Computing High-Precision Lewis Weights

Maryam Fazel ${ }^{1}$, Yin Tat Lee ${ }^{1}$, Swati Padmanabhan ${ }^{1}$, and Aaron Sidford ${ }^{2}$

${ }^{1}$ University of Washington; ${ }^{2}$ Stanford University

Problem Statement

Warmup: John Ellipsoid

Warmup: John Ellipsoid

\Rightarrow Smallest ellipsoid enclosing a given set of points $\left\{a_{i}\right\}_{i=1}^{m} \in \mathbb{R}^{n}$

Warmup: John Ellipsoid

- Smallest ellipsoid enclosing a given set of points $\left\{a_{i}\right\}_{i=1}^{m} \in \mathbb{R}^{n}$
\Rightarrow Algorithmic tool in cutting-plane method
Theoretical Computer Science,
Mathematical Optimization

Warmup: John Ellipsoid

- Smallest ellipsoid enclosing a given set of points $\left\{a_{i}\right\}_{i=1}^{m} \in \mathbb{R}^{n}$
\Rightarrow Algorithmic tool in cutting-plane method
- Applied in minimizing error covariance matrix

Statistics,
Machine Learning

Warmup: John Ellipsoid

- Smallest ellipsoid enclosing a given set of points $\left\{a_{i}\right\}_{i=1}^{m} \in \mathbb{R}^{n}$
\Rightarrow Algorithmic tool in cutting-plane method
- Applied in minimizing error covariance matrix
- To compute, find $M \succeq 0$ such that

$$
\begin{array}{ll}
\operatorname{minimize}_{M \succ 0} & \operatorname{det}\left(M^{-1}\right) \\
\text { subject to } & a_{1}^{\top} M a_{1} \leq 1 \\
& \vdots \\
& a_{m}^{\top} M a_{m} \leq 1
\end{array}
$$

Warmup: John Ellipsoid

\Rightarrow Smallest ellipsoid enclosing a given set of points $\left\{a_{i}\right\}_{i=1}^{m} \in \mathbb{R}^{n}$
\Rightarrow Algorithmic tool in cutting-plane method
\Rightarrow Applied in minimizing error covariance matrix

- To compute, find $M \succeq 0$ such that

$$
\begin{array}{ll}
\operatorname{minimize}_{M \succ 0} & \operatorname{det}\left(M^{-1}\right) \\
\text { subject to } & a_{1}^{\top} M a_{1} \leq 1 \\
& \vdots \\
& a_{m}^{\top} M a_{m} \leq 1
\end{array}
$$

\Rightarrow Optimal ellipsoid is $M^{-1}=\sum_{i=1}^{m} \bar{w}_{i} a_{i} a_{i}^{\top}$, where

$$
a_{i}^{\top}\left(A^{\top} \operatorname{diag}(\bar{w}) A\right)^{-1} a_{i}=1
$$

More Generally: Lewis Ellipsoid

Find the Lewis Ellipsoid $M \succeq 0$ that satisfies

```
minimize}M\succ0 det(M-1
subject to }\quad\mp@subsup{\sum}{i=1}{m}(\mp@subsup{a}{i}{\top}M\mp@subsup{a}{i}{}\mp@subsup{)}{}{p/2}\leq
```


More Generally: Lewis Ellipsoid

Find the Lewis Ellipsoid $M \succeq 0$ that satisfies

$$
p=\infty \text { gives }
$$

```
minimize}M\succ0 det(M-1
```

John Ellipsoid

More Generally: Lewis Ellipsoid

Find the Lewis Ellipsoid $M \succeq 0$ that satisfies

$$
\begin{array}{ll}
\operatorname{minimize}_{M \succ 0} & \operatorname{det}\left(M^{-1}\right) \\
\text { subject to } & \sum_{i=1}^{m}\left(a_{i}^{\top} M a_{i}\right)^{p / 2} \leq 1
\end{array}
$$

$>$ Lewis ellipsoid satisfies $M^{-1}=\sum_{i=1}^{m} \bar{w}_{i} a_{i} a_{i}^{\top}$, where $\begin{gathered}\bar{w} \in \mathbb{R}_{\geq 0}^{m} \\ \text { "Lewis weights" }\end{gathered}$

$$
a_{i}^{\top}\left(A^{\top} \operatorname{diag}(\bar{w})^{1-2 / p} A\right)^{-1} a_{i}=\bar{w}_{i}^{2 / p} .
$$

More Generally: Lewis Ellipsoid

Find the Lewis Ellipsoid $M \succeq 0$ that satisfies

$$
\begin{array}{ll}
\operatorname{minimize}_{M \succ 0} & \operatorname{det}\left(M^{-1}\right) \\
\text { subject to } & \sum_{i=1}^{m}\left(a_{i}^{\top} M a_{i}\right)^{p / 2} \leq 1
\end{array}
$$

More Generally: Lewis Ellipsoid

Find the Lewis Ellipsoid $M \succeq 0$ that satisfies

$$
\begin{array}{ll}
\operatorname{minimize}_{M \succ 0} & \operatorname{det}\left(M^{-1}\right) \\
\text { subject to } & \sum_{i=1}^{m}\left(a_{i}^{\top} M a_{i}\right)^{p / 2} \leq 1
\end{array}
$$

\Rightarrow Lewis ellipsoid satisfies $M^{-1}=\sum_{i=1}^{m} \overline{w_{i}} a_{i} a_{i}^{\top}$, where

$$
a_{i}^{\top}\left(A^{\top} \operatorname{diag}(\bar{w})^{1-2 / p} A\right)^{-1} a_{i}=\bar{w}_{i}^{2 / p} .
$$

- Applications:

More Generally: Lewis Ellipsoid

Find the Lewis Ellipsoid $M \succeq 0$ that satisfies

$$
\begin{array}{ll}
\operatorname{minimize}_{M \succ 0} & \operatorname{det}\left(M^{-1}\right) \\
\text { subject to } & \sum_{i=1}^{m}\left(a_{i}^{\top} M a_{i}\right)^{p / 2} \leq 1
\end{array}
$$

$$
a_{i}^{\top}\left(A^{\top} \operatorname{diag}(\bar{w})^{1-2 / p} A\right)^{-1} a_{i}=\bar{w}_{i}^{2 / p} .
$$

- Applications:
$>$ sampling important rows of data matrix,
Statistics, Machine Learning

More Generally: Lewis Ellipsoid

Find the Lewis Ellipsoid $M \succeq 0$ that satisfies

$$
\begin{array}{ll}
\operatorname{minimize}_{M \succ 0} & \operatorname{det}\left(M^{-1}\right) \\
\text { subject to } & \sum_{i=1}^{m}\left(a_{i}^{\top} M a_{i}\right)^{p / 2} \leq 1
\end{array}
$$

$$
a_{i}^{\top}\left(A^{\top} \operatorname{diag}(\bar{w})^{1-2 / p} A\right)^{-1} a_{i}=\bar{w}_{i}^{2 / p} .
$$

- Applications:
- sampling important rows of data matrix,
$>$ computing the Lee-Sidford self-concordant barrier

Optimization Perspective

Lewis weights are the solution to the convex program

$$
\alpha=\frac{2}{p-2}
$$

$$
\operatorname{argmin}_{w \geq 0} \quad-\log \operatorname{det}\left(A^{\top} \operatorname{diag}(w) A\right)+\frac{1}{1+\alpha} 1^{\top} w^{1+\alpha}
$$

Optimization Perspective

Lewis weights are the solution to the convex program

$$
\operatorname{argmin}_{w \geq 0} \quad-\log \operatorname{det}\left(A^{\top} \operatorname{diag}(w) A\right)+\frac{1}{1+\alpha} 1^{\top} w^{1+\alpha} .
$$

- Optimality condition of the above program is

$$
a_{i}^{\top}\left(A^{\top} \operatorname{diag}(\bar{w})^{1-2 / p} A\right)^{-1} a_{i}=\bar{w}_{i}^{2 / p} .
$$

Optimization Perspective

Lewis weights are the solution to the convex program

$$
\operatorname{argmin}_{w \geq 0} \quad-\log \operatorname{det}\left(A^{\top} \operatorname{diag}(w) A\right)+\frac{1}{1+\alpha} 1^{\top} w^{1+\alpha} .
$$

- Optimality condition of the above program is

$$
a_{i}^{\top}\left(A^{\top} \operatorname{diag}(\bar{w})^{1-2 / p} A\right)^{-1} a_{i}=\bar{w}_{i}^{2 / p} .
$$

Our Goal

A high precision algorithm to compute w satisfying $w \approx_{\varepsilon} \bar{w}$

Our Goal

$$
\underbrace{(1-\varepsilon) w_{i} \leq \bar{w}_{i} \leq(1+\varepsilon) w_{i}}
$$

Our Goal

$$
(1-\varepsilon) w_{i} \leq \bar{w}_{i} \leq(1+\varepsilon) w_{i}
$$

A high precision algorithm to compute w satisfying $w \approx_{\varepsilon} \bar{W}$

Our Goal

Runtime poly $\log (1 / \varepsilon)$

$$
(1-\varepsilon) w_{i} \leq \bar{w}_{i} \leq(1+\varepsilon) w_{i}
$$

A high precision algorithm to compute w satisfying $w \approx_{\varepsilon} \bar{w}$

- For many applications, approximate Lewis weights suffice! sampling

Our Goal

Runtime poly $\log (1 / \varepsilon)$

$$
(1-\varepsilon) w_{i} \leq \bar{w}_{i} \leq(1+\varepsilon) w_{i}
$$

A high precision algorithm to compute w satisfying $w \approx{ }_{\varepsilon} \bar{w}$

- For many applications, approximate Lewis weights suffice!
- High-precision Lewis weights useful in computing volume of polytope.

Our Goal

Runtime poly $\log (1 / \varepsilon)$

$$
(1-\varepsilon) w_{i} \leq \bar{w}_{i} \leq(1+\varepsilon) w_{i}
$$

- A high precision algorithm to compute w satisfying $w \approx \overline{\approx_{\varepsilon}}$
- For many applications, approximate Lewis weights suffice!
- High-precision Lewis weights useful in computing volume of polytope.
\Rightarrow Runtime measured in number of leverage score computations

$$
\sigma_{i}(w)=w_{i} \cdot a_{i}^{\top}\left(A^{\top} \operatorname{diag}(w) A\right)^{-1} a_{i}
$$

Our Goal

Runtime poly $\log (1 / \varepsilon)$

$$
(1-\varepsilon) w_{i} \leq \bar{w}_{i} \leq(1+\varepsilon) w_{i}
$$

\Rightarrow A high precision algorithm to compute w satisfying $w \approx_{\varepsilon} \bar{w}$

- For many applications, approximate Lewis weights suffice!
\Rightarrow High-precision Lewis weights useful in computing volume of polytope.
- Runtime measured in number of leverage score computations
- Concretely:

Compute ℓ_{p} Lewis weights with poly $\log (1 / \varepsilon)$ leverage scores.

Prior Work on Computing Lewis Weights

Contrasting Our Results with Previous Work

Year	Authors	Range of p	\# Leverage Score Computations	Total Run Time
2015	Cohen, Peng	$p \in(0,4)$	$O\left(\frac{1}{1-\|1-p / 2\|} \log \left(\frac{\log m}{\varepsilon}\right)\right)$	$O\left(\frac{1}{\|1-p / 2\|} m n^{2} \log \left(\frac{\log m}{\varepsilon}\right)\right)$
2015	Cohen, Peng	$p \geq 4$	$\Omega(n)$	$\Omega\left(m n^{3} \log \left(\frac{m}{\varepsilon}\right)\right)$
2015	Cohen, Peng	$p \geq 4$	$\mathrm{~N} / \mathrm{A}$	$O\left(\frac{\operatorname{nzz}(\mathrm{~A})}{\varepsilon}+c_{p} n^{O(p)}\right)$
2016	Lee	$p \geq 4$	$\frac{1}{\varepsilon} \log (m / n)$	$O\left(\left(\frac{1}{\varepsilon} \mathrm{nnz}(\mathrm{A})+\frac{n^{3}}{\epsilon^{3}}\right) \log (m / n)\right)$
2019	Lee, Sidford	$p \geq 4$	$O\left(p^{2} \sqrt{n}\right)$	$O\left(p^{2} m n^{2.5} \operatorname{polylog}\left(\frac{m}{\varepsilon}\right)\right)$
2021	Our result	$p \geq 4$	$O\left(p^{3} \log \left(\frac{m}{\varepsilon}\right)\right)$	$O\left(p^{3} m n^{2} \log \left(\frac{m}{\varepsilon}\right)\right)$

Previously: high-precision algorithm only for $0 \leq p<4$

Contrasting Our Results with Previous Work

Year	Authors	Range of p	\# Leverage Score Computations	Total Run Time
2015	Cohen, Peng	$p \in(0,4)$	$O\left(\frac{1}{1-\|1-p / 2\|} \log \left(\frac{\log m}{\varepsilon}\right)\right)$	$O\left(\frac{1}{(1-p / 2 \mid} m n^{2} \log \left(\frac{\log m}{\varepsilon}\right)\right)$
2015	Cohen, Peng	$p \geq 4$	$\Omega(n)$	$\Omega\left(m n^{3} \log \left(\frac{m}{\varepsilon}\right)\right)$
2015	Cohen, Peng	$p \geq 4$	$\mathrm{~N} / \mathrm{A}$	$O\left(\frac{\operatorname{nnz}(\mathrm{~A})}{\varepsilon}+c_{p} n^{O(p)}\right)$
2016	Lee	$p \geq 4$	$\frac{1}{\varepsilon} \log (m / n)$	$O\left(\left(\frac{1}{\varepsilon} \mathrm{nnz}(\mathrm{A})+\frac{n^{3}}{\epsilon^{3}}\right) \log (m / n)\right)$
2019	Lee, Sidford	$p \geq 4$	$O\left(p^{2} \sqrt{n}\right)$	$O\left(p^{2} m n^{2.5} \operatorname{polylog}\left(\frac{m}{\varepsilon}\right)\right)$
2021	Our result	$p \geq 4$	$O\left(p^{3} \log \left(\frac{m}{\varepsilon}\right)\right)$	$\left.O\left(p^{3} m n^{2} \log \left(\frac{m}{\varepsilon}\right)\right)\right)$

Previously: high-precision algorithm only for $0 \leq p<4$
$>$ We provide a high-precision algorithm for $p \geq 4$.

Contrasting Our Results with Previous Work

Year	Authors	Range of p	\# Leverage Score Computations	Total Run Time
2015	Cohen, Peng	$p \in(0,4)$	$O\left(\frac{1}{1-\|1-p / 2\|} \log \left(\frac{\log m}{\varepsilon}\right)\right)$	$O\left(\frac{1}{\|1-p / 2\|} m n^{2} \log \left(\frac{\log m}{\varepsilon}\right)\right)$
2015	Cohen, Peng	$p \geq 4$	$\Omega(n)$	$\Omega\left(m n^{3} \log \left(\frac{m}{\varepsilon}\right)\right)$
2015	Cohen, Peng	$p \geq 4$	$\mathrm{~N} / \mathrm{A}$	$O\left(\frac{\operatorname{nnz}(\mathrm{~A})}{\varepsilon}+c_{p} n^{O(p)}\right)$
2016	Lee	$p \geq 4$	$\frac{1}{\varepsilon} \log (m / n)$	$O\left(\left(\frac{1}{\varepsilon} \mathrm{nnz}(\mathrm{A})+\frac{n^{3}}{\epsilon^{3}}\right) \log (m / n)\right)$
2019	Lee, Sidford	$p \geq 4$	$O\left(p^{2} \sqrt{n}\right)$	$O\left(p^{2} m n^{2.5} \mathrm{poly} \log \left(\frac{m}{\varepsilon}\right)\right)$
2021	Our result	$p \geq 4$	$O\left(p^{3} \log \left(\frac{m}{\varepsilon}\right)\right)$	$\left.O\left(p^{3} m n^{2} \log \left(\frac{m}{\varepsilon}\right)\right)\right)$

Previously: high-precision algorithm only for $0 \leq p<4$
$>$ We provide a high-precision algorithm for $p \geq 4$.
Therefore, there now exists a high-precision algorithm for all $p>0$.

Prior Work: Cohen-Peng'15

\Rightarrow Repeatedly, $w_{i} \leftarrow\left(a_{i}^{\top}\left(A^{\top} \operatorname{diag}(w)^{1-2 / p} A\right)^{-1} a_{i}\right)^{p / 2}$ for all i.

Prior Work: Cohen-Peng'15

\Rightarrow Repeatedly, $w_{i} \leftarrow\left(a_{i}^{\top}\left(A^{\top} \operatorname{diag}(w)^{1-2 / p} A\right)^{-1} a_{i}\right)^{p / 2}$ for all i.
\Rightarrow The above map is a contraction only for $p<4$.

Prior Work: Cohen-Peng'15

\Rightarrow Repeatedly, $w_{i} \leftarrow\left(a_{i}^{\top}\left(A^{\top} \operatorname{diag}(w)^{1-2 / p} A\right)^{-1} a_{i}\right)^{p / 2}$ for all i.
\Rightarrow The above map is a contraction only for $p<4$.
For $p \geq 4$, solve the convex program

$$
\begin{array}{ll}
\begin{array}{ll}
\operatorname{minimize}_{M \succ 0} & \operatorname{det}\left(M^{-1}\right) \\
\text { subject to } & \sum_{i \in[m]}\left(a_{i}^{\top} M a_{i}\right)^{p / 2} \leq 1 .
\end{array} .
\end{array}
$$

Prior Work: Cohen-Peng'15

\Rightarrow Repeatedly, $w_{i} \leftarrow\left(a_{i}^{\top}\left(A^{\top} \operatorname{diag}(w)^{1-2 / p} A\right)^{-1} a_{i}\right)^{p / 2}$ for all i.
\Rightarrow The above map is a contraction only for $p<4$.
For $p \geq 4$, solve the convex program

$$
\begin{array}{ll}
\begin{array}{ll}
\operatorname{minimize}_{M \succ 0} & \operatorname{det}\left(M^{-1}\right) \\
\text { subject to } & \sum_{i \in[m]}\left(a_{i}^{\top} M a_{i}\right)^{p / 2} \leq 1 .
\end{array}
\end{array}
$$

- Other approaches: mirror descent, homotopy method, ...

Our Contributions

Our Technical Outline

We compute Lewis weights by solving:

$$
\alpha=\frac{2}{p-2}
$$

$$
\operatorname{argmin}_{w \geq 0} \quad-\log \operatorname{det}\left(A^{\top} \operatorname{diag}(w) A\right)+\frac{1}{1+\alpha} 1^{\top} w^{1+\alpha}
$$

Our Technical Outline

We compute Lewis weights by solving:

$$
\alpha=\frac{2}{p-2}
$$

$$
\operatorname{argmin}_{w \geq 0} \quad-\log \operatorname{det}\left(A^{\top} \operatorname{diag}(w) A\right)+\frac{1}{1+\alpha} 1^{\top} w^{1+\alpha} .
$$

- Standard high-accuracy algorithms don't apply

Our Technical Outline

We compute Lewis weights by solving:

$$
\alpha=\frac{2}{p-2}
$$

$$
\operatorname{argmin}_{w \geq 0} \quad-\log \operatorname{det}\left(A^{\top} \operatorname{diag}(w) A\right)+\frac{1}{1+\alpha} 1^{\top} w^{1+\alpha} .
$$

- Standard high-accuracy algorithms don't apply
- Identify a "rounding" condition that allows geometric decrease in error

Our Technical Outline

We compute Lewis weights by solving:

$$
\alpha=\frac{2}{p-2}
$$

$$
\operatorname{argmin}_{w \geq 0} \quad-\log \operatorname{det}\left(A^{\top} \operatorname{diag}(w) A\right)+\frac{1}{1+\alpha} 1^{\top} w^{1+\alpha}
$$

- Standard high-accuracy algorithms don't apply
- Identify a "rounding" condition that allows geometric decrease in error
Leverages upper \& lower quadratics

Our Technical Outline

We compute Lewis weights by solving:

$$
\alpha=\frac{2}{p-2}
$$

$$
\operatorname{argmin}_{w \geq 0} \quad-\log \operatorname{det}\left(A^{\top} \operatorname{diag}(w) A\right)+\frac{1}{1+\alpha} 1^{\top} w^{1+\alpha}
$$

- Standard high-accuracy algorithms don't apply
- Identify a "rounding" condition that allows geometric decrease in error
- Maintain the rounding condition in constant number of steps

Our Algorithm

1. Initialize $w^{(0)}=n / m$.
2. For $k=1,2,3, \ldots, T$ iterations, do:
$\triangleright \widetilde{w}^{(k)} \leftarrow \operatorname{Round}\left(w^{(k-1)}\right) / /$ rounding condition
$\triangleright w^{(k)} \leftarrow \operatorname{Descent}\left(\widetilde{w}^{(k)},[m], 1\right) / /$ make progress
3. Set $w_{R} \leftarrow \operatorname{Round}\left(w^{T}\right)$
4. Return \widehat{w} where $\widehat{w}_{i} \leftarrow\left(a_{i}^{\top}\left(\mathrm{AW}_{R} \mathrm{~A}\right)^{-1} a_{i}\right)^{1 / \alpha}$.

Our First Technical Building Block: Descent

The descent step:

$$
\rho_{i}(w)=\frac{a_{i}^{\top}\left(A^{\top} \operatorname{diag}(w) A\right)^{-1} a_{i}}{w_{i}^{\alpha}}
$$

$$
[\operatorname{Descent}(w, C, \eta)]_{i}:=w_{i}\left[1+\eta_{i} \cdot \frac{\rho_{i}(w)-1}{\rho_{i}(w)+1}\right]
$$

$$
\text { for } i \in C \subseteq\{1,2, \ldots, m\}
$$

Our First Technical Building Block: Descent

The descent step:

$$
\rho_{i}(w)=\frac{a_{i}^{\top}\left(A^{\top} \operatorname{diag}(w) A\right)^{-1} a_{i}}{w_{i}^{\alpha}}
$$

$$
[\operatorname{Descent}(w, C, \eta)]_{i_{\zeta}}:=w_{i}\left[1+\eta_{i} \cdot \frac{\rho_{i}(w)-1}{\rho_{i}(w)+1}\right]
$$

$$
\text { for } i \in C \subseteq\{1,2, \ldots, m\}
$$

Our First Technical Building Block: Descent

The descent step:

$$
\rho_{i}(w)=\frac{a_{i}^{\top}\left(A^{\top} \operatorname{diag}(w) A\right)^{-1} a_{i}}{w_{i}^{\alpha}}
$$

$$
[\operatorname{Descent}(w, C, \eta)]_{i_{\zeta}}:=w_{i}\left[1+\eta_{i} \cdot \frac{\rho_{i}(w)-1}{\rho_{i}(w)+1}\right]
$$

- Inspired by Newton step $i \in C \subseteq\{1,2, \ldots, m\}$
- Quasi-Newton step using approximate Hessian

Our First Technical Building Block: Descent

The descent step:

$$
\rho_{i}(w)=\frac{a_{i}^{\top}\left(A^{\top} \operatorname{diag}(w) A\right)^{-1} a_{i}}{w_{i}^{\alpha}}
$$

$$
[\operatorname{Descent}(w, C, \eta)]_{i_{\zeta}}:=w_{i}\left[1+\eta_{i} \cdot \frac{\rho_{i}(w)-1}{\rho_{i}(w)+1}\right]
$$

Inspired by Newton $i \in C \subseteq\{1,2, \ldots, m\}$

- Quasi-Newton step using approximate Hessian
- Key properties:

Our First Technical Building Block: Descent

The descent step:

$$
\rho_{i}(w)=\frac{a_{i}^{\top}\left(A^{\top} \operatorname{diag}(w) A\right)^{-1} a_{i}}{w_{i}^{\alpha}}
$$

$$
[\operatorname{Descent}(w, C, \eta)]_{i_{i}}:=w_{i}\left[1+\eta_{i} \cdot \frac{\rho_{i}(w)-1}{\rho_{i}(w)+1}\right]
$$

for $i \in C \subseteq\{1,2, \ldots, m\}$

- Quasi-Newton step using approximate Hessian
- Key properties:
$\triangleright C=[m]$ and "rounding" condition satisfied: fast progress

Our First Technical Building Block: Descent

The descent step:

$$
\rho_{i}(w)=\frac{a_{i}^{\top}\left(A^{\top} \operatorname{diag}(w) A\right)^{-1} a_{i}}{w_{i}^{\alpha}}
$$

$$
[\operatorname{Descent}(w, C, \eta)]_{i_{i}}:=w_{i}\left[1+\eta_{i} \cdot \frac{\rho_{i}(w)-1}{\rho_{i}(w)+1}\right]
$$

. Inspired by Newton step $i \in C \subseteq\{1,2, \ldots, m\}$

- Quasi-Newton step using approximate Hessian
- Key properties:
- $C=[m]$ and "rounding" condition satisfied: fast progress
- Otherwise, fixes the "rounding" condition

Our Second Technical Building Block: Rounding

The rounding condition:

$$
\sigma_{i}(w)=w_{i} \cdot a_{i}^{\top}\left(A^{\top} W A\right)^{-1} a_{i}
$$

$$
\max _{i \in[m]} \rho_{i}(w) \leq 1+\alpha, \text { where } \rho_{i}(w)=\frac{\sigma_{i}(w)}{w_{i}^{1+\alpha}}
$$

Our Second Technical Building Block: Rounding

The rounding condition:

$$
\sigma_{i}(w)=w_{i} \cdot a_{i}^{\top}\left(A^{\top} W A\right)^{-1} a_{i}
$$

$$
\max _{i \in[m]} \rho_{i}(w) \leq 1+\alpha, \text { where } \rho_{i}(w)=\frac{\sigma_{i}(w)}{w_{i}^{1+\alpha}}
$$

$>$ Updating w_{i} updates $\nabla_{i} \mathcal{F}(w) \approx w_{i}^{\alpha}$ for small $\rho_{i}(w)$.

Our Second Technical Building Block: Rounding

The rounding condition:

$$
\sigma_{i}(w)=w_{i} \cdot a_{i}^{\top}\left(A^{\top} W A\right)^{-1} a_{i}
$$

$$
\max _{i \in[m]} \rho_{i}(w) \leq 1+\alpha, \text { where } \rho_{i}(w)=\frac{\sigma_{i}(w)}{w_{i}^{1+\alpha}}
$$

\Rightarrow Updating w_{i} updates $\nabla_{i} \mathcal{F}(w) \approx w_{i}^{\alpha}$ for small $\rho_{i}(w)$.
\Rightarrow Critical in upper bounding $\mathcal{F}(w)-\mathcal{F}(\bar{w})$.

Our Second Technical Building Block: Rounding

The rounding condition:

$$
\sigma_{i}(w)=w_{i} \cdot a_{i}^{\top}\left(A^{\top} W A\right)^{-1} a_{i}
$$

$$
\max _{i \in[m]} \rho_{i}(w) \leq 1+\alpha, \text { where } \rho_{i}(w)=\frac{\sigma_{i}(w)}{w_{i}^{1+\alpha}}
$$

\Rightarrow Updating w_{i} updates $\nabla_{i} \mathcal{F}(w) \approx w_{i}^{\alpha}$ for small $\rho_{i}(w)$.
\Rightarrow Critical in upper bounding $\mathcal{F}(w)-\mathcal{F}(\bar{w})$.
$>$ Critical to turning poly $(1 / \epsilon)$ runtime into polylog(1/ $)$.

Our Second Technical Building Block: Rounding

The rounding condition:

$$
\sigma_{i}(w)=w_{i} \cdot a_{i}^{\top}\left(A^{\top} W A\right)^{-1} a_{i}
$$

$$
\max _{i \in[m]} \rho_{i}(w) \leq 1+\alpha, \text { where } \rho_{i}(w)=\frac{\sigma_{i}(w)}{w_{i}^{1+\alpha}}
$$

\triangleright Updating w_{i} updates $\nabla_{i} \mathcal{F}(w) \approx w_{i}^{\alpha}$ for small $\rho_{i}(w)$.

- Critical in upper bounding $\mathcal{F}(w)-\mathcal{F}(\bar{w})$.
\downarrow Critical to turning poly $(1 / \epsilon)$ runtime into polylog $(1 / \epsilon)$.
$>$ Rounding implies a certain ellipsoid being inside a polytope.

Our Second Technical Building Block: Rounding

The rounding condition:

$$
\begin{aligned}
& \sigma_{i}(w)=w_{i} \cdot a_{i}^{\top}\left(A^{\top} W A\right)^{-1} a_{i} \\
& \alpha, \text { where } \rho_{i}(w)=\frac{\sigma_{i}(w)}{w_{i}^{1+\alpha}} .
\end{aligned}
$$

$>$ Updating w_{i} updates $\nabla_{i} \mathcal{F}(w) \approx w_{i}^{\alpha}$ for small $\rho_{i}(w)$.
\Rightarrow Critical in upper bounding $\mathcal{F}(w)-\mathcal{F}(\bar{w})$.
\downarrow Critical to turning poly $(1 / \epsilon)$ runtime into polylog $(1 / \epsilon)$.
Rounding implies a certain ellipsoid being inside a polytope.
Rounding Algorithm:

1. while $C=\left\{i: \rho_{i}(w)>1+\alpha\right\} \neq \emptyset$,
$\downarrow w \leftarrow \operatorname{Descent}\left(w, C, \frac{1}{\alpha}\right)$
2. Return w

Analysis of Algorithm:Descent Step

Want to bound iteration complexity of Descent steps, where

$$
\operatorname{Descent}(w, C, \eta)]_{i_{r}}:=w_{i}\left[1+\eta_{i} \cdot \frac{\rho_{i}(w)-1}{\rho_{i}(w)+1}\right]
$$

$$
\text { for } i \in C \subseteq\{1,2, \ldots, m\}
$$

Analysis of Algorithm:Descent Step

Want to bound iteration complexity of Descent steps, where

$$
\operatorname{Descent}(w, C, \eta)]_{i_{i}}:=w_{i}\left[1+\eta_{i} \cdot \frac{\rho_{i}(w)-1}{\rho_{i}(w)+1}\right]
$$

$$
\text { for } i \in C \subseteq\{1,2, \ldots, m\}
$$

Lemma 1: Descent Step Convergence

Each Descent step decreases the objective, and the number of Descent steps is $O\left(\alpha^{-1} \log (m / \varepsilon)\right)$.

Analysis of Algorithm:Descent Step

Want to bound iteration complexity of Descent steps, where

$$
\operatorname{Descent}(w, C, \eta)]_{i_{r}}:=w_{i}\left[1+\eta_{i} \cdot \frac{\rho_{i}(w)-1}{\rho_{i}(w)+1}\right]
$$

$$
\text { for } i \in C \subseteq\{1,2, \ldots, m\}
$$

Lemma 1: Descent Step Convergence

Each Descent step decreases the objective, and the number of Descent steps is $O\left(\alpha^{-1} \log (m / \varepsilon)\right)$.

> Proof Idea: Upper bound on sub-optimality, lower bound on progress.

Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of Descent steps is $O\left(\alpha^{-1} \log (m / \varepsilon)\right)$.

$$
\mathcal{F}(w)-\mathcal{F}(\bar{w}) \quad \leq O\left(\alpha^{-1}\right) \sum_{i=1}^{m} w_{i}^{1+\alpha} \frac{\left(\rho_{i}(w)-1\right)^{2}}{\rho_{i}(w)+1}
$$

Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of Descent steps is $O\left(\alpha^{-1} \log (m / \varepsilon)\right)$.

$$
\begin{aligned}
& \mathcal{F}(w)-\mathcal{F}(\bar{w}) \leq O\left(\alpha^{-1}\right) \sum_{i=1}^{m} w_{i}^{1+\alpha} \frac{\left(\rho_{i}(w)-1\right)^{2}}{\rho_{i}(w)+1} \\
& \mathcal{F}\left(w^{+}\right)-\mathcal{F}(w) \leq \sum_{i=1}^{m}-\eta_{i} w_{i}^{1+\alpha} \frac{\left(\rho_{i}(w)-1\right)^{2}}{\rho_{i}(w)+1} .
\end{aligned}
$$

Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of Descent steps is $O\left(\alpha^{-1} \log (m / \varepsilon)\right)$.

$$
\begin{aligned}
& \mathcal{F}(w)-\mathcal{F}(\bar{w}) \leq O\left(\alpha^{-1}\right) \sum_{i=1}^{m} w_{i}^{1+\alpha} \frac{\left(\rho_{i}(w)-1\right)^{2}}{\rho_{i}(w)+1} \\
& \mathcal{F}\left(w^{+}\right)-\mathcal{F}(w) \leq \sum_{i=1}^{m}-\eta_{i} w_{i}^{1+\alpha} \frac{\left(\rho_{i}(w)-1\right)^{2}}{\rho_{i}(w)+1} . \\
& \mathcal{F}\left(w^{+}\right)-\mathcal{F}(\bar{w}) \leq \mathcal{F}(w)-\mathcal{F}(\bar{w})-\frac{1}{\alpha} \sum_{i=1}^{m} w_{i}^{1+\alpha} \frac{\left(\rho_{i}(w)-1\right)^{2}}{\rho_{i}(w)+1}
\end{aligned}
$$

Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of Descent steps is $O\left(\alpha^{-1} \log (m / \varepsilon)\right)$.

$$
\begin{aligned}
\mathcal{F}(w)-\mathcal{F}(\bar{w}) & \leq O\left(\alpha^{-1}\right) \sum_{i=1}^{m} w_{i}^{1+\alpha} \frac{\left(p_{i}(w)-1\right)^{2}}{\rho_{i}(w)+1} \\
\mathcal{F}\left(w^{+}\right)-\mathcal{F}(w) & \leq \sum_{i=1}^{m}-\eta_{i} w_{i}^{1+\alpha} \frac{\left(p_{i}(w)-1\right)^{2}}{p_{i}(w)+1} . \\
\mathcal{F}\left(w^{+}\right)-\mathcal{F}(\bar{w}) & \leq \mathcal{F}(w)-\mathcal{F}(\bar{w})-\frac{1}{\alpha} \sum_{i=1}^{m} w_{i}^{1+\alpha} \frac{\left(p_{i}(w)-1\right)^{2}}{p_{i}(w)+1} \\
& \leq(1-O(\alpha))(\mathcal{F}(w)-\mathcal{F}(\bar{w})) .
\end{aligned}
$$

Analysis of Algorithm: Round Step

Want to bound iteration complexity within one Round step.

Analysis of Algorithm: Round Step

Want to bound iteration complexity within one Round step.

Lemma 3: Round while loop iterations
The number of iterations inside the while loop in one Round step is $O\left(\alpha^{-2} \log \left(\rho_{\max }(w)\right)\right.$.

Analysis of Algorithm: Round Step

Want to bound iteration complexity within one Round step.

Lemma 3: Round while loop iterations

The number of iterations inside the while loop in one Round step is $O\left(\alpha^{-2} \log \left(\rho_{\max }(w)\right)\right.$.

Proof Sketch: Combine Round's termination condition $\rho_{\max }(w) \leq$ $1+\alpha$ with the maximum increase in $\rho_{\max }(w)$ per while loop .

Round Step Complexity of while Loop: Bounding $\rho_{\max }(w)$

Lemma 4: Round change in $\rho_{\max }(w)$
Let w^{+}be the state of w after one while loop of Round. Then,

$$
\rho_{\max }\left(w^{+}\right) \leq\left(1+\frac{\alpha}{1+\alpha}\right)^{-\alpha} \rho_{\max }(w)
$$

Combine with $w_{i}=w_{i}^{+}$for all $i \notin C$ implies $w^{+} \geq w$. Hence: $\rho \cdot\left(w^{+}\right)=\left[w_{i}^{+}\right]^{-\alpha}\left[\Delta\left(\Delta^{\top} \operatorname{diag}\left(w^{+}\right) \Delta\right)^{-1} \Delta^{\top}\right]$

Round Step Complexity of while Loop: Bounding $\rho_{\max }(w)$

$$
\begin{aligned}
& \text { Let } w \text { t be the state of } w \text { after one while loop of Round. Then, } \\
& \qquad \rho_{\max }\left(w^{+}\right) \leq\left(1+\frac{\alpha}{1+\alpha}\right)^{-\alpha} \quad \rho_{\max }(w) \\
& w_{i}^{+}=w_{i}+\frac{w_{i}}{3}\left(\frac{\rho_{i}(w)-1}{\rho_{i}(w)+1}\right) \quad / / \text { Descent on } i \in C \\
& \geq w_{i}+\frac{w_{i}}{3 \alpha}\left(\frac{\alpha}{2+\alpha}\right) \quad / / x \rightarrow \frac{x-1}{x+1} \text { is monotone for } x \geq 1
\end{aligned}
$$

Combine with $w_{i}=w_{i}^{+}$for all $i \notin C$ implies $w^{+} \geq w$. Hence: $\rho_{i}\left(w^{+}\right)=\left[w_{i}^{+}\right]^{-\alpha}\left[A\left(A^{\top} \operatorname{diag}\left(w^{+}\right) A\right)^{-1} A^{\top}\right] i$

Round Step Complexity of while Loop: Bounding $\rho_{\max }(w)$

$$
\begin{aligned}
& \text { Let } w^{+} \text {be the state of } w \text { after one while loop of Round. Then, } \\
& \qquad \rho_{\max }\left(w^{+}\right) \leq\left(1+\frac{a}{1+a}\right)^{-a} \rho_{\max }(w) \text {. } \\
& w_{i}^{+}=w_{i}+\frac{w_{i}}{3}\left(\frac{\rho_{i}(w)-1}{\rho_{i}(w)+1}\right) \text { //Descent on } \in C \\
& \geq w_{i}+\frac{w_{i}}{3 \alpha}\left(\frac{\alpha}{2+\alpha}\right) \\
& \text { Combine with } w_{i}=w_{i}^{+} \text {for all } i \notin C \text { implies } w^{+} \geq w . \text { Hence: } \\
& \rho_{i}\left(w^{+}\right)=\left[w_{i}^{+}\right]^{-\alpha}\left[A\left(A^{\top} \operatorname{diag}\left(w^{+}\right) A\right)^{-1} A^{\top}\right]_{i i} \leq\left[1+\frac{\alpha}{3(2+\alpha)}\right]^{-\alpha} \rho_{i}(w)
\end{aligned}
$$

Round Step Complexity of while Loop: Bounding $\rho_{\max }(w)$

$$
\begin{aligned}
& \text { Let } w^{+} \text {be the state of } w \text { after one while loop of Round. Then, } \\
& p_{\max }\left(w^{+}\right) \leq\left(1+\frac{\alpha}{1+\alpha}\right)^{-a} p_{\max }(w) \\
& w_{i}^{+}=w_{i}+\frac{w_{i}}{3}\left(\frac{p_{i}(w)-1}{p_{i}(w)+1}\right) \\
& \geq w_{i}+\frac{w_{i}}{3 \alpha}\left(\frac{\alpha}{2+\alpha}\right) \\
& C_{i}\left(w^{+}\right)=\left[w_{i}^{+}\right]^{-\alpha}\left[A\left(A^{\top} \operatorname{diag}\left(w^{+}\right) A\right)^{-1} A^{\top}\right]_{i i} \leq\left[1+\frac{\alpha}{3(2+\alpha)}\right]^{-\alpha} \rho_{i}(w)
\end{aligned}
$$

Conclusion: Total Iteration Complexity

Most basic step:
Leverage score computation

Conclusion: Total Iteration Complexity

Most basic step:

Denote:

Leverage score computation
$\mathcal{R}:=$ Steps in Round,
$\mathcal{D}:=$ Steps of Descent

Conclusion: Total Iteration Complexity

Most basic step:

Denote:
Throughout the algorithm,

Leverage score computation
$\mathcal{R}:=$ Steps in Round,
$\mathcal{D}:=$ Steps of Descent
$\mathcal{D}=\mathcal{O}\left(\alpha^{-1} \log (m / \varepsilon)\right)$

Conclusion: Total Iteration Complexity

Most basic step:
Denote:
Throughout the algorithm,
Between two Descent calls:

Leverage score computation
$\mathcal{R}:=$ Steps in Round,
$\mathcal{D}:=$ Steps of Descent
$\mathcal{D}=\mathcal{O}\left(\alpha^{-1} \log (m / \varepsilon)\right)$
$\mathcal{R}:=\mathcal{O}\left(\alpha^{-2} \log \left(\rho_{\max }(w)\right)\right)$

Conclusion: Total Iteration Complexity

Most basic step:
Denote:
Throughout the algorithm,
Between two Descent calls:
Initial iteration:

Leverage score computation
$\mathcal{R}:=$ Steps in Round,
$\mathcal{D}:=$ Steps of Descent
$\mathcal{D}=\mathcal{O}\left(\alpha^{-1} \log (m / \varepsilon)\right)$
$\mathcal{R}:=\mathcal{O}\left(\alpha^{-2} \log \left(\rho_{\max }(w)\right)\right)$
$\mathcal{R}:=\mathcal{O}\left(\alpha^{-2} \log (m / n)\right)$

Conclusion: Total Iteration Complexity

Most basic step:

Denote:
Throughout the algorithm,
Between two Descent calls:
Initial iteration:

Between two Round calls:

Leverage score computation
$\mathcal{R}:=$ Steps in Round,
$\mathcal{D}:=$ Steps of Descent
$\mathcal{D}=\mathcal{O}\left(\alpha^{-1} \log (m / \varepsilon)\right)$
$\mathcal{R}:=\mathcal{O}\left(\alpha^{-2} \log \left(\rho_{\max }(w)\right)\right)$
$\mathcal{R}:=\mathcal{O}\left(\alpha^{-2} \log (m / n)\right)$
Minimum increase in w,
Maximum increase in $\rho_{\max }(w)$

Conclusion: Total Iteration Complexity

Most basic step:

Denote:
Throughout the algorithm,
Between two Descent calls:
Initial iteration:

Between two Round calls:
Therefore, over \mathcal{D} iterations:

Leverage score computation
$\mathcal{R}:=$ Steps in Round,
$\mathcal{D}:=$ Steps of Descent
$\mathcal{D}=\mathcal{O}\left(\alpha^{-1} \log (m / \varepsilon)\right)$
$\mathcal{R}:=\mathcal{O}\left(\alpha^{-2} \log \left(\rho_{\max }(w)\right)\right)$
$\mathcal{R}:=\mathcal{O}\left(\alpha^{-2} \log (m / n)\right)$
Minimum increase in w,
Maximum increase in $\rho_{\max }(w)$
$\mathcal{R}:=\mathcal{O}\left(\mathcal{D} \cdot \alpha^{-2} \log (m / n)\right)$

Our Contribution

Lemma 5: Our Main Result (Informal)
Given a full-rank $A \in \mathbb{R}^{m \times n}$ and $p \geq 4$, we compute ε approximate ℓ_{p} Lewis weights in $O\left(p^{3} \log (m p / \varepsilon)\right)$ oracle calls.

Our Contribution

Lemma 5: Our Main Result (Informal)
Given a full-rank $A \in \mathbb{R}^{m \times n}$ and $p \geq 4$, we compute ε approximate ℓ_{p} Lewis weights in $O\left(p^{3} \log (m p / \varepsilon)\right)$ oracle calls.

- Our algorithm has both a parallel and a sequential version.

Our Contribution

Lemma 5: Our Main Result (Informal)

Given a full-rank $A \in \mathbb{R}^{m \times n}$ and $p \geq 4$, we compute ε approximate ℓ_{p} Lewis weights in $O\left(p^{3} \log (m p / \varepsilon)\right)$ oracle calls.

- Our algorithm has both a parallel and a sequential version.
- Computing gradient of Lee-Sidford barrier to high-precision in polylogarithmic depth.

Thank You!

