A Gradient Sampling Method with Complexity Guarantees

for Lipschitz Functions in Low and High Dimensions

Damek Davis ${ }^{1}$, Dmitriy Drusvyatskiy ${ }^{2}$, Yin Tat Lee ${ }^{2}$, Swati Padmanabhan², Guanghao Ye^{3}
${ }^{1}$ Cornell University; ${ }^{2}$ University of Washington, Seattle;
${ }^{3}$ Massachussetts Institute of Technology Authors ordered alphabetically

NeurIPS 2022 (Oral)

Guiding Research Question

Given an optimization problem with black-box oracle access, can we obtain improved complexity guarantees for approximately solving it?

Guiding Research Question

Given an optimization problem with black-box oracle access, can we obtain improved complexity guarantees for approximately solving it?

Talk outline:

1. A faster algorithm for a general nonconvex nonsmooth problem
2. Improved rates of the above result for a special case

The Subgradient Method: Background

A typical template is the subgradient method:

$$
x_{t+1}=x_{t}-\sum_{i \leq t} \alpha_{i, t} \cdot v_{i}, \text { for } v_{i} \in \partial f\left(x_{i}\right)
$$

where the set $\partial f(x)$ is the Clarke subdifferential:

$$
\partial f(x)=\operatorname{conv}\left\{\lim _{i \rightarrow \infty} \nabla f\left(x_{i}\right): x_{i} \rightarrow x, x_{i} \in \operatorname{dom}(f)\right\} .
$$

The Subgradient Method: Background

A typical template is the subgradient method:

$$
x_{t+1}=x_{t}-\sum_{i \leq t} \alpha_{i, t} \cdot v_{i}, \text { for } v_{i} \in \partial f\left(x_{i}\right)
$$

where the set $\partial f(x)$ is the Clarke subdifferential:

$$
\partial f(x)=\operatorname{conv}\left\{\lim _{i \rightarrow \infty} \nabla f\left(x_{i}\right): x_{i} \rightarrow x, x_{i} \in \operatorname{dom}(f)\right\} .
$$

The Subgradient Method: Background

A typical template is the subgradient method:

$$
x_{t+1}=x_{t}-\sum_{i \leq t} \alpha_{i, t} \cdot v_{i}, \text { for } v_{i} \in \partial f\left(x_{i}\right)
$$

where the set $\partial f(x)$ is the Clarke subdifferential:

$$
\text { subdifferential for nonsmooth } f
$$

The Subgradient Method: Convergence Guarantees

The subgradient method:

```
                        oracle access
```

$$
x_{t+1}=x_{t}-\sum_{i \leq t} \alpha_{i, t} \cdot v_{i}, \text { for } v_{i} \in \partial f\left(x_{i}\right)
$$

The Subgradient Method: Convergence Guarantees

The subgradient method:

```
                                    oracle access
```

$$
x_{t+1}=x_{t}-\sum_{i \leq t} \alpha_{i, t} \cdot v_{i}, \text { for } v_{i} \in \partial f\left(x_{i}\right)
$$

Nonasymptotic guarantees for convex problems
global function error bound

The Subgradient Method: Convergence Guarantees

The subgradient method:

```
                oracle access
```

$$
x_{t+1}=x_{t}-\sum_{i \leq t} \alpha_{i, t} \cdot v_{i}, \text { for } v_{i} \in \partial f\left(x_{i}\right)
$$

Nonasymptotic guarantees for convex problems
Nonasymptotic guarantees for smooth nonconvex problems

$$
\begin{aligned}
& \text { gradient norm bound } \\
& \text { (stationary point) }
\end{aligned}
$$

The Subgradient Method: Convergence Guarantees

The subgradient method:

```
oracle access
```

$$
x_{t+1}=x_{t}-\sum_{i \leq t} \alpha_{i, t} \cdot v_{i}, \text { for } v_{i} \in \partial f\left(x_{i}\right)
$$

Nonasymptotic guarantees for convex problems Nonasymptotic guarantees for smooth nonconvex problems Asymptotic guarantees for nonsmooth nonconvex problems:

- Benaim, HofbWuer, Sorin (2005) stationary point
- Kiwiel (2007)
(specified later)
- Majewski, Miasojedow, Moulines (2018)
- Davis \& Drusvyatskiy (2019)
- Bolte \& Pauwels (2019)

The Subgradient Method: Convergence Guarantees

The subgradient method:

```
oracle access
```

$$
x_{t+1}=x_{t}-\sum_{i \leq t} \alpha_{i, t} \cdot v_{i}, \text { for } v_{i} \in \partial f\left(x_{i}\right)
$$

Nonasymptotic guarantees for convex problems
Nonasymptotic guarantees for smooth nonconvex problems
Asymptotic guarantees for nonsmooth nonconvex problems

- Nonasymptotic guarantees for nonsmooth nonconvex problems?
- Breakthrough by Zhang, Lin, Jegelka, Sra, Jadbabaie (2020):

The Subgradient Method: Convergence Guarantees

The subgradient method:

```
oracle access
```

$$
x_{t+1}=x_{t}-\sum_{i \leq t} \alpha_{i, t} \cdot v_{i}, \text { for } v_{i} \in \partial f\left(x_{i}\right)
$$

Nonasymptotic guarantees for convex problems
Nonasymptotic guarantees for smooth nonconvex problems
Asymptotic guarantees for nonsmooth nonconvex problems

- Nonasymptotic guarantees for nonsmooth nonconvex problems?
- Breakthrough by Zhang, Lin, Jegelka, Sra, Jadbabaie (2020): However, their algorithm uses an unusually strong oracle

The Subgradient Method: Convergence Guarantees

The subgradient method:

```
oracle access
```

$$
x_{t+1}=x_{t}-\sum_{i \leq t} \alpha_{i, t} \cdot v_{i}, \text { for } v_{i} \in \partial f\left(x_{i}\right)
$$

Nonasymptotic guarantees for convex problems
Nonasymptotic guarantees for smooth nonconvex problems
Asymptotic guarantees for nonsmooth nonconvex problems
Nonasymptotic guarantees for nonsmooth nonconvex problems?

- Breakthrough by Zhang, Lin, Jegelka, Sra, Jadbabaie (2020): However, their algorithm uses an unusually strong oracle

No nonasymptotic guarantees for nonsmooth nonconvex problems!

The Subgradient Method: Convergence Guarantees

The subgradient method:

```
oracle access
```

$$
x_{t+1}=x_{t}-\sum_{i \leq t} \alpha_{i, t} \cdot v_{i}, \text { for } v_{i} \in \partial f\left(x_{i}\right)
$$

Nonasymptotic guarantees for convex problems
Nonasymptotic guarantees for smooth nonconvex problems
Asymptotic guarantees for nonsmooth nonconvex problems
Nonasymptotic guarantees for nonsmooth nonconvex problems?

- Breakthrough by Zhang, Lin, Jegelka, Sra, Jadbabaie (2020): However, their algorithm uses an unusually strong oracle

No nonasymptotic guarantees for nonsmooth nonconvex problems!

```
deep learning
```


A Meaningful Notion of Convergence

Problem Class:
Nonsmooth Nonconvex

A Meaningful Notion of Convergence

Problem Class:
Nonsmooth Nonconvex

Cannot bound global function error

A Meaningful Notion of Convergence

- Cannot bound global function error
- Cannot attain ϵ-stationarity (Zhang et al (2020))

A Meaningful Notion of Convergence

- Cannot bound global function error
- Cannot attain ϵ-stationarity (Zhang et al (2020))
- Cannot attain near- ϵ-stationarity (Kornowski \& Shamir (2022))

A Meaningful Notion of Convergence

- Cannot bound global function error
- Cannot attain ϵ-stationarity (Zhang et al (2020))
- Cannot attain near- ϵ-stationarity (Kornowski \& Shamir (2022))
- Smoothing doesn't work (Kornowski \& Shamir (2022))

A Meaningful Notion of Convergence

```
Cannot bound global function error
Cannot attain e-stationarity (Zhang et al (2020))
Cannot attain near-\epsilon-stationarity (Kornowski & Shamir (2022))
Smoothing doesn't work (Kornowski & Shamir (2022))
```

Alternate notion: A bound on the convex combination of nearby gradients!

A Meaningful Notion of Convergence

Cannot bound global function error

Cannot attain e-stationarity (Zhang et al (2020))
Cannot attain near- ϵ-stationarity (Kornowski \& Shamir (2022))
Smoothing doesn't work (Kornowski \& Shamir (2022))

Alternate notion: A bound on the convex combination of nearby gradients!
Definition (Goldstein (1977))
A point x is (δ, ϵ)-stationary for a Lipschitz function f if

$$
\min _{g \in \partial_{\delta} f(x)}\|g\| \leq \epsilon .
$$

A Meaningful Notion of Convergence

Cannot bound global function error
 Cannot attain e-stationarity (Zhang et al (2020))

Cannot attain near- ϵ-stationarity (Kornowski \& Shamir (2022))
Smoothing doesn't work (Kornowski \& Shamir (2022))

Alternate notion: A bound on the convex combination of nearby gradients!

Definition (Goldstein (1977))

A point x is (δ, ϵ)-stationary for a Lipschitz function f if

Our Main Result: Informal Statement

Goal: Find a (δ, ϵ)-stationary point for a given Lipschitz function

Our Main Result: Informal Statement

Goal: Find a (δ, ϵ)-stationary point for a given Lipschitz function

Theorem 1: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Given an L-Lipschitz function with first-order oracle access to it.

Our Main Result: Informal Statement

Goal: Find a (δ, ϵ)-stationary point for a given Lipschitz function

Theorem 1: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Given an L-Lipschitz function with first-order oracle access to it. We provide a randomized algorithm, which, with high probability, in $\operatorname{poly}(L, \epsilon, \delta)$ iterations, converges to a (δ, ϵ)-stationary point.

Our Main Result: Informal Statement

Goal: Find a (δ, ϵ)-stationary point for a given Lipschitz function

Theorem 1: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Given an L-Lipschitz function with first-order oracle access to it. We provide a randomized algorithm, which, with high probability, in $\operatorname{poly}(L, \epsilon, \delta)$ iterations, converges to a (δ, ϵ)-stationary point.

- First such guarantee using a standard oracle!

Towards an Overview of
Our Algorithm \& Analysis

A General Algorithmic Framework

Goal: Given an L-Lipschitz function f and accuracy parameters ϵ and δ, find a point x such that $\min _{g \in \partial_{\delta} f(x)}\|g\| \leq \epsilon$.

A General Algorithmic Framework

Goal: Given an L-Lipschitz function f and accuracy parameters ϵ and δ, find a point x such that $\min _{g \in \partial_{\delta} f(x)}\|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)):
Let $g_{t}^{\star} \in \arg \min _{g \in \partial_{\delta} f\left(x_{t}\right)}\|g\|$ and $x_{t+1}=x_{t}-\delta \frac{g_{t}^{\star}}{\left\|g_{t}^{\star}\right\|}$. Then,

$$
f\left(x_{t+1}\right) \leq f\left(x_{t}\right)-\delta\left\|g_{t}^{\star}\right\| .
$$

A General Algorithmic Framework

Goal: Given an L-Lipschitz function f and accuracy parameters ϵ and δ, find a point x such that $\min _{g \in \partial_{\delta} f(x)}\|g\| \leq \epsilon$.

Goldstein descent step
Goldstein's Conceptual Descent Algorithm (Goldstein (1977)):
Let $g_{t}^{\star} \in \arg \min _{g \in \partial_{\delta} f\left(x_{t}\right)}\|g\|$ and $x_{t+1}=x_{t}-\delta \frac{g_{t}^{\star}}{\left\|g_{t}^{\star}\right\|}$. Then,

$$
f\left(x_{t+1}\right) \leq f\left(x_{t}\right)-\delta\left\|g_{t}^{\star}\right\| .
$$

A General Algorithmic Framework

Goal: Given an L-Lipschitz function f and accuracy parameters ϵ and δ, find a point x such that $\min _{g \in \partial_{\delta} f(x)}\|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)):
Let $g_{t}^{\star} \in \arg \min _{g \in \partial_{\delta} f\left(x_{t}\right)}\|g\|$ and $x_{t+1}=x_{t}-\delta \frac{g_{t}^{\star}}{\left\|g_{t}^{\star}\right\|} \cdot$. Then,

$$
f\left(x_{t+1}\right) \leq f\left(x_{t}\right)-\delta\left\|g_{t}^{\star}\right\| .
$$

- A Goldstein descent step decreases function value by at least $\delta \epsilon$

A General Algorithmic Framework

Goal: Given an L-Lipschitz function f and accuracy parameters ϵ and δ, find a point x such that $\min _{g \in \partial_{\delta} f(x)}\|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)):

$$
\begin{aligned}
& \text { Let } g_{t}^{\star} \in \arg \min _{g \in \partial_{\delta} f\left(x_{t}\right)}\|g\| \text { and } x_{t+1}=x_{t}-\delta \frac{g_{t}^{\star}}{\left\|g_{t}^{\star}\right\|} \text {. Then, } \\
& \qquad f\left(x_{t+1}\right) \leq f\left(x_{t}\right)-\delta\left\|g_{t}^{\star}\right\|
\end{aligned}
$$

- A Goldstein descent step decreases function value by at least $\delta \epsilon$

A General Algorithmic Framework

Goal: Given an L-Lipschitz function f and accuracy parameters ϵ and δ, find a point x such that $\min _{g \in \partial_{\delta} f(x)}\|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)):
Let $g_{t}^{\star} \in \arg \min _{g \in \partial_{\delta} f\left(x_{t}\right)}\|g\|$ and $x_{t+1}=x_{t}-\delta \frac{g_{t}^{\star}}{\left\|g_{t}^{\star}\right\|}$. Then,

$$
f\left(x_{t+1}\right) \leq f\left(x_{t}\right)-\delta\left\|g_{t}^{\star}\right\| .
$$

\Rightarrow A Goldstein descent step decreases function value by at least $\delta \epsilon$
$>$ Assuming the initial function error to be Δ...

A General Algorithmic Framework

Goal: Given an L-Lipschitz function f and accuracy parameters ϵ and δ, find a point x such that $\min _{g \in \partial_{\delta} f(x)}\|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)):
Let $g_{t}^{\star} \in \arg \min _{g \in \partial_{\delta} f\left(x_{t}\right)}\|g\|$ and $x_{t+1}=x_{t}-\delta \frac{g_{t}^{\star}}{\left\|g_{t}^{\star}\right\|}$. Then,

$$
f\left(x_{t+1}\right) \leq f\left(x_{t}\right)-\delta\left\|g_{t}^{\star}\right\| .
$$

\Rightarrow A Goldstein descent step decreases function value by at least $\delta \epsilon$
$>$ Assuming the initial function error to be Δ...
\downarrow... guarantees a (δ, ϵ)-stationary point in $O\left(\frac{\Delta}{\delta \epsilon}\right)$ iterations.

A General Algorithmic Framework

Goal: Given an L-Lipschitz function f and accuracy parameters ϵ and δ, find a point x such that $\min _{g \in \partial_{\delta} f(x)}\|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)):
Let $g_{t}^{\star} \in \arg \min _{g \in \partial_{\delta} f\left(x_{t}\right)}\|g\|$ and $x_{t+1}=x_{t}-\delta \frac{g_{t}^{\star}}{\left\|g_{t}^{\star}\right\|}$. Then,

$$
f\left(x_{t+1}\right) \leq f\left(x_{t}\right)-\delta\left\|g_{t}^{\star}\right\| .
$$

\Rightarrow A Goldstein descent step decreases function value by at least $\delta \epsilon$

- Assuming the initial fuhction error to be Δ...
... guarantees a $(\delta, \not \subset)$-stationary point in $O\left(\frac{\Delta}{\delta \epsilon}\right)$ iterations.

$$
\text { requires } \arg \min _{g \in \partial_{\delta} f(x)}\|g\|
$$

A General Algorithmic Framework

> Goal: Given an L-Lipschitz function f and accuracy parameters \in and δ, find a point x such that $\min _{g \in \partial_{\delta} f(x)}\|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)): Let $g_{t}^{\star} \in \arg \min _{g \in \partial_{\delta} f\left(x_{t}\right)}\|g\|$ and $x_{t+1}=x_{t}-\delta \frac{g_{t}^{\star}}{\| g_{t}^{\star+1}}$. Then,

A Goldstein descent step decreases function value by at least $\delta \epsilon$ Assuming the initial function error to be Δ...
... guarantees a (δ, ϵ)-stationary point in $O\left(\frac{\Delta}{\delta \epsilon}\right)$ iterations.

Central Technical Question:

How to compute $\arg \min _{g \in \partial_{\delta} f(x)}\|g\|$ using a first-order oracle?

Towards a Min-Norm Element: A Sketch

Suppose a candidate $g \in \partial_{\delta} f(x)$ satisfies

$$
f\left(x-\delta \cdot \frac{g}{\|g\|}\right) \geq f(x)-\frac{\delta}{2} \cdot\|g\|
$$

Towards a Min-Norm Element: A Sketch

$$
\begin{gathered}
f\left(x-\delta \frac{g}{\|g\|}\right) \leq f(x)-\delta\|g\| \\
\text { Goldstein descent }
\end{gathered}
$$

Suppose a candidate $g \in \partial_{\delta} f(x)$ satisfies

$$
f\left(x-\delta \cdot \frac{g}{\|g\|}\right) \underset{\uparrow}{\|} f(x)-\frac{\delta}{2} \cdot\|g\|
$$

Towards a Min-Norm Element: A Sketch

$$
\begin{gathered}
f\left(x-\delta \frac{g}{\|g\|}\right) \leq f(x)-\delta\|g\| \\
\text { Goldstein descent }
\end{gathered}
$$

Suppose a candidate $g \in \partial_{\delta} f(x)$ satisfies

$$
f\left(x-\delta \cdot \frac{g}{\|g\|}\right) \geq f(x)-\frac{\delta}{2} \cdot\|g\| .
$$

Want to construct $g^{\prime} \in \partial_{\delta} f(x)$ that is a minimal norm element of $\partial_{\delta} f(x)$

Towards a Min-Norm Element: A Sketch

$$
\begin{gathered}
f\left(x-\delta \frac{g}{\|g\|}\right) \leq f(x)-\delta\|g\| \\
\text { Goldstein descent }
\end{gathered}
$$

Suppose a candidate $g \in \partial_{\delta} f(x)$ satisfies

$$
f\left(x-\delta \cdot \frac{g}{\|g\|}\right) \geq f(x)-\frac{\delta}{2} \cdot\|g\|
$$

Want to construct $g^{\prime} \in \partial_{\delta} f(x)$ that is a minimal norm element of $\partial_{\delta} f(x)$
Task reduces to finding some $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$.

Towards a Min-Norm Element: A Sketch

$$
\begin{gathered}
f\left(x-\delta \frac{g}{\|g\|}\right) \leq f(x)-\delta\|g\| \\
\text { Goldstein descent }
\end{gathered}
$$

Suppose a candidate $g \in \partial_{\delta} f(x)$ satisfies

$$
f\left(x-\delta \cdot \frac{g}{\|g\|}\right) \geq f(x)-\frac{\delta}{2} \cdot\|g\| .
$$

Want to construct $g^{\prime} \in \partial_{\delta} f(x)$ that is a minimal norm element of $\partial_{\delta} f(x)$
Task reduces to finding some $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$.

A Solution under a Strong Assumption

Given a vector $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, construct a vector $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$.

A Solution under a Strong Assumption

Given a vector $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, construct a vector $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$.

```
"Inner Product Oracle"
```


A Solution under a Strong Assumption

> Given a vector $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, construct a vector $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$.

Suppose f were differentiable along $\left[x, x-\delta \cdot \frac{g}{\|g\|}\right]$.

A Solution under a Strong Assumption

> Given a vector $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, construct a vector $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$.

Suppose f were differentiable along $\left[x, x-\delta \cdot \frac{g}{\|g\|}\right]$. Then, we have

A Solution under a Strong Assumption

> Given a vector $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, construct a vector $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$.

Suppose f were differentiable along $\left[x, x-\delta \cdot \frac{g}{\|g\|}\right]$. Then, we have

$$
\frac{1}{2}\|g\| \geq \underbrace{\frac{f(x)-f\left(x-\delta \frac{g}{\|g\|}\right)}{\delta}}_{\substack{\text { since Goldstein descent } \\ \text { not satisfied }}}
$$

A Solution under a Strong Assumption

Given a vector $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, construct a vector $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$.

Suppose f were differentiable along $\left[x, x-\delta \cdot \frac{g}{\|g\|}\right]$. Then, we have

$$
\frac{1}{2}\|g\| \geq \frac{f(x)-f\left(x-\delta \frac{g}{\|g\|}\right)}{\delta}=\frac{1}{\delta} \int_{\tau=0}^{\delta}\left\langle\nabla f\left(x-\tau \frac{g}{\|g\|}\right), \frac{g}{\|g\|}\right\rangle d \tau
$$

A Solution under a Strong Assumption

Given a vector $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, construct a vector $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$. Suppose f were differentiable along $\left[x, x-\delta \cdot \frac{g}{\|g\|}\right]$. Then, we have

Thus, a point $y \stackrel{\text { u.a.r. }}{\sim}\left[x, x-\delta \frac{g}{\|g\|}\right]$ satisfies $\mathbb{E}\langle\nabla f(y), g\rangle \leq \frac{1}{2}\|g\|_{2}^{2}$.

A Solution under a Strong Assumption

> Given a vector $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, construct a vector $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$.

Thus, a point $y \stackrel{\text { u.a.r. }}{\sim}\left[x, x-\delta \frac{g}{\|g\|}\right]$ satisfies $\mathbb{E}\langle\nabla f(y), g\rangle \leq \frac{1}{2}\|g\|_{2}^{2}$.
Using randomization, we get this result without the above assumption!

The Idea for Our Algorithm

- We start with the algorithm of Zhang et al (2020)...
- ... interpreting it in the Goldstein descent framework
- and use randomization to replace Zhang et al (2020)'s strong oracle ("ZO") with a standard first-order oracle

First, Zhang et al (2020)'s Algorithm

First, Zhang et al (2020)'s Algorithm

1. for T iterations do:

- Compute $g=\operatorname{MinNorm}\left(x_{t}, \delta, \epsilon\right)$
$>$ Update $x_{t+1}=x_{t}-\delta \frac{g}{\|g\|}$

2. Return x_{T}

First, Zhang et al (2020)'s Algorithm

1. for T iterations do:

- Compute $g=\operatorname{MinNorm}\left(x_{t}, \delta, \epsilon\right)$
- Update $x_{t+1}=x_{t}-\delta \frac{g}{\|g\|}$

Goldstein descent step
2. Return x_{T}

First, Zhang et al (2020)'s Algorithm

1. for T iterations do:

- Compute $g=\operatorname{MinNorm}\left(x_{t}, \delta, \epsilon\right)$
$>$ Update $x_{t+1}=x_{t}-\delta \frac{g}{\|g\|}$

2. Return x_{T}

Zhang et al (2020)'s MinNorm(x, δ, ϵ)

1. while $\left\|g_{k}\right\| \geq \epsilon$ and $\frac{\delta}{4}\left\|g_{k}\right\| \geq f(x)-f\left(x-\delta \frac{g_{k}}{\left\|g_{k}\right\|}\right)$, do

- Choose $y_{k} \stackrel{\text { u.a.r. }}{\sim}\left[x, x-\delta \frac{g_{k}}{\left\|g_{k}\right\|}\right]$
- Let $u_{k}=\mathrm{ZO}\left(y_{k}, g_{k}\right)$
- Update $g_{k+1}=\arg \min _{z \in\left[g_{k}, u_{k}\right]}\|z\|$, and update $k=k+1$

2. Return g_{k}

First, Zhang et al (2020)'s Algorithm

1. for T iterations do:

- Compute $g=\operatorname{MinNorm}\left(x_{t}, \delta, \epsilon\right)$
$>$ Update $x_{t+1}=x_{t}-\delta \frac{g}{\|g\|}$

2. Return x_{T}

Zhang et al (2020)'s MinNorm(x, δ, ϵ)

1. while $\left\|g_{k}\right\| \geq \epsilon$ and $\frac{\delta}{4}\left\|g_{k}\right\| \geq f(x)-f\left(x-\delta \frac{g_{k}}{\left\|g_{k}\right\|}\right)$, do

- Choose $y_{k} \stackrel{\text { u.a.r. }}{\sim}\left[x, x-\delta \frac{g_{k}}{\left\|g_{k}\right\|}\right]$
- Let $u_{k}=\mathrm{ZO}\left(y_{k}, g_{k}\right)$
- Update $g_{k+1}=\arg \min _{z \in\left[g_{k}, u_{k}\right]}\|z\|$, and update $k=k+1$

2. Return g_{k}

Next, Our Algorithm

1. for T iterations do:

- Compute $g=\operatorname{MinNorm}\left(x_{t}, \delta, \epsilon\right)$
\rightarrow Update $x_{t+1}=x_{t}-\delta \frac{g}{\|g\|}$

2. Return x_{T}

Our MinNorm (x, δ, ϵ)

1. while $\left\|g_{k}\right\| \geq \epsilon$ and $\frac{\delta}{4}\left\|g_{k}\right\| \geq f(x)-f\left(x-\delta \frac{g_{k}}{\left\|g_{k}\right\|}\right)$, do

- Choose $y_{k} \stackrel{\text { u.a.r. }}{\sim}\left[x, x-\delta \frac{\xi_{k}}{\left\|\xi_{k}\right\|}\right]$ where $\xi_{k} \stackrel{\text { u.a.r. }}{\sim} B_{r}\left(g_{k}\right)$
- Let $u_{k}=\nabla f\left(y_{k}\right)$
- Update $g_{k+1}=\arg \min _{z \in\left[g_{k}, u_{k}\right]}\|z\|$, and update $k=k+1$

2. Return g_{k}

The Issue with Zhang et al (2020)'s Oracle

Zhang et al (2020)'s algorithm requires the following oracle access:

The Issue with Zhang et al (2020)'s Oracle

Zhang et al (2020)'s algorithm requires the following oracle access: given $x, g \in \mathbb{R}^{d}$, solve the auxiliary convex feasibility problem

$$
\text { find } u \in \partial f(x) \text { subject to }\langle u, g\rangle=f^{\prime}(x, g) \text {. }
$$

The Issue with Zhang et al (2020)'s Oracle

Zhang et al (2020)'s algorithm requires the following oracle access: given $x, g \in \mathbb{R}^{d}$, solve the auxiliary convex feasibility problem

$$
\text { find } u \in \partial f(x) \text { subject to }\langle u, g\rangle=f^{\prime}(x, g) \text {. }
$$

The set $\partial f(x)$ could be extremely complicated

The Issue with Zhang et al (2020)'s Oracle

Zhang et al (2020)'s algorithm requires the following oracle access: given $x, g \in \mathbb{R}^{d}$, solve the auxiliary convex feasibility problem

$$
\text { find } u \in \partial f(x) \text { subject to }\langle u, g\rangle=f^{\prime}(x, g) \text {. }
$$

- The set $\partial f(x)$ could be extremely complicated
- The chain rule fails for subdifferentials

Analysis of Our Algorithm

Guarantee of Our MinNorm Subroutine

Our MinNorm(x, δ, ϵ)

1. while $\left\|g_{k}\right\| \geq \epsilon$ and $\frac{\delta}{4}\left\|g_{k}\right\| \geq f(x)-f\left(x-\delta \frac{g_{k}}{\left\|g_{k}\right\|}\right)$, do

- Choose $y_{k} \stackrel{\text { u.a.r. }}{\sim}\left[x, x-\delta \frac{\xi_{k}}{\left\|\xi_{k}\right\|}\right]$ where $\xi_{k} \stackrel{\text { u.a.r. }}{\sim} B_{r}\left(g_{k}\right)$
- Let $u_{k}=\nabla f\left(y_{k}\right)$
- Update $g_{k+1}=\arg \min _{z \in\left[g_{k}, u_{k}\right]}\|z\|$, and update $k=k+1$

2. Return g_{k}

Theorem 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $\left\{g_{\ell}\right\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}\left[\left\|g_{k}\right\|^{2} \mathbf{1}_{\tau>k}\right] \leq \frac{L^{2}}{1+k}$.

Guarantee of Our MinNorm Subroutine

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $\left\{g_{\ell}\right\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}\left[\left\|g_{k}\right\|^{2} \mathbf{1}_{\tau>k}\right] \leq \frac{L^{2}}{1+k}$.

Guarantee of Our MinNorm Subroutine

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $\left\{g_{\ell}\right\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}\left[\left\|g_{k}\right\|^{2} \mathbf{1}_{\tau>k}\right] \leq \frac{L^{2}}{1+k}$.

Proof. Let $\widehat{u}:=u /\|u\|$; Then, almost surely, conditioned on g_{k}, we have:

Guarantee of Our MinNorm Subroutine

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $\left\{g_{\ell}\right\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}\left[\left\|g_{k}\right\|^{2} \mathbf{1}_{\tau>k}\right] \leq \frac{L^{2}}{1+k}$.

Proof. Let $\widehat{u}:=u /\|u\|$; Then, almost surely, conditioned on g_{k}, we have:
$\frac{1}{2}\left\|g_{k}\right\| \geq \frac{1}{\delta}\left[f(x)-f\left(x-\delta \widehat{g}_{k}\right)\right]$
since Goldstein descent not satisfied

Guarantee of Our MinNorm Subroutine

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $\left\{g_{\ell}\right\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}\left[\left\|g_{k}\right\|^{2} \mathbf{1}_{\tau>k}\right] \leq \frac{L^{2}}{1+k}$.

Proof. Let $\widehat{u}:=u /\|u\|$; Then, almost surely, conditioned on g_{k}, we have: $\frac{1}{2}\left\|g_{k}\right\| \geq \frac{1}{\delta}\left[f(x)-f\left(x-\delta \widehat{g}_{k}\right)\right]>\frac{1}{\delta}\left[f(x)-f\left(x-\delta \widehat{\xi}_{k}\right)\right]-L\left\|\widehat{g}_{k}-\widehat{\xi}_{k}\right\|$ L-Lipschitzness

Guarantee of Our MinNorm Subroutine

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $\left\{g_{\ell}\right\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}\left[\left\|g_{k}\right\|^{2} \mathbf{1}_{\tau>k}\right] \leq \frac{L^{2}}{1+k}$.

Proof. Let $\widehat{u}:=u /\|u\|$; Then, almost surely, conditioned on g_{k}, we have:
$\frac{1}{2}\left\|g_{k}\right\| \geq \frac{1}{\delta}\left[f(x)-f\left(x-\delta \widehat{g}_{k}\right)\right] \geq \frac{1}{\delta}\left[f(x)-f\left(x-\delta \widehat{\xi}_{k}\right)\right]-L\left\|\widehat{g}_{k}-\widehat{\xi}_{k}\right\|$

Guarantee of Our MinNorm Subroutine

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $\left\{g_{\ell}\right\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}\left[\left\|g_{k}\right\|^{2} \mathbf{1}_{\tau>k}\right] \leq \frac{L^{2}}{1+k}$.

Proof. Let $\widehat{u}:=u /\|u\|$; Then, almost surely, conditioned on g_{k}, we have: $\frac{1}{2}\left\|g_{k}\right\| \geq$

$$
\begin{aligned}
& =\frac{1}{\delta} \int_{s=0}^{\delta}\left\langle\nabla f\left(x-s \widehat{\xi}_{k}\right), \widehat{\xi}_{k}\right\rangle d s-L\left\|\widehat{g}_{k}-\widehat{\xi}_{k}\right\| \\
& \geq \frac{1}{\delta} \int_{s=0}^{\delta}\left\langle\nabla f\left(x-s \widehat{\xi}_{k}\right), \widehat{g}_{k}\right\rangle d s-2 L\left\|\widehat{g}_{k}-\widehat{\xi}_{k}\right\|
\end{aligned}
$$

Guarantee of Our MinNorm Subroutine

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $\left\{g_{\ell}\right\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}\left[\left\|g_{k}\right\|^{2} \mathbf{1}_{\tau>k}\right] \leq \frac{L^{2}}{1+k}$.

Proof. Let $\widehat{u}:=u /\|u\|$; Then, almost surely, conditioned on g_{k}, we have: $\frac{1}{2}\left\|g_{k}\right\| \geq$

$$
\begin{aligned}
& =\frac{1}{\delta} \int_{s=0}^{\delta}\left\langle\nabla f\left(x-s \widehat{\xi}_{k}\right), \widehat{\xi}_{k}\right) d s-L\left\|\widehat{g}_{k}-\widehat{\xi}_{k}\right\| \\
& \geq \frac{1}{\delta} \int_{s=0}^{\delta}\left\langle\nabla f\left(x-s \widehat{\xi}_{k}\right), \widehat{g}_{k}\right\rangle d s-2 L\left\|\widehat{g}_{k}-\widehat{\xi}_{k}\right\| \\
\underbrace{}_{\text {definition of } y_{k}} & =\mathbb{E}_{k}\left\langle\nabla f\left(y_{k}\right), \widehat{g}_{k}\right\rangle-2 L\left\|\widehat{g}_{k}-\widehat{\xi}_{k}\right\| .
\end{aligned}
$$

Guarantee of Our MinNorm Subroutine

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $\left\{g_{\ell}\right\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}\left[\left\|g_{k}\right\|^{2} \mathbf{1}_{\tau>k}\right] \leq \frac{L^{2}}{1+k}$.

Proof. Let $\widehat{u}:=u /\|u\|$; Then, almost surely, conditioned on g_{k}, we have: $\frac{1}{2}\left\|g_{k}\right\| \geq$

$$
=\mathbb{E}_{k}\left\langle\nabla f\left(y_{k}\right), \widehat{g}_{k}\right\rangle-2 L\left\|\widehat{g}_{k}-\widehat{\xi}_{k}\right\| .
$$

Guarantee of Our MinNorm Subroutine

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $\left\{g_{\ell}\right\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}\left[\left\|g_{k}\right\|^{2} \mathbf{1}_{\tau>k}\right] \leq \frac{L^{2}}{1+k}$.

Proof. Let $\widehat{u}:=u /\|u\|$; Then, almost surely, conditioned on g_{k}, we have: $\frac{1}{2}\left\|g_{k}\right\| \geq$
 ∇f

$\left\langle\nabla f\left(x-s \hat{\xi}_{k}\right), \widehat{g}_{k}\right\rangle d s-2 L \| \widehat{g}$

$$
=\mathbb{E}_{k}\left\langle\nabla f\left(y_{k}\right), \widehat{g}_{k}\right\rangle-2 L\left\|\widehat{g}_{k}-\widehat{\xi}_{k}\right\| .
$$

This matches the requirement for $u \in \partial_{\delta} f(x)$ with $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$.

Guarantee of Our MinNorm Subroutine

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $\left\{g_{\ell}\right\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}\left[\left\|g_{k}\right\|^{2} \mathbf{1}_{\tau>k}\right] \leq \frac{L^{2}}{1+k}$.

Proof. Let $\widehat{u}:=u /\|u\|$; Then, almost surely, conditioned on g_{k}, we have:

```
Inner Product Oracle
```


This matches the requirement for $u \in \partial_{\delta} f(x)$ with $\langle u, g\rangle \leq \frac{1}{2}\|g\|^{2}$.

Our Main Result: Formal Statement

Theorem 4: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Given an L-Lipschitz function f, fix an initial point $x_{0} \in \mathbb{R}^{d}$, and define $f\left(x_{0}\right)-\inf _{x} f(x)$. Then, with probability $1-\gamma$, our algorithm returns x_{T} satisfying $\min _{g \in \partial_{\delta} f\left(x_{T}\right)}\|g\| \leq \epsilon$ in at most
$\left\lceil\frac{4 \Delta}{\delta \epsilon}\right\rceil \cdot\left\lceil\frac{64 L^{2}}{\epsilon^{2}}\right\rceil \cdot\left\lceil 2 \log \left(\frac{4 \Delta}{\gamma \delta \epsilon}\right)\right\rceil$ function-value and gradient evaluations.

Our Main Result: Formal Statement

Theorem 4: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Given an L-Lipschitz function f, fix an initial point $x_{0} \in \mathbb{R}^{d}$, and define $f\left(x_{0}\right)-\inf _{x} f(x)$. Then, with probability $1-\gamma$, our algorithm returns x_{T} satisfying $\min _{g \in \partial_{\delta} f\left(x_{T}\right)}\|g\| \leq \epsilon$ in at most

$$
\left\lceil\frac{4 \Delta}{\delta \epsilon}\right\rceil \cdot\left\lceil\frac{64 L^{2}}{\epsilon^{2}}\right\rceil \cdot\left\lceil 2 \log \left(\frac{4 \Delta}{\gamma \delta \epsilon}\right)\right\rceil \text { function-value and gradient evaluations. }
$$

Goldstein descent
iterations

Our Main Result: Formal Statement

Theorem 4: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an L-Lipschitz function f, fix an initial point $x_{0} \in \mathbb{R}^{d}$, and define $f\left(x_{0}\right)-\inf _{x} f(x)$. Then, with probability $1-\gamma$, our algorithm returns x_{T} satisfying $\min _{g \in \partial_{\delta} f\left(x_{T}\right)}\|g\| \leq \epsilon$ in at most

$$
\left\lceil\frac{4 \Delta}{\delta \epsilon}\right\rceil \cdot\left\lceil\frac{64 L^{2}}{\epsilon^{2}}\right\rceil \cdot\left\lceil 2 \log \left(\frac{4 \Delta}{\gamma \delta \epsilon}\right)\right\rceil \text { function-value and gradient evaluations. }
$$

Goldstein descent iterations

MinNorm iterations

Our Second Question in this Thread

Problem Overview

Recall that $g \in \partial_{\delta} f(x)$ satisfies the descent condition at x if

$$
f\left(x-\delta \frac{g}{\|g\|}\right) \leq f(x)-\frac{\delta \epsilon}{3}
$$

Problem Overview

Recall that $g \in \partial_{\delta} f(x)$ satisfies the descent condition at x if

$$
f\left(x-\delta \frac{g}{\|g\|}\right) \leq f(x)-\frac{\delta \epsilon}{3}
$$

If not, the Inner Product Oracle outputs $u \in \partial_{\delta} f(x)$ such that

$$
\langle u, g\rangle \leq \frac{\epsilon}{3}\|g\| .
$$

Problem Overview

Recall that $g \in \partial_{\delta} f(x)$ satisfies the descent condition at x if

$$
f\left(x-\delta \frac{g}{\|g\|}\right) \leq f(x)-\frac{\delta \epsilon}{3}
$$

If not, the Inner Product Oracle outputs $u \in \partial_{\delta} f(x)$ such that

$$
\langle u, g\rangle \leq \frac{\epsilon}{3}\|g\| .
$$

This vector u is combined with g to generate a vector that either corresponds to the desired stationarity or is a descent direction

Problem Overview

Recall that $g \in \partial_{\delta} f(x)$ satisfies the descent condition at x if

$$
f\left(x-\delta \frac{g}{\|g\|}\right) \leq f(x)-\frac{\delta \epsilon}{3}
$$

If not, the Inner Product Oracle outputs $u \in \partial_{\delta} f(x)$ such that

$$
\langle u, g\rangle \leq \frac{\epsilon}{3}\|g\| .
$$

This vector u is combined with g to generate a vector that either corresponds to the desired stationarity or is a descent direction

Are there settings in which we can use the vector u more efficiently?

Our Main Idea

Recall that given $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, we can output $u \in \partial_{\delta} f(x)$ such that $\langle u, g\rangle \leq \frac{\epsilon}{2}\|g\|$.

Inner Product Oracle

Our Main Idea

Recall that given $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, we can output $u \in \partial_{\delta} f(x)$ such that $\langle u, g\rangle \leq \frac{\epsilon}{2}\|g\|$.

```
Inner Product Oracle
```


Our Key Insight.

The above oracle is essentially the gradient oracle of the MinNorm element problem.

Our Main Idea

Recall that given $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, we can output $u \in \partial_{\delta} f(x)$ such that $\langle u, g\rangle \leq \frac{\epsilon}{2}\|g\|$.

```
Inner Product Oracle
```


Our Key Insight.

The above oracle is essentially the gradient oracle of the MinNorm element problem. We can therefore use it in a cutting-plane method.

Using the Inner Product Oracle

Notation Denote $Q:=\partial_{\delta} f(x)$; and $\widehat{x}:=x /\|x\|$ for some vector x

Using the Inner Product Oracle

Notation Denote $Q:=\partial_{\delta} f(x)$; and $\widehat{x}:=x /\|x\|$ for some vector x
Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g \in Q$ be a vector not satisfying the descent condition, and let $u \in$ Q be the output of the inner product oracle. Let $g_{Q}^{\star} \in \min _{g \in Q}\|g\| \geq$ $\epsilon / 2$. Then, $\widehat{g_{Q}^{\star}} \in\left\{w \in \mathbb{R}^{d}:\langle u, \widehat{g}-w\rangle \leq 0\right\}$.

Using the Inner Product Oracle

Notation Denote $Q:=\partial_{\delta} f(x)$; and $\widehat{x}:=x /\|x\|$ for some vector x
Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g \in Q$ be a vector not satisfying the descent condition, and let $u \in$ Q be the output of the inner product oracle. Let $g_{Q}^{\star} \in \min _{g \in Q}\|g\| \geq$ $\epsilon / 2$. Then, $\widehat{g_{Q}^{\star}} \in\left\{w \in \mathbb{R}^{d}:\langle u, \widehat{g}-w\rangle \leq 0\right\}$.

Proof Combining the above definitions and a technical lemma gives:

Using the Inner Product Oracle

Notation Denote $Q:=\partial_{\delta} f(x)$; and $\widehat{x}:=x /\|x\|$ for some vector x
Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g \in Q$ be a vector not satisfying the descent condition, and let $u \in$ Q be the output of the inner product oracle. Let $g_{Q}^{\star} \in \min _{g \in Q}\|g\| \geq$ $\epsilon / 2$. Then, $\widehat{g_{Q}^{\star}} \in\left\{w \in \mathbb{R}^{d}:\langle u, \widehat{g}-w\rangle \leq 0\right\}$.

Proof Combining the above definitions and a technical lemma gives:
The inner product oracle guarantees: $\quad\langle u, \widehat{g}\rangle \leq \frac{\epsilon}{2}$

Using the Inner Product Oracle

Notation Denote $Q:=\partial_{\delta} f(x)$; and $\widehat{x}:=x /\|x\|$ for some vector x
Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g \in Q$ be a vector not satisfying the descent condition, and let $u \in$ Q be the output of the inner product oracle. Let $g_{Q}^{\star} \in \min _{g \in Q}\|g\| \geq$ $\epsilon / 2$. Then, $\widehat{g_{Q}^{\star}} \in\left\{w \in \mathbb{R}^{d}:\langle u, \widehat{g}-w\rangle \leq 0\right\}$.

Proof Combining the above definitions and a technical lemma gives:
The inner product oracle guarantees: $\quad\langle u, \widehat{g}\rangle \leq \frac{\epsilon}{2}$
The technical lemma (extra slide) shows: $\left\langle u, \widehat{g_{Q}^{\star}}\right\rangle \geq\left\|g_{Q}^{\star}\right\|$

Using the Inner Product Oracle

Notation Denote $Q:=\partial_{\delta} f(x)$; and $\widehat{x}:=x /\|x\|$ for some vector x
Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g \in Q$ be a vector not satisfying the descent condition, and let $u \in$ Q be the output of the inner product oracle. Let $g_{Q}^{\star} \in \min _{g \in Q}\|g\| \geq$ $\epsilon / 2$. Then, $\widehat{g_{Q}^{\star}} \in\left\{w \in \mathbb{R}^{d}:\langle u, \widehat{g}-w\rangle \leq 0\right\}$.

Proof Combining the above definitions and a technical lemma gives:
The inner product oracle guarantees: $\quad\langle u, \widehat{g}\rangle \leq \frac{\epsilon}{2}$
The technical lemma (extra slide) shows: $\left\langle u, \widehat{g_{Q}^{\star}}\right\rangle \geq\left\|g_{Q}^{\star}\right\|$
Combining these two inequalities yields:

$$
\left\langle u, \widehat{g}-\widehat{g_{Q}^{\star}}\right\rangle \leq \frac{\epsilon}{2}-\left\|g_{Q}^{\star}\right\| \leq 0
$$

Our Second Result: Complete Statement

Theorem 5: (Davis, Druswatskiy, Lee, Padmanabhan, Ye; 2022)
Given an L-Lipschitz function f. Fix an initial point $x_{0} \in \mathbb{R}^{d}$, and define $f\left(x_{0}\right)-\inf _{x} f(x)$. Then, with probability $1-\gamma$, our algorithm returns x_{T} satisfying $\min _{g \in \partial_{\delta} f\left(x_{T}\right)}\|g\| \leq \epsilon$ in at most
$\left\lceil\frac{4 \Delta}{\delta \epsilon}\right\rceil \cdot\left\lceil 8 d \log \left(\frac{8 L}{\epsilon}\right)\right\rceil \cdot\left\lceil\frac{36 L}{\epsilon}\right\rceil$ function-value and gradient evaluations.

Our Second Result: Complete Statement

Theorem 5: (Davis, Druswatskiy, Lee, Padmanabhan, Ye; 2022)
Given an L-Lipschitz function f. Fix an initial point $x_{0} \in \mathbb{R}^{d}$, and define $f\left(x_{0}\right)-\inf _{x} f(x)$. Then, with probability $1-\gamma$, our algorithm returns x_{T} satisfying $\min _{g \in \partial_{\delta} f\left(x_{T}\right)}\|g\| \leq \epsilon$ in at most
$\left\lceil\frac{4 \Delta}{\delta \epsilon}\right\rceil \cdot\left\lceil 8 d \log \left(\frac{8 L}{\epsilon}\right)\right\rceil \cdot\left\lceil\frac{36 L}{\epsilon}\right\rceil$ function-value and gradient evaluations.

Goldstein descent
iterations

Our Second Result: Complete Statement

Theorem 5: (Davis, Druswatskiy, Lee, Padmanabhan, Ye; 2022)
Given an L-Lipschitz function f. Fix an initial point $x_{0} \in \mathbb{R}^{d}$, and define $f\left(x_{0}\right)-\inf _{x} f(x)$. Then, with probability $1-\gamma$, our algorithm returns x_{T} satisfying $\min _{g \in \partial_{\delta} f\left(x_{T}\right)}\|g\| \leq \epsilon$ in at most

Our Second Result: Complete Statement

Theorem 5: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an L-Lipschitz function f. Fix an initial point $x_{0} \in \mathbb{R}^{d}$, and define $f\left(x_{0}\right)-\inf _{x} f(x)$. Then, with probability $1-\gamma$, our algorithm returns x_{T} satisfying $\min _{g \in \partial_{\delta} f\left(x_{T}\right)}\|g\| \leq \epsilon$ in at most

A Technical Lemma

Notation. Let $\phi_{Q}(v):=\min _{g \in Q}\langle g, v\rangle$; let $\widehat{x}:=x /\|x\|$.

A Technical Lemma

Notation. Let $\phi_{Q}(v):=\min _{g \in Q}\langle g, v\rangle$; let $\widehat{x}:=x /\|x\|$.
Lemma 2: (informal; Davis, Druswatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g_{Q}^{\star} \in \arg \min _{Q}\|g\|$. Then, $\widehat{g_{Q}^{\star}}$ satisfies two properties:

A Technical Lemma

Notation. Let $\phi_{Q}(v):=\min _{g \in Q}\langle g, v\rangle$; let $\widehat{x}:=x /\|x\|$.
Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g_{Q}^{\star} \in \arg \min _{Q}\|g\|$. Then, $\widehat{g_{Q}^{\star}}$ satisfies two properties:
$>\left\langle\widehat{g_{Q}^{\star}}, g\right\rangle \geq\left\|g_{Q}^{\star}\right\|$ for all $g \in Q$,
$>\widehat{g_{Q}^{\star}}=\arg \max _{\|v\| \leq 1} \phi_{Q}(v)$.

A Technical Lemma

Notation. Let $\phi_{Q}(v):=\min _{g \in Q}\langle g, v\rangle$; let $\widehat{x}:=x /\|x\|$.
Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g_{Q}^{\star} \in \arg \min _{Q}\|g\|$. Then, $\widehat{g_{Q}^{\star}}$ satisfies two properties:
$\left.>\widehat{g_{Q}^{\star}}, g\right\rangle \geq\left\|g_{Q}^{\star}\right\|$ for all $g \in Q$,
$\widehat{g_{Q}^{\star}}=\arg \max _{\|v\| \leq 1} \phi_{Q}(v)$.

Proof. The first inequality holds by definition of g_{Q}^{\star}. We drop Q for notational simplicity in the rest of the proof.

A Technical Lemma

Notation. Let $\phi_{Q}(v):=\min _{g \in Q}\langle g, v\rangle$; let $\widehat{x}:=x /\|x\|$.
Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g_{Q}^{\star} \in \arg \min _{Q}\|g\|$. Then, $\widehat{g_{Q}^{\star}}$ satisfies two properties:

- $\left\langle\widehat{g_{Q}^{\star}}, g\right\rangle \geq\left\|g_{Q}^{\star}\right\|$ for all $g \in Q$,
$-\widehat{g_{Q}^{\star}}=\arg \max _{\|v\| \leq 1} \phi_{Q}(v)$.

Proof. The first inequality holds by definition of g_{Q}^{\star}. We drop Q for notational simplicity in the rest of the proof.

$$
\phi\left(\widehat{g^{\star}}\right)=\left\|g^{\star}\right\|
$$

first inequality
$\&$ definition of ϕ_{Q}

A Technical Lemma

Notation. Let $\phi_{Q}(v):=\min _{g \in Q}\langle g, v\rangle$; let $\widehat{x}:=x /\|x\|$.
Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g_{Q}^{\star} \in \arg \min _{Q}\|g\|$. Then, $\widehat{g_{Q}^{\star}}$ satisfies two properties:
$\left.>\widehat{g_{Q}^{\star}}, g\right\rangle \geq\left\|g_{Q}^{\star}\right\|$ for all $g \in Q$,
$\widehat{g_{Q}^{\star}}=\arg \max _{\|v\| \leq 1} \phi_{Q}(v)$.

Proof. The first inequality holds by definition of g_{Q}^{\star}. We drop Q for notational simplicity in the rest of the proof.

$$
\phi\left(\widehat{g^{\star}}\right)=\left\|g^{\star}\right\|=\min _{Q}\|g\|
$$

A Technical Lemma

Notation. Let $\phi_{Q}(v):=\min _{g \in Q}\langle g, v\rangle$; let $\widehat{x}:=x /\|x\|$.
Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g_{Q}^{\star} \in \arg \min _{Q}\|g\|$. Then, $\widehat{g_{Q}^{\star}}$ satisfies two properties:

- $\left\langle\widehat{g_{Q}^{\star}}, g\right\rangle \geq\left\|g_{Q}^{\star}\right\|$ for all $g \in Q$,
$\widehat{g}_{\widehat{\star}}=\arg \max _{\|v\| \leq 1} \phi_{Q}(v)$.

Proof. The first inequality holds by definition of g_{Q}^{\star}. We drop Q for notational simplicity in the rest of the proof.

$$
\phi\left(\widehat{g^{\star}}\right)=\left\|g^{\star}\right\|=\min _{Q}\|g\|=\min _{Q} \max _{\|v\| \leq 1}\langle g, v\rangle
$$

A Technical Lemma

Notation. Let $\phi_{Q}(v):=\min _{g \in Q}\langle g, v\rangle$; let $\widehat{x}:=x /\|x\|$.
Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g_{Q}^{\star} \in \arg \min _{Q}\|g\|$. Then, $\widehat{g_{Q}^{\star}}$ satisfies two properties:

- $\left\langle\widehat{g_{Q}^{\star}}, g\right\rangle \geq\left\|g_{Q}^{\star}\right\|$ for all $g \in Q$,
$-\widehat{g_{Q}^{\star}}=\arg \max _{\|v\| \leq 1} \phi_{Q}(v)$.

Proof. The first inequality holds by definition of g_{Q}^{\star}. We drop Q for notational simplicity in the rest of the proof.

$$
\phi\left(\widehat{g^{\star}}\right)=\left\|g^{\star}\right\|=\min _{Q}\|g\|=\min _{Q} \max _{\|v\| \leq 1}\langle g, v\rangle=\max _{\|v\| \leq 1} \min _{Q}\langle g, v\rangle
$$

A Technical Lemma

Notation. Let $\phi_{Q}(v):=\min _{g \in Q}\langle g, v\rangle$; let $\widehat{x}:=x /\|x\|$.
Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g_{Q}^{\star} \in \arg \min _{Q}\|g\|$. Then, $\widehat{g_{Q}^{\star}}$ satisfies two properties:

- $\left\langle\widehat{g_{Q}^{\star}}, g\right\rangle \geq\left\|g_{Q}^{\star}\right\|$ for all $g \in Q$,
$-\widehat{g_{Q}^{\star}}=\arg \max _{\|v\| \leq 1} \phi_{Q}(v)$.

Proof. The first inequality holds by definition of g_{Q}^{\star}. We drop Q for notational simplicity in the rest of the proof.
$\phi\left(\widehat{g^{\star}}\right)=\left\|g^{\star}\right\|=\min _{Q}\|g\|=\min _{Q} \max _{\|v\| \leq 1}\langle g, v$ $=\max _{\|v\| \leq 1} \min _{Q}\langle g, v\rangle_{\bar{\prime}} \max _{\|v\| \leq 1} \phi(v)$.

Definition of ϕ

A Technical Lemma

Notation. Let $\phi_{Q}(v):=\min _{g \in Q}\langle g, v\rangle$; let $\widehat{x}:=x /\|x\|$.
Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)
Let $g_{Q}^{\star} \in \arg \min _{Q}\|g\|$. Then, $\widehat{g_{Q}^{\star}}$ satisfies two properties:

- $\left\langle\widehat{g_{Q}^{\star}}, g\right\rangle \geq\left\|g_{Q}^{\star}\right\|$ for all $g \in Q$,
$\rightarrow \widehat{g_{Q}^{\star}}=\arg \max _{\|v\| \leq 1} \phi_{Q}(v)$.

Proof. The first inequality holds by definition of g_{Q}^{\star}. We drop Q for notational simplicity in the rest of the proof.

$$
\phi\left(\widehat{g^{\star}}\right)=\left\|g^{\star}\right\|=\min _{Q}\|g\|=\min _{Q} \max _{\|v\| \leq 1}\langle g, v\rangle=\max _{\|v\| \leq 1} \min _{Q}\langle g, v\rangle=\max _{\|v\| \leq 1} \phi(v) .
$$

Takeaways \& Future Directions

1. A faster algorithm for nonsmooth nonconvex optimization
2. Improved (optimal) rates in low dimensions
3. Key ideas: randomization; cutting-plane methods

Takeaways \& Future Directions

1. A faster algorithm for nonsmooth nonconvex optimization
2. Improved (optimal) rates in low dimensions
3. Key ideas: randomization; cutting-plane methods
4. Future Direction. More practical notions of convergence?

Thank You!

