descent}(w, C, \eta)]_{i_{\sum}} = w_i \left[1 + \eta_i \cdot \frac{\rho_i(w) - 1}{\rho_i(w) + 1} \right]$$

for
$$i \in C \subseteq \{1, 2, \ldots, m\}$$

Analysis of Algorithm: Descent Step

Want to bound iteration complexity of **Descent** steps, where $\mathbf{Descent}(w, C, \eta)]_{i_{\Sigma}} = w_i \left[1 + \eta_i \cdot \frac{\rho_i(w) - 1}{\rho_i(w) + 1} \right]$

$$for \ i \in C \subseteq \{1, 2, \dots, m\}$$

Lemma 1: Descent Step Convergence

Analysis of Algorithm: Descent Step

Want to bound iteration complexity of **Descent** steps, where $\mathbf{Descent}(w, C, \eta)]_{i_{\Sigma}} = w_i \left[1 + \eta_i \cdot \frac{\rho_i(w) - 1}{\rho_i(w) + 1} \right]$

for
$$i \in C \subseteq \{1, 2, \dots, m\}$$

Lemma 1: Descent Step Convergence

Each **Descent** step decreases the objective, and the number of **Descent** steps is $O(\alpha^{-1} \log(m/\varepsilon))$.

Proof Idea: Upper bound on sub-optimality, lower bound on progress.

Lemma 2: Descent Step Convergence

$$\mathcal{F}(w) - \mathcal{F}(\overline{w}) \quad \left(\leq O(\alpha^{-1}) \sum_{i=1}^{m} w_i^{1+\alpha} \frac{(\rho_i(w)-1)^2}{\rho_i(w)+1} \right)$$

Lemma 2: Descent Step Convergence

$$\begin{aligned} \mathcal{F}(w) - \mathcal{F}(\overline{w}) &\leq O(\alpha^{-1}) \sum_{i=1}^{m} w_i^{1+\alpha} \frac{(\rho_i(w)-1)^2}{\rho_i(w)+1} \\ \mathcal{F}(w^+) - \mathcal{F}(w) &\leq \sum_{i=1}^{m} -\eta_i w_i^{1+\alpha} \frac{(\rho_i(w)-1)^2}{\rho_i(w)+1}. \end{aligned}$$

Lemma 2: Descent Step Convergence

$$\begin{split} \mathcal{F}(w) &- \mathcal{F}(\overline{w}) &\leq O(\alpha^{-1}) \sum_{i=1}^{m} w_i^{1+\alpha} \frac{(\rho_i(w)-1)^2}{\rho_i(w)+1} \\ \mathcal{F}(w^+) &- \mathcal{F}(w) &\leq \sum_{i=1}^{m} -\eta_i w_i^{1+\alpha} \frac{(\rho_i(w)-1)^2}{\rho_i(w)+1} \\ \mathcal{F}(w^+) &- \mathcal{F}(\overline{w}) &\leq \mathcal{F}(w) - \mathcal{F}(\overline{w}) - \frac{1}{\alpha} \sum_{i=1}^{m} w_i^{1+\alpha} \frac{(\rho_i(w)-1)^2}{\rho_i(w)+1} \end{split}$$

Lemma 2: Descent Step Convergence

$$\begin{split} \mathcal{F}(w) &- \mathcal{F}(\overline{w}) \\ \leq O(\alpha^{-1}) \sum_{i=1}^{m} w_i^{1+\alpha} \frac{(\rho_i(w)-1)^2}{\rho_i(w)+1} \\ \mathcal{F}(w^+) &- \mathcal{F}(w) \\ \leq \sum_{i=1}^{m} -\eta_i w_i^{1+\alpha} \frac{(\rho_i(w)-1)^2}{\rho_i(w)+1} \\ \mathcal{F}(w^+) &- \mathcal{F}(\overline{w}) \\ \leq \mathcal{F}(w) - \mathcal{F}(\overline{w}) - \frac{1}{\alpha} \sum_{i=1}^{m} w_i^{1+\alpha} \frac{(\rho_i(w)-1)^2}{\rho_i(w)+1} \\ \end{split}$$

$$\leq (1 - O(\alpha))(\mathcal{F}(w) - \mathcal{F}(\overline{w})).$$

Analysis of Algorithm: Round Step

Want to bound iteration complexity within one Round step.

Analysis of Algorithm: Round Step

Want to bound iteration complexity within one Round step.

Lemma 3: Round while loop iterations

The number of iterations inside the while loop in one **Round** step is $O(\alpha^{-2} \log(\rho_{\max}(w)))$.

Analysis of Algorithm: Round Step

Want to bound iteration complexity within one Round step.

Lemma 3: Round while loop iterations

The number of iterations inside the while loop in one **Round** step is $O(\alpha^{-2} \log(\rho_{\max}(w)))$.

Proof Sketch: Combine **Round**'s termination condition $\rho_{\max}(w) \leq 1 + \alpha$ with the maximum increase in $\rho_{\max}(w)$ per while loop.

Round Step Complexity of while Loop: Bounding $\rho_{max}(w)$

Lemma 4: Round change in $\rho_{\max}(w)$

Let w^+ be the state of w after one while loop of **Round**. Then,

$$\rho_{\max}(w^+) \leq \left(1 + \frac{\alpha}{1+\alpha}\right)^{-\alpha} \rho_{\max}(w).$$

$$w_i^+ = w_i + \frac{w_i}{3} \left(\frac{\rho_i(w) - 1}{\rho_i(w) + 1} \right) \quad //\mathbf{Descent} \text{ on } i \in C$$
$$\geq w_i + \frac{w_i}{3\alpha} \left(\frac{\alpha}{2 + \alpha} \right) \qquad //x \to \frac{x - 1}{x + 1} \text{ is monotone for } x \ge 1$$

Combine with $w_i = w_i^+$ for all $i \notin C$ implies $w^+ \ge w$. Hence: $\rho_i(w^+) = [w_i^+]^{-\alpha} \left[A(A^\top \operatorname{diag}(w^+)A)^{-1}A^\top \right]_{ii} \le \left[1 + \frac{\alpha}{3(2+\alpha)} \right]^{-\alpha} \rho_i(w^+)^{-1} = \left[w_i^+ \right]_{ii}^{-\alpha} = \left[A(A^\top \operatorname{diag}(w^+)A)^{-1}A^\top \right]_{ii}$

Round Step Complexity of while Loop: Bounding $\rho_{max}(w)$

Lemma 4: Round change in
$$ho_{\sf max}(w)$$

Let w⁺ be the state of w after one while loop of **Round**. Then,

$$\rho_{\max}(w^+) \leq \left(1 + \frac{\alpha}{1 + \alpha}\right)^{-\alpha} \rho_{\max}(w).$$

$$w_i^+ = w_i + \frac{w_i}{3} \left(\frac{\rho_i(w) - 1}{\rho_i(w) + 1} \right) \quad //\text{Descent on } i \in C$$
$$\geq w_i + \frac{w_i}{3\alpha} \left(\frac{\alpha}{2 + \alpha} \right) \qquad //x \to \frac{x - 1}{x + 1} \text{ is monotone for } x \ge 1$$

Combine with $w_i = w_i^+$ for all $i \notin C$ implies $w^+ \ge w$. Hence:

 $\rho_i(w^+) = [w_i^+]^{-\alpha} \left[A(A^\top \operatorname{diag}(w^+)A)^{-1}A^\top \right]_{ii} \le \left[1 + \frac{\alpha}{3(2+\alpha)} \right]^{-1} \rho_i(w^+)^{-1} = \left[\frac{\alpha}{3(2+\alpha)} \right]^{-1} = \left[\frac{\alpha}{3(2+\alpha)} \right]^{-1} \rho_i(w^+)^{-1} = \left[\frac{\alpha}{3(2+\alpha)} \right]^{-1} = \left[\frac$

Round Step Complexity of while Loop: Bounding $\rho_{max}(w)$

Lemma 4: Round change in $ho_{\sf max}(w)$

Let w^+ be the state of w after one while loop of **Round**. Then,

$$\rho_{\max}(w^+) \leq \left(1 + \frac{\alpha}{1+\alpha}\right)^{-\alpha} \rho_{\max}(w).$$

$$w_i^+ = w_i + \frac{w_i}{3} \left(\frac{\rho_i(w) - 1}{\rho_i(w) + 1} \right) \quad //\mathbf{Descent} \text{ on } i \in C$$
$$\geq w_i + \frac{w_i}{3\alpha} \left(\frac{\alpha}{2 + \alpha} \right) \qquad //x \to \frac{x - 1}{x + 1} \text{ is monotone for } x \ge 1$$

Combine with $w_i = w_i^+$ for all $i \notin C$ implies $w^+ \ge w$. Hence:

$$\rho_i(w^+) = [w_i^+]^{-\alpha} \left[A(A^\top \operatorname{diag}(w^+)A)^{-1}A^\top \right]_{ii} \leq \left[1 + \frac{\alpha}{3(2+\alpha)} \right]^{-\alpha} \rho_i(w)$$

Round Step Complexity of while Loop: Bounding $\rho_{max}(w)$

Lemma 4: Round change in $ho_{\sf max}(w)$

Let w^+ be the state of w after one while loop of **Round**. Then,

$$\rho_{\max}(w^+) \leq \left(1 + \frac{\alpha}{1+\alpha}\right)^{-\alpha} \rho_{\max}(w).$$

$$w_i^+ = w_i + \frac{w_i}{3} \left(\frac{\rho_i(w) - 1}{\rho_i(w) + 1} \right) \quad //\mathbf{Descent} \text{ on } i \in C$$
$$\geq w_i + \frac{w_i}{3\alpha} \left(\frac{\alpha}{2 + \alpha} \right) \qquad //x \to \frac{x - 1}{x + 1} \text{ is monotone for } x \ge 1$$

Combine with $w_i = w_i^+$ for all $i \notin C$ implies $w^+ \ge w$. Hence:

$$\rho_i(w^+) = [w_i^+]^{-\alpha} \left[A(A^\top \operatorname{diag}(w^+)A)^{-1}A^\top \right]_{ii} \leq \left[1 + \frac{\alpha}{3(2+\alpha)} \right]^{-\alpha} \rho_i(w)$$

Most basic step:

Leverage score computation

Most basic step:

Denote:

Leverage score computation

 $\begin{aligned} \mathcal{R} &:= \text{Steps in Round,} \\ \mathcal{D} &:= \text{Steps of Descent} \end{aligned}$

Most basic step:

Denote:

Throughout the algorithm,

Leverage score computation

 $\mathcal{R} := \text{Steps in Round,} \\ \mathcal{D} := \text{Steps of Descent}$

$$\mathcal{D} = \mathcal{O}(\alpha^{-1}\log(m/\varepsilon))$$

Most basic step:

Denote:

Throughout the algorithm,

Between two **Descent** calls:

Leverage score computation

 $\mathcal{R} := \text{Steps in Round,} \\ \mathcal{D} := \text{Steps of Descent}$

$$\mathcal{D} = \mathcal{O}(\alpha^{-1}\log(m/\varepsilon))$$

$$\mathbf{\mathcal{R}} := \mathcal{O}(\alpha^{-2}\log(\rho_{\max}(w)))$$

Most basic step:

Denote:

Throughout the algorithm,

Between two **Descent** calls:

Initial iteration:

Leverage score computation

- $\mathcal{R} :=$ Steps in Round, $\mathcal{D} :=$ Steps of Descent $\mathcal{D} = \mathcal{O}(\alpha^{-1}\log(m/\varepsilon))$
- $\mathcal{R} := \mathcal{O}(\alpha^{-2}\log(\rho_{\max}(w)))$

$$\mathcal{R} := \mathcal{O}(\alpha^{-2}\log(m/n))$$

Most basic step:

Denote:

Throughout the algorithm,

Between two **Descent** calls:

Initial iteration:

Between two Round calls:

Leverage score computation

 $\mathcal{R} := \text{Steps in Round,}$ $\mathcal{D} := \text{Steps of Descent}$ $\mathcal{D} = \mathcal{O}(\alpha^{-1}\log(m/\varepsilon))$ $\mathcal{R} := \mathcal{O}(\alpha^{-2}\log(\rho_{\max}(w)))$ $\mathcal{R} := \mathcal{O}(\alpha^{-2}\log(m/n))$ Minimum increase in w,

Maximum increase in $\rho_{\max}(w)$
Conclusion: Total Iteration Complexity

Most basic step:

Denote:

Throughout the algorithm,

Between two **Descent** calls:

Initial iteration:

Between two Round calls:

Therefore, over \mathcal{D} iterations:

Leverage score computation

 $\begin{aligned} \mathcal{R} &:= \text{Steps in Round,} \\ \mathcal{D} &:= \text{Steps of Descent} \\ \mathcal{D} &= \mathcal{O}(\alpha^{-1}\log(m/\varepsilon)) \\ \mathcal{R} &:= \mathcal{O}(\alpha^{-2}\log(\rho_{\max}(w))) \\ \mathcal{R} &:= \mathcal{O}(\alpha^{-2}\log(m/n)) \\ \text{Minimum increase in } w, \\ \text{Maximum increase in } \rho_{\max}(w) \end{aligned}$

 $\mathcal{R} := \mathcal{O}(\mathcal{D} \cdot \alpha^{-2} \log(m/n))$

Our Contribution

Lemma 5: Our Main Result (Informal)

Given a full-rank $A \in \mathbb{R}^{m \times n}$ and $p \ge 4$, we compute ε -approximate ℓ_p Lewis weights in $O(p^3 \log(mp/\varepsilon))$ oracle calls.

Our Contribution

Lemma 5: Our Main Result (Informal)

Given a full-rank $A \in \mathbb{R}^{m \times n}$ and $p \ge 4$, we compute ε -approximate ℓ_p Lewis weights in $O(p^3 \log(mp/\varepsilon))$ oracle calls.

> Our algorithm has both a parallel and a sequential version.

Our Contribution

Lemma 5: Our Main Result (Informal)

Given a full-rank $A \in \mathbb{R}^{m \times n}$ and $p \ge 4$, we compute ε -approximate ℓ_p Lewis weights in $O(p^3 \log(mp/\varepsilon))$ oracle calls.

- ▶ Our algorithm has both a parallel and a sequential version.
- Computing gradient of Lee-Sidford barrier to high-precision in polylogarithmic depth.

21/21

Thank You!

-0