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Warmup:

Smallest ellipsoid enclosing a given set of points {a;}7; € R”"
Algorithmic tool in cutting-plane method

Applied in minimizing error covariance matrix

To compute, find M = 0 such that

minimizey.o  det(M1)
subject to af Ma; <1,

a) Ma,, < 1.

Optimal ellipsoid is M~ = Y"1, W,-a,-a;r, where
a (AT diag(w)A)ta; = 1.
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More Generally: Lewis Ellipsoid

Find the Lewis Ellipsoid M = 0 that satisfies

minimizepso  det(M~1)
subject to Z,fll(a,-TMa,-)P/2 <1°
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More Generally: Lewis Ellipsoid

Find the Lewis Ellipsoid M = 0 that satisfies

minimizepso  det(M~1)
subject to ST (3 Maj)Pl2 <1

w € RY,
“Lewis weights"

Lewis ellipsoid satisfies M~! = >°7  Wja;a; /where
o] (AT ding(w)L-2/pA) L wa/P.]

Existence proved
by D.R. Lewis in 1978
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More Generally: Lewis Ellipsoid

Find the Lewis Ellipsoid M = 0 that satisfies

minimizepso  det(M~1)
subject to ST (3 Maj)Pl2 <1

w € RY,
_ “Lewis weights"
Lewis ellipsoid satisfies M~ = > W,-a,-a,-T, where
o _ 2
[a;'—(Aleag(w)1 2/pPp) 1a,-—wi/p.]
Applications:
sampling important rows of data matrix,

(Statistics, Machine Learning]
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More Generally: Lewis Ellipsoid

Find the Lewis Ellipsoid M = 0 that satisfies

minimizepso  det(M~1)
subject to ST (3 Maj)Pl2 <1

w e RY,
_ “Lewis weights"
Lewis ellipsoid satisfies M~1 = "7, W;a;a, /Where
o] (AT diag(w)'—2/p A) Lo w2 |
Applications:

sampling important rows of data matrix,
computing the Lee-Sidford self-concordant barrier

Mathematical Optimization]
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Optimization Perspective

Lewis weights are the solution to the convex program

argmin,, >

—log det(AT diag(w)A) + 151" w L+d,
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Optimality condition of the above program is
o] (AT diag(w)2/PA)ta; = w?/”. |
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minimizey.o  det(M™1)

Optimization Perspective subject to S (aT Maj)P/2 < 1.

Lewis weights are the solution to the convex program

argmin,,~o — logdet(ATdiag(w)A) + 1517 wlte,

Optimality condition of the above program is
o] (AT diag(w)2/PA)ta; = w?/”. |
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A algorithm to compute w satisfying w~.w

For many applications, approximate Lewis weights suffice!
High-precision Lewis weights useful in computing volume of
polytope.
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A
[(J','(W) = w; - a?(ATdiag(W)A)_laa
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Our Goal
[Runtime polylog(l/s)] [(1 —e)w; <w; < (1+ E)W,'J
A algorithm to compute w satisfying w~.w

For many applications, approximate Lewis weights suffice!
High-precision Lewis weights useful in computing volume of
polytope.

Runtime measured in number of leverage score computations

Concretely:

(Compute 5 Lewis weights with poly log(1/¢) leverage scores. J
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Prior Work on Computing Lewis Weights
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Contrasting Our Results with Previous Work

Year Authors Range of p # Leverage Score Computations Total Run Time

[ 2015 Cohen, Peng  p € (0,4) O(m |Og(|°gsm)) O(ufi, 2\’7""2 Iog("’ng)) ]
2015 Cohen, Peng p>4 Q(n) Q(mn?log (7))
2015 Cohen, Peng p>4 N/A O(RneA) c,n°P))
2016 Lee p>4 Liog(m/n) o ((%nnz(A) + %:) Iog(m/n))
2019  Lee, Sidford p>4 O(p?y/n) O(p?>mn*®polylog(T))
2021 Our result p>4 O(p®log(Z)) O(p*mn? log(Z))

Previously: high-precision algorithm only for 0 < p < 4
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Contrasting Our Results with Previous Work

Year Authors Range of p # Leverage Score Computations Total Run Time

2015 Cohen, Peng  p < (0,4) O(ﬁ Iog(l"i"’)) O(ﬁmn2 Iog("’“j'"))

2015 Cohen, Peng p>4 Q(n) Q(mn®log (7))

2015 Cohen, Peng p>4 N/A O(neA) c,n°P))

2016 Lee p>4 Liog(m/n) o ((%nnz(A) + Z,:) Iog(m/n))

2019  Lee, Sidford p>4 O(p?y/n) O(p?>mn*®polylog(™))
(2021 Our result p>4 O(p® log(2)) O(p>mn?log(2)) |

Previously: high-precision algorithm only for 0 < p < 4
We provide a high-precision algorithm for p > 4.
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Contrasting Our Results with Previous Work

Year Authors Range of p # Leverage Score Computations Total Run Time
2015 Cohen, Peng  p € (0,4) O(ﬁ Iog(l"i"’)) O(ﬁmn2 Iog("’“j'"))
2015 Cohen, Peng p>4 Q(n) Q(mn®log (7))
2015 Cohen, Peng p>4 N/A O(neA) c,n°P))
2016 Lee p>4 Liog(m/n) o ((%nnz(A) + Z,:) Iog(m/n))
2019  Lee, Sidford p>4 O(p?y/n) O(p?>mn*®polylog(™))

I 2021  Our result p>4 O(p® log(2)) O(p>mn?log(2)) |

Previously: high-precision algorithm only for 0 < p < 4
We provide a high-precision algorithm for p > 4.

Therefore, there now exists a high-precision algorithm for all
p > 0.
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Prior Work: Cohen-Peng'15

Repeatedly, w; + (a; (AT diag(w)'=2/PA)~1a;)P/? for all i.
The above map is a contraction only for p < 4.

For p > 4, solve the convex program

minimizepso det(M~1)
subject to Zie[m](‘9;T’V"37i)p/2 <1l

Other approaches: mirror descent, homotopy method, ...
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Our Contributions
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argmin,,~o — logdet(A' diag(w)A) + 51" wlte,
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Identify a “rounding” condition that allows geometric decrease
in error
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Our Technical Outline

We compute Lewis weights by solving: a= %5

7
argmin,,~o — logdet(A' diag(w)A) + 51" wlte,

Standard high-accuracy algorithms don't apply

Identify a “rounding” condition that allows geofmetric decrease
in error

Leverages upper &
lower quadratics
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Our Technical Outline

We compute Lewis weights by solving: a= -2

7
[ argmin,,~o — logdet(A' diag(w)A) + 51" wlte,

Standard high-accuracy algorithms don't apply

Identify a “rounding” condition that allows geometric decrease
in error

Maintain the rounding condition in constant number of steps
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Our Algorithm

(0

—_

~ Initialize w(® = n/m.

N

. For k=1,2,3,..., T iterations, do:
wk) <~ Round(w(*=1)) // rounding condition

w(k) « Descent(w(¥), [m], 1) //make progress

w

. Set wg + Round(wT)

4. Return w where w; + (a,-T(AWRA)_lai)l/a-




13/21

Our First Technical Building Block: Descent

T(AT diag(w)A)1a;
[pi(w): 2] (AT diag(w)A) ]

Wi

The descent step:

{
[Descent(w, C,n)]ic= w; [1 + ;- P,:(W)—l] .

s
<ﬁ‘oring{l,Q,...,m}]
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The descent step:
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Inspired by Newton step

/
(w)—1
[Descent(w, C, n)]);:z w; [1 +n; Z;(W)Jrl] .
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Quasi-Newton step using approximate Hessian
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Our First Technical Building Block: Descent

o~ T )
/

y
[Descent(w, C,n)]);iz w; [1 + i Z:E%ﬁ] : ]

The descent step:

<ﬁ‘orie CC {1,2,...,m}]
Inspired by Newton step

Quasi-Newton step using approximate Hessian
Key properties:
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Our First Technical Building Block: Descent

/
-zw)—l
[ [Descent(w, C,n)]),-:: w; [1 + N - Z;(W)Jfl] . ]

The descent step:

<ﬁcorie CC {1,2,...,m}]
Inspired by Newton step

Quasi-Newton step using approximate Hessian
Key properties:
= [m] and “rounding” condition satisfied: fast progress
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Our First Technical Building Block: Descent

pi(w) = 2L eln) 2o
/
-zw)—l
[ [Descent(w, C,n)]),-:: w; [1 + N - Z;(W)Jrl] . ]

The descent step:

{foriecc{12,...,m}
Inspired by Newton step

Quasi-Newton step using approximate Hessian
Key properties:

= [m] and “rounding” condition satisfied: fast progress
Otherwise, fixes the “rounding” condition
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Our Second Technical Building Block: Rounding

The rounding condition: [a,-(w) =w;-a] (AT WA)_la,J
4
MaXic[m] i(w) < 1+ a, where pi(w) = ‘;/1(1'2
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Our Second Technical Building Block: Rounding

The rounding condition: [UI(W) =w;-a (AT WA)_la/]
(W)
oi(w
MaXic[m] i(w) < 1+ a, where pi(w) = i

Updating w; updates V;F(w) =~ w* for small p;j(w).
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Critical in upper bounding F(w) — F(w).
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Updating w; updates V;F(w) =~ w* for small p;j(w).
Critical in upper bounding F(w) — F(w).
Critical to turning poly(1/e€) runtime into polylog(1/e).

Rounding implies a certain ellipsoid being inside a polytope.
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Our Second Technical Building Block: Rounding

The rounding condition: [UI(W) =w;-a; (AT WA)_la,-J
maxicm pi(w) < 1+ @, where pi(w) = 2.

Updating w; updates V;F(w) ~ w for small p;(w).
Critical in upper bounding F(w) — F(w).
Critical to turning poly(1/e€) runtime into polylog(1/e).

Rounding implies a certain ellipsoid being inside a polytope.

Rounding Algorithm:
1. while C ={i: pi(w) >1+4a} #0,
w « Descent(w, C, 1)

2. Return w
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Analysis of Algorithm:Descent Step

Want to bound iteration complexity of Descent steps, where
Descent(w, C,n)]ic= w; [1 + i - Pi(W)—l}

> pi(w)+1

<ﬁcoring{l,Z...,m}J
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Analysis of Algorithm:Descent Step

Want to bound iteration complexity of Descent steps, where

Descent(w, C, 77)]),'2= w; [1 + i %}

<ﬁcoring{l,Z...,m}J

Lemma 1: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(a~!log(m/¢)).
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Analysis of Algorithm:Descent Step

Want to bound iteration complexity of Descent steps, where
Descent(w, C,n)]ic= w; [1 + i - Pi(W)—l}

> pi(w)+1
<ﬁcoring{l,Z...,m}J

Lemma 1: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(a~!log(m/g)).

Proof Idea: Upper bound on sub-optimality, lower bound on
progress.

J
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Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(a~!log(m/¢)).

—_ — m 1+a (pi(w)=1)?
Fw)— F®) (< 0a~) S, whie EGasE
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Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(a~!log(m/¢)).

Fw) = F(®) | < 0o 1), wl e laotr

m a (pi(w)—1)?
Flwt) - Fw) [ £ S it COIIE |
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Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(a~!log(m/¢)).

F(w)— FW) | < 0(a )0, wito @12

pi(w)+1

m ) 1 (,1(’/(W)*1)2
I(W—’—)_]:(W) < Zi:l 71/"Wi+ //),'(W)Jrl )

Flw*) — () (£ Fw) ~ F(@) — 3 St whte a2
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Analysis of Algorithm: Descent Step

Lemma 2: Descent Step Convergence

Each Descent step decreases the objective, and the number of
Descent steps is O(a~!log(m/¢)).

Fw) = F(®) | < 0o 1), wl e laotr

m ) 1 a()i(W)*l)2
I(W+) _‘F(W) < Zi:l 71/"WI+ //1,'(W)+1 ’

— — 1 m 1+(\()i(W)*1)2
Fw)=FWw) | < F(w) = F(w) — 2 X0 w;

(<= 0(@)(Fw) - F(w). |
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Analysis of Algorithm: Round Step
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Analysis of Algorithm: Round Step

Want to bound iteration complexity within one Round step. ]

Lemma 3: Round while loop iterations

The number of iterations inside the while loop in one Round
step is O(a 2 log(pmax(w))-
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Analysis of Algorithm: Round Step

Want to bound iteration complexity within one Round step. ]

Lemma 3: Round while loop iterations

The number of iterations inside the while loop in one Round
step is O(a 2 log(pmax(w))-

Proof Sketch: Combine Round's termination condition pmax(w) <
1+ a with the maximum increase in pmax(w) per while loop .
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Round Step Complexity of while Loop: Bounding pmax(w)

Lemma 4: Round change in pmax(w)

. - Wi Q
> Wi —
- 30 \ 2 + &

Combine with w; = w;" for all i ¢ C implies w™ > w. Hence:
Tdiag(wh)A)TAT |

1

pilwt) = w17 (A
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Round Step Complexity of while Loop: Bounding pmax(w)

wi=w; + % (%) //Descent on j € C
i -1
ZWi-l-;V—(;(zja) //x%iJrlismonotoneforle

Combine with w; = w;" for all i ¢ C implies w* > w. Hence:
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Round Step Complexity of while Loop: Bounding pmax(w)

pi(wt) = w17 [A(AT diag(w")A) AT |

i
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Round Step Complexity of while Loop: Bounding pmax(w)

pilw) = ! [ AT diag(w ) A) AT < 1 550 ow



19/21

Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation



19/21

Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation

7 := Steps in Round,

Denote: D = Steps of Descent



19/21

Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation

7 := Steps in Round,

Denote: D = Steps of Descent

Throughout the algorithm, D = O(a"tlog(m/e))



19/21

Conclusion: Total Iteration Complexity
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Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation
7 := Steps in Round,
Denote: .
D := Steps of Descent
Throughout the algorithm, D = O(a"tlog(m/e))
Between two Descent calls: 7 = O(a~2log(pmax(w)))

Initial iteration: 7 = O(a~2log(m/n))
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Conclusion: Total Iteration Complexity

Most basic step: Leverage score computation

:= Steps in Round,

Denote: D := Steps of Descent
Throughout the algorithm, D = O(a"tlog(m/e))
Between two Descent calls: = O(a™?log(pmax(w)))
Initial iteration: = O(a"2log(m/n))
Between o calls: Minimum increase in w,

Maximum increase in pmax(w)
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Conclusion: Total Iteration Complexity

Most basic step:
Denote:

Throughout the algorithm,

Between two Descent calls:

Initial iteration:

Between two calls:

Therefore, over D iterations:

Leverage score computation

:= Steps in Round,
D := Steps of Descent

D= O(Ofl log(m/<))
= O(Oé_2 IOg(PmaX(W)))
= O(a 2 log(m/n))

Minimum increase in w,
Maximum increase in pmax(w)

= O(p - a~?log(m/n))
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Our Contribution

Lemma 5: Our Main Result (Informal)

Given a full-rank A € R™*" and p > 4, we compute &-
approximate £, Lewis weights in O(p> log(mp/<)) oracle calls.
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approximate £, Lewis weights in O(p> log(mp/<)) oracle calls.

Our algorithm has both a parallel and a sequential version.
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Our Contribution

Lemma 5: Our Main Result (Informal)

Given a full-rank A € R™*" and p > 4, we compute &-
approximate £, Lewis weights in O(p> log(mp/<)) oracle calls.

Our algorithm has both a parallel and a sequential version.

Computing gradient of Lee-Sidford barrier to high-precision in
polylogarithmic depth.
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Thank You!
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