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Guiding Research Question

Given an optimization problem with black-box oracle access, can we obtain
improved complexity guarantees for approximately solving it?

Talk outline:

1. A faster algorithm for a general nonconvex nonsmooth problem

2. Improved rates of the above result for a special case
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The Subgradient Method: Background

Gradient-based methods are ubiquitous in optimization

black-box optimization

with first-order oracle

A typical template is the subgradient method:

xt+1 = xt −
∑

i≤t αi,t · vi, for vi ∈ ∂f(xi),

where the set ∂f(x) is the Clarke subdi�erential:

∂f(x) = conv {limi→∞∇f(xi) : xi → x, xi ∈ dom(f)}.

gradient for smooth fsubdi�erential for nonsmooth f
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The Subgradient Method: Convergence Guarantees

The subgradient method:

xt+1 = xt −
∑

i≤t αi,t · vi, for vi ∈ ∂f(xi).

oracle access

X Nonasymptotic guarantees for convex problems

X Nonasymptotic guarantees for smooth nonconvex problems

X Asymptotic guarantees for nonsmooth nonconvex problems

I Nonasymptotic guarantees for nonsmooth nonconvex problems?

I Breakthrough by Zhang, Lin, Jegelka, Sra, Jadbabaie (2020):

However,
their algorithm uses an unusually strong oracle

No nonasymptotic guarantees for nonsmooth nonconvex problems!

deep learning

global function error bound

gradient norm bound

(stationary point)
stationary point

(specified later)
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A Meaningful Notion of Convergence Problem Class:

Nonsmooth Nonconvex

I Cannot bound global function error

I Cannot attain ε-stationarity (Zhang et al (2020))

I Cannot attain near-ε-stationarity (Kornowski & Shamir (2022))

I Smoothing doesn’t work (Kornowski & Shamir (2022))

Alternate notion: A bound on the convex combination of nearby gradients!

Definition (Goldstein (1977))
A point x is (δ, ε)-stationary for a Lipschitz function f if

min
g∈∂δf(x)

‖g‖ ≤ ε.

∂δf(x) := conv(∪y∈Bδ(x)∂f(y))

“Goldstein subdi�erential”
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Our Main Result: Informal Statement

Goal: Find a (δ, ε)-stationary point for a given Lipschitz function

Theorem 1: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an L-Lipschitz function with first-order oracle access to it.
We provide a randomized algorithm, which, with high probability, in
poly(L, ε, δ) iterations, converges to a (δ, ε)-stationary point.

I First such guarantee using a standard oracle!
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Towards an Overview of
Our Algorithm & Analysis
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A General Algorithmic Framework
Goal: Given an L-Lipschitz function f and accuracy parameters ε and δ,
find a point x such that ming∈∂δf(x) ‖g‖ ≤ ε.

Goldstein’s Conceptual Descent Algorithm (Goldstein (1977)):
Let g?t ∈ arg ming∈∂δf(xt) ‖g‖ and xt+1=xt − δ g?t

‖g?t ‖
. Then,

f(xt+1) ≤ f(xt)− δ‖g?t ‖.

Goldstein descent step

I A Goldstein descent step decreases function value by at least δε
I Assuming the initial function error to be ∆...
I ... guarantees a (δ, ε)-stationary point in O

(
∆
δε

)
iterations.

requires arg ming∈∂δf(x) ‖g‖

Central Technical Question:
How to compute arg ming∈∂δf(x) ‖g‖ using a first-order oracle?
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Towards a Min-Norm Element: A Sketch

Suppose a candidate g ∈ ∂δf(x) satisfies

f

(
x− δ · g

‖g‖

)
≥ f(x)− δ

2
· ‖g‖.

‖g‖ ≥ ε

not satisfying

Goldstein’s descent

f
(
x− δ g

‖g‖

)
≤ f(x)− δ‖g‖

Goldstein descent

Want to construct g′ ∈ ∂δf(x) that is a minimal norm element of ∂δf(x)

Task reduces to finding some u ∈ ∂δf(x) satisfying 〈u, g〉 ≤ 1
2‖g‖

2 .
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A Solution under a Strong Assumption

Given a vector g ∈ ∂δf(x) not satisfying the descent condition,
construct a vector u ∈ ∂δf(x) satisfying 〈u, g〉 ≤ 1

2‖g‖
2.

“Inner Product Oracle”

Suppose f were di�erentiable along
[
x, x− δ · g

‖g‖

]
.

strong assumption!

Then, we have

1

2
‖g‖≥

f(x)− f
(
x− δ g

‖g‖

)
δ

=
1

δ

∫ δ

τ=0

〈
∇f

(
x− τ g

‖g‖

)
,
g

‖g‖
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The Idea for Our Algorithm

I We start with the algorithm of Zhang et al (2020)...
I ... interpreting it in the Goldstein descent framework

I and use randomization to replace Zhang et al (2020)’s strong oracle
(“ZO”) with a standard first-order oracle
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First, Zhang et al (2020)’s Algorithm

1. for T iterations do:
I Compute g = MinNorm(xt, δ, ε)

I Update xt+1 = xt − δ g
‖g‖

Goldstein descent step

2. Return xT

Zhang et al (2020)’s MinNorm(x, δ, ε)

1. while ‖gk‖ ≥ ε and δ
4‖gk‖ ≥ f(x)− f

(
x− δ gk

‖gk‖

)
, do

I Choose yk
u.a.r.∼

[
x, x− δ gk

‖gk‖

]
I Let uk = ZO(yk, gk)

I Update gk+1 = arg minz∈[gk,uk] ‖z‖, and update k = k + 1

2. Return gk
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Next, Our Algorithm

1. for T iterations do:
I Compute g = MinNorm(xt, δ, ε)

I Update xt+1 = xt − δ g
‖g‖

Goldstein descent step

2. Return xT

Our MinNorm(x, δ, ε)

1. while ‖gk‖ ≥ ε and δ
4‖gk‖ ≥ f(x)− f

(
x− δ gk

‖gk‖

)
, do

I Choose yk
u.a.r.∼

[
x, x− δ ξk

‖ξk‖

]
where ξk

u.a.r.∼ Br(gk)

I Let uk = ∇f(yk)

I Update gk+1 = arg minz∈[gk,uk] ‖z‖, and update k = k + 1

2. Return gk
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The Issue with Zhang et al (2020)’s Oracle

Zhang et al (2020)’s algorithm requires the following oracle access:

given
x, g ∈ Rd, solve the auxiliary convex feasibility problem

find u ∈ ∂f(x) subject to 〈u, g〉 = f ′(x, g).

I The set ∂f(x) could be extremely complicated

I The chain rule fails for subdi�erentials
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Analysis of Our Algorithm
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Guarantee of Our MinNorm Subroutine

Our MinNorm(x, δ, ε)

1. while ‖gk‖ ≥ ε and δ
4‖gk‖ ≥ f(x)− f

(
x− δ gk

‖gk‖

)
, do

I Choose yk
u.a.r.∼

[
x, x− δ ξk

‖ξk‖

]
where ξk

u.a.r.∼ Br(gk)

I Let uk = ∇f(yk)

I Update gk+1 = arg minz∈[gk,uk] ‖z‖, and update k = k + 1

2. Return gk

Theorem 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let {g`} be generated by MinNorm(x, δ, ε), and let τ be its termination
time. Then, for a fixed k ≥ 0, we have E[‖gk‖21τ>k] ≤ L2

1+k .
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Let {g`} be generated by MinNorm(x, δ, ε), and let τ be its termination
time. Then, for a fixed k ≥ 0, we have E[‖gk‖21τ>k] ≤ L2

1+k .

Proof . Let û := u/‖u‖; Then, almost surely, conditioned on gk , we have:

1

2
‖gk‖≥

1

δ
[f(x)− f(x− δĝk)]

≥1

δ
[f(x)− f(x− δξ̂k)]− L‖ĝk − ξ̂k‖

=
1

δ

∫ δ

s=0
〈∇f(x− sξ̂k), ξ̂k〉ds− L‖ĝk − ξ̂k‖

≥1

δ

∫ δ

s=0
〈∇f(x− sξ̂k), ĝk〉ds− 2L‖ĝk − ξ̂k‖

=Ek〈∇f(yk), ĝk〉 − 2L‖ĝk − ξ̂k‖.

This matches the requirement for u ∈ ∂δf(x) with 〈u, g〉 ≤ 1
2‖g‖

2. �

since Goldstein descent

not satisfied
L-Lipschitzness

by randomization and

fundamental thm. of calc.

L-Lipschitznessdefinition of yk

Inner Product Oracle
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≥1

δ
[f(x)− f(x− δξ̂k)]− L‖ĝk − ξ̂k‖
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Proof . Let û := u/‖u‖; Then, almost surely, conditioned on gk , we have:
1

2
‖gk‖≥

1

δ
[f(x)− f(x− δĝk)]≥
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≥1

δ

∫ δ

s=0
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Our Main Result: Formal Statement

Theorem 4: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an L-Lipschitz function f , fix an initial point x0 ∈ Rd, and define
f(x0)− infx f(x). Then, with probability 1− γ, our algorithm returns
xT satisfying ming∈∂δf(xT ) ‖g‖ ≤ ε in at most

d4∆

δε
e·d64L2

ε2
e·d2 log

(
4∆

γδε

)
e function-value and gradient evaluations.

Goldstein descent

iterations

MinNorm iterations
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Our Second Question in this Thread
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Problem Overview

Recall that g ∈ ∂δf(x) satisfies the descent condition at x if

f

(
x− δ g

‖g‖

)
≤ f(x)− δε

3
.

If not , the Inner Product Oracle outputs u ∈ ∂δf(x) such that

〈u, g〉 ≤ ε

3
‖g‖.

This vector u is combined with g to generate a vector that either
corresponds to the desired stationarity or is a descent direction

Are there settings in which we can use the vector u more e�ciently?



19/25

Problem Overview

Recall that g ∈ ∂δf(x) satisfies the descent condition at x if

f

(
x− δ g

‖g‖

)
≤ f(x)− δε

3
.

If not , the Inner Product Oracle outputs u ∈ ∂δf(x) such that

〈u, g〉 ≤ ε

3
‖g‖.

This vector u is combined with g to generate a vector that either
corresponds to the desired stationarity or is a descent direction

Are there settings in which we can use the vector u more e�ciently?



19/25

Problem Overview

Recall that g ∈ ∂δf(x) satisfies the descent condition at x if

f

(
x− δ g

‖g‖

)
≤ f(x)− δε

3
.

If not , the Inner Product Oracle outputs u ∈ ∂δf(x) such that

〈u, g〉 ≤ ε

3
‖g‖.

This vector u is combined with g to generate a vector that either
corresponds to the desired stationarity or is a descent direction

Are there settings in which we can use the vector u more e�ciently?



19/25

Problem Overview

Recall that g ∈ ∂δf(x) satisfies the descent condition at x if

f

(
x− δ g

‖g‖

)
≤ f(x)− δε

3
.

If not , the Inner Product Oracle outputs u ∈ ∂δf(x) such that

〈u, g〉 ≤ ε

3
‖g‖.

This vector u is combined with g to generate a vector that either
corresponds to the desired stationarity or is a descent direction

Are there settings in which we can use the vector u more e�ciently?



20/25

Our Main Idea

Recall that given g ∈ ∂δf(x) not satisfying the descent condition, we
can output u ∈ ∂δf(x) such that 〈u, g〉 ≤ ε

2‖g‖.

Inner Product Oracle

Our Key Insight.
The above oracle is essentially the gradient oracle of the MinNorm ele-
ment problem. We can therefore use it in a cutting-plane method.
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Using the Inner Product Oracle

Notation Denote Q := ∂δf(x); and x̂ := x/‖x‖ for some vector x

Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let g ∈ Q be a vector not satisfying the descent condition, and let u ∈
Q be the output of the inner product oracle. Let g?Q ∈ ming∈Q ‖g‖ ≥
ε/2. Then, ĝ?Q ∈ {w ∈ Rd : 〈u, ĝ − w〉 ≤ 0} .

Proof Combining the above definitions and a technical lemma gives:

The inner product oracle guarantees: 〈u, ĝ〉 ≤ ε
2

The technical lemma (extra slide) shows: 〈u, ĝ?Q〉 ≥ ‖g?Q‖

Combining these two inequalities yields: 〈u, ĝ − ĝ?Q〉 ≤
ε
2 − ‖g

?
Q‖ ≤ 0
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Combining these two inequalities yields: 〈u, ĝ − ĝ?Q〉 ≤
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ε
2 − ‖g

?
Q‖ ≤ 0



21/25

Using the Inner Product Oracle

Notation Denote Q := ∂δf(x); and x̂ := x/‖x‖ for some vector x

Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let g ∈ Q be a vector not satisfying the descent condition, and let u ∈
Q be the output of the inner product oracle. Let g?Q ∈ ming∈Q ‖g‖ ≥
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Our Second Result: Complete Statement

Theorem 5: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given anL-Lipschitz function f . Fix an initial point x0 ∈ Rd, and define
f(x0)− infx f(x). Then, with probability 1− γ, our algorithm returns
xT satisfying ming∈∂δf(xT ) ‖g‖ ≤ ε in at most

d4∆

δε
e·d8d log

(
8L

ε

)
e·d36L

ε
e function-value and gradient evaluations.

Goldstein descent

iterations cutting-plane

iterations
Inner Product Oracle

iterations
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A Technical Lemma
Notation. Let φQ(v) := ming∈Q〈g, v〉; let x̂ := x/‖x‖.

Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let g?Q ∈ arg minQ ‖g‖. Then, ĝ?Q satisfies two properties:

I 〈ĝ?Q, g〉 ≥ ‖g?Q‖ for all g ∈ Q,

I ĝ?Q = arg max‖v‖≤1 φQ(v).

Proof. The first inequality holds by definition of g?Q. We drop Q for
notational simplicity in the rest of the proof.

φ(ĝ?)

=‖g?‖= min
Q
‖g‖= min

Q
max
‖v‖≤1

〈g, v〉= max
‖v‖≤1

min
Q
〈g, v〉= max

‖v‖≤1
φ(v)

.

�

first inequality

& definition of φQ
definition of φQdual representation Sion’s minmax theoremDefinition of φ
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I ĝ?Q = arg max‖v‖≤1 φQ(v).

Proof. The first inequality holds by definition of g?Q. We drop Q for
notational simplicity in the rest of the proof.
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Takeaways & Future Directions

1. A faster algorithm for nonsmooth nonconvex optimization

2. Improved (optimal) rates in low dimensions

3. Key ideas: randomization; cutting-plane methods

4. Future Direction. More practical notions of convergence?
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