A Gradient Sampling Method with Complexity Guarantees for Lipschitz Functions in Low and High Dimensions

Damek Davis ¹, Dmitriy Drusvyatskiy ², Yin Tat Lee ², Swati Padmanabhan², Guanghao Ye³

¹Cornell University; ²University of Washington, Seattle; ³Massachussetts Institute of Technology *Authors ordered alphabetically*

NeurIPS 2022 (Oral)

Guiding Research Question

Given an optimization problem with black-box oracle access, can we obtain improved complexity guarantees for approximately solving it?

Guiding Research Question

Given an optimization problem with black-box oracle access, can we obtain improved complexity guarantees for approximately solving it?

Talk outline:

- **1.** A faster algorithm for a general nonconvex nonsmooth problem
- 2. Improved rates of the above result for a special case

A typical template is the subgradient method:

$$x_{t+1} = x_t - \sum_{i \leq t} \alpha_{i,t} \cdot v_i$$
, for $v_i \in \partial f(x_i)$,

where the set $\partial f(x)$ is the Clarke subdifferential:

 $\partial f(x) = \operatorname{conv} \{ \lim_{i \to \infty} \nabla f(x_i) : x_i \to x, x_i \in \operatorname{dom}(f) \}.$

A typical template is the subgradient method:

$$x_{t+1} = x_t - \sum_{i \leq t} lpha_{i,t} \cdot v_i$$
, for $v_i \in \partial f(x_i)$,

where the set $\partial f(x)$ is the Clarke subdifferential:

$$\partial f(x) = \operatorname{conv} \{ \lim_{i \to \infty} \nabla f(x_i) : x_i \to x, x_i \in \operatorname{dom}(f) \}.$$
gradient for smooth f

A typical template is the subgradient method:

$$x_{t+1} = x_t - \sum_{i \leq t} lpha_{i,t} \cdot v_i$$
, for $v_i \in \partial f(x_i)$,

where the set $\partial f(x)$ is the Clarke subdifferential:

$$\partial f(x) = \operatorname{conv} \{ \lim_{i \to \infty} \nabla f(x_i) : x_i \to x, x_i \in \operatorname{dom}(f) \}.$$

The subgradient method:

oracle access

$$x_{t+1} = x_t - \sum_{i \le t} \alpha_{i,t} \cdot v_i$$
, for $v_i \in \partial f(x_i)$.

✓ Nonasymptotic guarantees for <u>convex</u> problems

global function error bound

- Nonasymptotic guarantees for convex problems
- ✓ Nonasymptotic guarantees for smooth nonconvex problems

The Subgradient Method: Convergence Guarantees

- Nonasymptotic guarantees for convex problems
- Nonasymptotic guarantees for smooth nonconvex problems
- Asymptotic guarantees for nonsmooth nonconvex problems:
 - Benaim, Hofbauer, Sorin (2005)
 - Kiwiel (2007)

stationary point

(specified later)

- Majewski, Miasojedow, Moulines (2018)
- Davis & Drusvyatskiy (2019)
- Bolte & Pauwels (2019)

The Subgradient Method: Convergence Guarantees

- Nonasymptotic guarantees for convex problems
- Nonasymptotic guarantees for smooth nonconvex problems
- Asymptotic guarantees for nonsmooth nonconvex problems
- Nonasymptotic guarantees for nonsmooth nonconvex problems?
 - Breakthrough by Zhang, Lin, Jegelka, Sra, Jadbabaie (2020):

The Subgradient Method: Convergence Guarantees

- Nonasymptotic guarantees for convex problems
- Nonasymptotic guarantees for smooth nonconvex problems
- Asymptotic guarantees for nonsmooth nonconvex problems
- Nonasymptotic guarantees for nonsmooth nonconvex problems?
 - Breakthrough by Zhang, Lin, Jegelka, Sra, Jadbabaie (2020): However, their algorithm uses an unusually strong oracle

The Subgradient Method: Convergence Guarantees

- Nonasymptotic guarantees for convex problems
- Nonasymptotic guarantees for smooth nonconvex problems
- Asymptotic guarantees for nonsmooth nonconvex problems
- Nonasymptotic guarantees for nonsmooth nonconvex problems?
 - Breakthrough by Zhang, Lin, Jegelka, Sra, Jadbabaie (2020): However, their algorithm uses an unusually strong oracle

No nonasymptotic guarantees for nonsmooth nonconvex problems!

- Nonasymptotic guarantees for convex problems
- Nonasymptotic guarantees for smooth nonconvex problems
- Asymptotic guarantees for nonsmooth nonconvex problems
- Nonasymptotic guarantees for nonsmooth nonconvex problems?
 - Breakthrough by Zhang, Lin, Jegelka, Sra, Jadbabaie (2020): However, their algorithm uses an unusually strong oracle

deep learning

No nonasymptotic guarantees for nonsmooth nonconvex problems!

Problem Class:

Problem Class:

Nonsmooth Nonconvex

Cannot bound global function error

A Meaningful Notion of Convergence

Problem Class:

- Cannot bound global function error
- > Cannot attain ϵ -stationarity (Zhang et al (2020))

5/25

Problem Class:

- Cannot bound global function error
- Cannot attain
 estationarity (Zhang et al (2020))
- Cannot attain near-e-stationarity (Kornowski & Shamir (2022))

5/25

Problem Class:

- Cannot bound global function error
- Cannot attain
 estationarity (Zhang et al (2020))
- Cannot attain near-e-stationarity (Kornowski & Shamir (2022))
- Smoothing doesn't work (Kornowski & Shamir (2022))

5/25

Problem Class:

Nonsmooth Nonconvex

- Cannot bound global function error
- Cannot attain ϵ -stationarity (Zhang et al (2020))
- Cannot attain near- ϵ -stationarity (Kornowski & Shamir (2022))
- Smoothing doesn't work (Kornowski & Shamir (2022))

Alternate notion: A bound on the convex combination of nearby gradients!

Problem Class:

Nonsmooth Nonconvex

- Cannot bound global function error
- Cannot attain ϵ -stationarity (Zhang et al (2020))
- Cannot attain near- ϵ -stationarity (Kornowski & Shamir (2022))
- Smoothing doesn't work (Kornowski & Shamir (2022))

Alternate notion: A bound on the convex combination of nearby gradients!

Definition (Goldstein (1977))

A point x is (δ,ϵ) -stationary for a Lipschitz function f if

 $\min_{g \in \partial_{\delta} f(x)} \|g\| \le \epsilon.$

5/25

5/25

Problem Class:

Nonsmooth Nonconvex

- Cannot bound global function error
- Cannot attain ϵ -stationarity (Zhang et al (2020))
- Cannot attain near- ϵ -stationarity (Kornowski & Shamir (2022))
- Smoothing doesn't work (Kornowski & Shamir (2022))

Alternate notion: A bound on the convex combination of nearby gradients!

Goal: Find a (δ,ϵ) -stationary point for a given Lipschitz function

Goal: Find a (δ, ϵ) -stationary point for a given Lipschitz function

Theorem 1: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an L-Lipschitz function with first-order oracle access to it.

Goal: Find a (δ, ϵ) -stationary point for a given Lipschitz function

Theorem 1: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an *L*-Lipschitz function with first-order oracle access to it. We provide a randomized algorithm, which, with high probability, in $poly(L, \epsilon, \delta)$ iterations, converges to a (δ, ϵ) -stationary point.

Goal: Find a (δ, ϵ) -stationary point for a given Lipschitz function

Theorem 1: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an *L*-Lipschitz function with first-order oracle access to it. We provide a randomized algorithm, which, with high probability, in $poly(L, \epsilon, \delta)$ iterations, converges to a (δ, ϵ) -stationary point.

First such guarantee using a standard oracle!

Towards an Overview of Our Algorithm & Analysis

Goal: Given an *L*-Lipschitz function f and accuracy parameters ϵ and δ , find a point x such that $\min_{g \in \partial_{\delta} f(x)} \|g\| \leq \epsilon$.

Goal: Given an *L*-Lipschitz function *f* and accuracy parameters ϵ and δ , find a point *x* such that $\min_{g \in \partial_{\delta} f(x)} \|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)): Let $g_t^* \in \arg \min_{g \in \partial_{\delta} f(x_t)} \|g\|$ and $x_{t+1} = x_t - \delta \frac{g_t^*}{\|g_t^*\|}$. Then,

 $f(x_{t+1}) \le f(x_t) - \delta ||g_t^{\star}||.$

A General Algorithmic Framework

Goal: Given an *L*-Lipschitz function *f* and accuracy parameters ϵ and δ , find a point *x* such that $\min_{g \in \partial_{\delta} f(x)} ||g|| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)):

Let $g_t^\star \in \arg\min_{g \in \partial_\delta f(x_t)} \|g\|$ and $x_{t+1} \stackrel{\texttt{Let}}{=} x_t - \delta \frac{g_t^\star}{\|g_t^\star\|}$. Then,

 $f(x_{t+1}) \le f(x_t) - \delta ||g_t^{\star}||.$

Goldstein descent step

A General Algorithmic Framework

Goal: Given an *L*-Lipschitz function f and accuracy parameters ϵ and δ , find a point x such that $\min_{g \in \partial_{\delta} f(x)} \|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)**)**: Let $g_t^{\star} \in \arg \min_{g \in \partial_{\delta} f(x_t)} \|g\|$ and $x_{t+1} = x_t - \delta \frac{g_t^{\star}}{\|g_t^{\star}\|}$. Then,

 $f(x_{t+1}) \le f(x_t) - \delta \|g_t^{\star}\|.$

imes A Goldstein descent step ${
m decreases}$ function value by at least $\delta\epsilon$

Goal: Given an *L*-Lipschitz function *f* and accuracy parameters ϵ and δ , find a point *x* such that $\min_{g \in \partial_{\delta} f(x)} \|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)**)**: Let $g_t^{\star} \in \arg \min_{g \in \partial_{\delta} f(x_t)} \|g\|$ and $x_{t+1} = x_t - \delta \frac{g_t^{\star}}{\|g_t^{\star}\|}$. Then,

 $f(x_{t+1}) \le f(x_t) - \delta \|g_t^\star\|_{\bigstar}$

imes A Goldstein descent step ${f decreases}$ function value by at least $ar{\delta}\epsilon$

Goal: Given an *L*-Lipschitz function *f* and accuracy parameters ϵ and δ , find a point *x* such that $\min_{g \in \partial_{\delta} f(x)} \|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)**)**: Let $g_t^{\star} \in \arg\min_{g \in \partial_{\delta} f(x_t)} \|g\|$ and $x_{t+1} = x_t - \delta \frac{g_t^{\star}}{\|g_t^{\star}\|}$. Then,

 $f(x_{t+1}) \le f(x_t) - \delta \|g_t^{\star}\|.$

A Goldstein descent step decreases function value by at least δε
 Assuming the initial function error to be Δ...

Goal: Given an *L*-Lipschitz function *f* and accuracy parameters ϵ and δ , find a point *x* such that $\min_{g \in \partial_{\delta} f(x)} \|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)): Let $g_t^{\star} \in \arg\min_{g \in \partial_{\delta} f(x_t)} \|g\|$ and $x_{t+1} = x_t - \delta \frac{g_t^{\star}}{\|g_t^{\star}\|}$. Then,

 $f(x_{t+1}) \le f(x_t) - \delta \|g_t^\star\|.$

- A Goldstein descent step decreases function value by at least δε
 Assuming the initial function error to be Δ...
 - ... guarantees a (δ,ϵ) -stationary point in $oldsymbol{O}\left(rac{\Delta}{\delta\epsilon}
 ight)$ iterations.

Goal: Given an *L*-Lipschitz function *f* and accuracy parameters ϵ and δ , find a point *x* such that $\min_{g \in \partial_{\delta} f(x)} \|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)**)**: Let $g_t^{\star} \in \arg \min_{g \in \partial_{\delta} f(x_t)} \|g\|$ and $x_{t+1} = x_t - \delta \frac{g_t^{\star}}{\|g_t^{\star}\|}$. Then,

 $f(x_{t+1}) \le f(x_t) - \delta \|g_t^\star\|.$

► A Goldstein descent step decreases function value by at least δε
 ► Assuming the initial function error to be Δ...

▶ ... guarantees a $(\delta_{\gamma} \epsilon)$ -stationary point in $O\left(\frac{\Delta}{\delta \epsilon}\right)$ iterations.

requires $\arg\min_{g\in\partial_{\delta}f(x)}\|g\|$

A General Algorithmic Framework

Goal: Given an *L*-Lipschitz function f and accuracy parameters ϵ and δ , find a point x such that $\min_{g \in \partial_{\delta} f(x)} \|g\| \leq \epsilon$.

Goldstein's Conceptual Descent Algorithm (Goldstein (1977)**)**: Let $g_t^{\star} \in \arg \min_{g \in \partial_{\delta} f(x_t)} \|g\|$ and $x_{t+1} = x_t - \delta \frac{g_t^{\star}}{\|g_t^{\star}\|}$. Then,

 $f(x_{t+1}) \le f(x_t) - \delta ||g_t^{\star}||.$

A Goldstein descent step decreases function value by at least δε
 Assuming the initial function error to be Δ...
 guarantees a (δ c) stationary point in O (Δ) iterations

• ... guarantees a (δ, ϵ) -stationary point in $O\left(\frac{\Delta}{\delta\epsilon}\right)$ iterations.

Central Technical Question:

How to compute $\arg\min_{g\in\partial_{\delta}f(x)}\|g\|$ using a first-order oracle?

Towards a Min-Norm Element: A Sketch

$$\begin{split} \text{Suppose a candidate } g \in \partial_{\delta}f(x) \text{ satisfies} \\ f\left(x - \delta \cdot \frac{g}{\|g\|}\right) \geq f(x) - \frac{\delta}{2} \cdot \|g\|. \end{split}$$

Towards a Min-Norm Element: A Sketch

$$\int f\left(x-\delta rac{g}{\|g\|}
ight)\leq f(x)-\delta\|g\|$$

Goldstein descent

Suppose a candidate $g\in\partial_\delta f(x)$ satisfies

$$f\left(x-\delta\cdot \frac{g}{\|g\|}\right) \ge f(x)-\frac{\delta}{2}\cdot \|g\|.$$

Want to construct $g' \in \partial_{\delta} f(x)$ that is a minimal norm element of $\partial_{\delta} f(x)$

Towards a Min-Norm Element: A Sketch

$$\int f\left(x-\deltarac{g}{\|g\|}
ight)\leq f(x)-\delta\|g\|$$

Goldstein descent

Suppose a candidate $g\in\partial_{\delta}f(x)$ satisfies

$$f\left(x-\delta\cdot \frac{g}{\|g\|}\right) \ge f(x)-\frac{\delta}{2}\cdot \|g\|.$$

Want to construct $g' \in \partial_{\delta} f(x)$ that is a minimal norm element of $\partial_{\delta} f(x)$

Task reduces to finding some $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g \rangle \leq \frac{1}{2} \|g\|^2$.

Towards a Min-Norm Element: A Sketch

$$\int f\left(x-\deltarac{g}{\|g\|}
ight)\leq f(x)-\delta\|g\|$$

Goldstein descent

Suppose a candidate $g\in\partial_{\delta}f(x)$ satisfies

$$f\left(x-\delta\cdot \frac{g}{\|g\|}\right) \ge f(x)-\frac{\delta}{2}\cdot \|g\|.$$

Want to construct $g' \in \partial_{\delta} f(x)$ that is a minimal norm element of $\partial_{\delta} f(x)$

Task reduces to finding some $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g \rangle \leq \frac{1}{2} \|g\|^2$.

Given a vector $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, construct a vector $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g \rangle \leq \frac{1}{2} \|g\|^2$.

"Inner Product Oracle"

Suppose
$$f$$
 were differentiable along $\left[x, x - \delta \cdot \frac{g}{\|g\|}\right]$.

Suppose
$$f$$
 were differentiable along $\left[x,x-\delta\cdotrac{g}{\||g||}
ight]$. Then, we have

Suppose
$$f$$
 were differentiable along $\left[x,x-\delta\cdotrac{g}{\|g\|}
ight]$. Then, we have

Suppose
$$f$$
 were differentiable along $\left[x,x-\delta\cdotrac{g}{\|g\|}
ight]$. Then, we have

$$\frac{1}{2}\|g\| \ge \frac{f(x) - f\left(x - \delta \frac{g}{\|g\|}\right)}{\delta} = \frac{1}{\delta} \int_{\tau=0}^{\delta} \left\langle \nabla f\left(x - \tau \frac{g}{\|g\|}\right), \frac{g}{\|g\|} \right\rangle d\tau.$$
(by above assumption)

Given a vector $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, construct a vector $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g \rangle \leq \frac{1}{2} \|g\|^2$.

Suppose f were differentiable along $\left[x,x-\delta\cdotrac{g}{\|\|g\|}
ight]$. Then, we have

$$\frac{1}{2} \|g\| \ge \frac{f(x) - f\left(x - \delta \frac{g}{\|g\|}\right)}{\delta} = \frac{1}{\delta} \int_{\tau=0}^{\delta} \left\langle \nabla f\left(x - \tau \frac{g}{\|g\|}\right), \frac{g}{\|g\|} \right\rangle d\tau.$$

Thus, a point $y \overset{u.a.r.}{\sim} \left[x, x - \delta \frac{g}{\|g\|} \right]$ satisfies $\mathbb{E} \langle \nabla f(y), g \rangle \leq \frac{1}{2} \|g\|_2^2$.

Given a vector $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, construct a vector $u \in \partial_{\delta} f(x)$ satisfying $\langle u, g \rangle \leq \frac{1}{2} \|g\|^2$.

Suppose f were differentiable along $\left[x,x-\delta\cdotrac{g}{\|\|g\|}
ight]$. Then, we have

$$\frac{1}{2} \|g\| \ge \frac{f(x) - f\left(x - \delta \frac{g}{\|g\|}\right)}{\delta} = \frac{1}{\delta} \int_{\tau=0}^{\delta} \left\langle \nabla f\left(x - \tau \frac{g}{\|g\|}\right), \frac{g}{\|g\|} \right\rangle d\tau.$$

Thus, a point $y \overset{u.a.r.}{\sim} \left[x, x - \delta \frac{g}{\|g\|} \right]$ satisfies $\mathbb{E} \langle \nabla f(y), g \rangle \leq \frac{1}{2} \|g\|_2^2$.

Using randomization, we get this result without the above assumption!

The Idea for Our Algorithm

- We start with the algorithm of Zhang et al (2020)...
 - … interpreting it in the Goldstein descent framework
- and use randomization to replace Zhang et al (2020)'s strong oracle ("ZO") with a standard first-order oracle

First, Zhang et al (2020)'s Algorithm

First, Zhang et al (2020)'s Algorithm

1. for T iterations do:

- Compute
$$g=\mathsf{MINNORM}(x_t,\delta,\epsilon)$$

• Update
$$x_{t+1} = x_t - \delta \frac{g}{\|g\|}$$

2. Return x_T

First, Zhang et al (2020)'s Algorithm

First, Zhang et al (2020)'s Algorithm

1. for T iterations do:

- Compute
$$g=\mathsf{MINNORM}(x_t,\delta,\epsilon)$$

• Update
$$x_{t+1} = x_t - \delta \frac{g}{\|g\|}$$

2. Return x_T

Zhang et al (2020)'s MINNORM(x, δ, ϵ)

1. while $\|g_k\| \ge \epsilon$ and $rac{\delta}{4} \|g_k\| \ge f(x) - f\left(x - \delta rac{g_k}{\|g_k\|}
ight)$, do

- Choose
$$y_k \overset{u.a.r.}{\sim} \left[x, x - \delta rac{g_k}{\|g_k\|}
ight.$$

• Let
$$u_k = \operatorname{ZO}(y_k, g_k)$$

• Update $g_{k+1} = \arg\min_{z \in [g_k, u_k]} ||z||$, and update k = k+1

2. Return g_k

First, Zhang et al (2020)'s Algorithm

1. for T iterations do:

- Compute
$$g=\mathsf{MINNORM}(x_t,\delta,\epsilon)$$

Update
$$x_{t+1} = x_t - \delta \frac{g}{\|g\|}$$

2. Return x_T

Zhang et al (2020)'s MINNORM (x, δ, ϵ) **1. while** $||g_k|| \ge \epsilon$ and $\frac{\delta}{4} ||g_k|| \ge f(x) - f\left(x - \delta \frac{g_k}{||g_k||}\right)$, **do** \blacktriangleright Choose $y_k \stackrel{u.a.r.}{\sim} \left[x, x - \delta \frac{g_k}{||g_k||}\right]$ \blacktriangleright Let $u_k = \mathsf{ZO}(y_k, g_k)$ \triangleright Update $g_{k+1} = \arg\min_{z \in [g_k, u_k]} ||z||$, and update k = k + 1**2.** Return g_k

12/25

Next, Our Algorithm

1. for T iterations do:

$$\blacktriangleright$$
 Compute $g={\sf MINNORM}(x_t,\delta,\epsilon)$

Update
$$x_{t+1} = x_t - \delta \frac{g}{\|g\|}$$

2. Return x_T

Our MINNORM(x, δ, ϵ)

1. while $||g_k|| \ge \epsilon$ and $\frac{\delta}{4}||g_k|| \ge f(x) - f\left(x - \delta \frac{g_k}{||g_k||}\right)$, do

$$\blacktriangleright \text{ Choose } y_k \overset{u.a.r.}{\sim} \left[x, x - \delta \frac{\xi_k}{\|\xi_k\|} \right] \text{ where } \xi_k \overset{u.a.r.}{\sim} B_r(g_k)$$

Let
$$u_k =
abla f(y_k)$$

• Update $g_{k+1} = \arg\min_{z \in [g_k, u_k]} \|z\|$, and update k = k+1

2. Return g_k

Zhang et al (2020)'s algorithm requires the following oracle access:

Zhang et al (2020)'s algorithm requires the following oracle access: given $x, g \in \mathbb{R}^d$, solve the auxiliary convex feasibility problem

find $u\in\partial f(x)$ subject to $\langle u,g
angle =f'(x,g).$

Zhang et al (2020)'s algorithm requires the following oracle access: given $x, g \in \mathbb{R}^d$, solve the auxiliary convex feasibility problem

find $u\in\partial f(x)$ subject to $\langle u,g
angle =f'(x,g).$

▶ The set $\partial f(x)$ could be extremely complicated

Zhang et al (2020)'s algorithm requires the following oracle access: given $x, g \in \mathbb{R}^d$, solve the auxiliary convex feasibility problem

find $\, u \in \partial f(x)\,$ subject to $\, \langle u,g
angle = f'(x,g).$

- ▶ The set $\partial f(x)$ could be extremely complicated
- The chain rule fails for subdifferentials

Analysis of Our Algorithm

Guarantee of Our MinNorm Subroutine

Theorem 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $\{g_\ell\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \ge 0$, we have $\mathbb{E}[\|g_k\|^2 \mathbf{1}_{\tau > k}] \le \frac{L^2}{1+k}$.

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $\{g_\ell\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}[\|g_k\|^2 \mathbf{1}_{\tau > k}] \leq \frac{L^2}{1+k}$.

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $\{g_\ell\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}[\|g_k\|^2 \mathbf{1}_{\tau > k}] \leq \frac{L^2}{1+k}$.

Proof. Let $\widehat{u} := u/\|u\|$; Then, almost surely, conditioned on g_k , we have:

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $\{g_\ell\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}[\|g_k\|^2 \mathbf{1}_{\tau > k}] \leq \frac{L^2}{1+k}$.

Proof. Let $\hat{u} := u/||u||$; Then, almost surely, conditioned on g_k , we have: $\frac{1}{2}||g_k|| \ge \frac{1}{\delta} [f(x) - f(x - \delta \widehat{g}_k)]$ since Goldstein descent not satisfied

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $\{g_\ell\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}[\|g_k\|^2 \mathbf{1}_{\tau > k}] \leq \frac{L^2}{1+k}$.

Proof. Let $\widehat{u} := u/||u||$; Then, almost surely, conditioned on g_k , we have: $\frac{1}{2}||g_k|| \ge \frac{1}{\delta}[f(x) - f(x - \delta \widehat{g_k})] \ge \frac{1}{\delta}[f(x) - f(x - \delta \widehat{\xi_k})] - L||\widehat{g}_k - \widehat{\xi}_k||$ *L*-Lipschitzness

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $\{g_\ell\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}[\|g_k\|^2 \mathbf{1}_{\tau > k}] \leq \frac{L^2}{1+k}$.

Proof. Let $\widehat{u} := u/||u||$; Then, almost surely, conditioned on g_k , we have: $\frac{1}{2}||g_k|| \ge \frac{1}{\delta}[f(x) - f(x - \delta\widehat{g}_k)] \ge \frac{1}{\delta}[f(x) - f(x - \delta\widehat{\xi}_k)] - L||\widehat{g}_k - \widehat{\xi}_k||$ $= \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s\widehat{\xi}_k), \widehat{\xi}_k \rangle ds - L||\widehat{g}_k - \widehat{\xi}_k||$ by randomization and fundamental thm. of calc.

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $\{g_\ell\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}[\|g_k\|^2 \mathbf{1}_{\tau > k}] \leq \frac{L^2}{1+k}$.

$$\begin{split} & \frac{2}{2} \|g_k\| \geq \frac{1}{\delta} [f(x) - f(x - \delta \widehat{g}_k)] \geq \frac{1}{\delta} [f(x) - f(x - \delta \widehat{\xi}_k)] - L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &= \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{\xi}_k \rangle ds - L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\geq \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k \rangle ds - 2L \|\widehat{g}_k \| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k \rangle ds - 2L \|\widehat{g}_k \| \\ &\stackrel{k}{\longrightarrow} \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k \rangle ds - 2L \|\widehat{g}_k \| \\ &\stackrel{k$$

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $\{g_\ell\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}[\|g_k\|^2 \mathbf{1}_{\tau > k}] \leq \frac{L^2}{1+k}$.

Proof. Let $\hat{u} := u/||u||$; Then, almost surely, conditioned on g_k , we have: $\frac{1}{2}||g_k|| \ge \frac{1}{\delta}[f(x) - f(x - \delta \widehat{g}_k)] \ge \frac{1}{\delta}[f(x) - f(x - \delta \widehat{\xi}_k)] - L||\widehat{g}_k - \widehat{\xi}_k||$ $= \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s\widehat{\xi}_k), \widehat{\xi}_k \rangle ds - L||\widehat{g}_k - \widehat{\xi}_k||$ $\ge \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s\widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L||\widehat{g}_k - \widehat{\xi}_k||$ definition of y_k $= \mathbb{E}_k \langle \nabla f(y_k), \widehat{g}_k \rangle - 2L||\widehat{g}_k - \widehat{\xi}_k||.$

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $\{g_\ell\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}[\|g_k\|^2 \mathbf{1}_{\tau > k}] \leq \frac{L^2}{1+k}$.

$$\begin{split} & \frac{\operatorname{Proof.} \operatorname{Let} \widehat{u} := u/\|u\|; \text{Then, almost surely, conditioned on } g_k \text{, we have:} \\ & \frac{1}{2} \|g_k\| \ge \frac{1}{\delta} [f(x) - f(x - \delta \widehat{g}_k)] \ge \frac{1}{\delta} [f(x) - f(x - \delta \widehat{\xi}_k)] - L \|\widehat{g}_k - \widehat{\xi}_k\| \\ & = \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{\xi}_k \rangle ds - L \|\widehat{g}_k - \widehat{\xi}_k\| \\ & \ge \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ & = \mathbb{E}_k \langle \nabla f(y_k), \widehat{g}_k \rangle - 2L \|\widehat{g}_k - \widehat{\xi}_k\|. \end{split}$$

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $\{g_\ell\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}[\|g_k\|^2 \mathbf{1}_{\tau > k}] \leq \frac{L^2}{1+k}$.

$$\begin{split} & \frac{1}{2} \|g_k\| \geq \frac{1}{\delta} [f(x) - f(x - \delta \widehat{g}_k)] \geq \frac{1}{\delta} [f(x) - f(x - \delta \widehat{\xi}_k)] - L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &= \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{\xi}_k \rangle ds - L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &\geq \frac{1}{\delta} \int_{s=0}^{\delta} \langle \nabla f(x - s \widehat{\xi}_k), \widehat{g}_k \rangle ds - 2L \|\widehat{g}_k - \widehat{\xi}_k\| \\ &= \mathbb{E}_k \langle \nabla f(y_k), \widehat{g}_k \rangle - 2L \|\widehat{g}_k - \widehat{\xi}_k\|. \end{split}$$

This matches the requirement for $u \in \partial_{\delta} f(x)$ with $\langle u, g \rangle \leq \frac{1}{2} \|g\|^2$.

Theorem 3: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $\{g_\ell\}$ be generated by $\operatorname{MinNorm}(x, \delta, \epsilon)$, and let τ be its termination time. Then, for a fixed $k \geq 0$, we have $\mathbb{E}[\|g_k\|^2 \mathbf{1}_{\tau > k}] \leq \frac{L^2}{1+k}$.

Proof. Let $\hat{u} := u/||u||$; Then, almost surely, conditioned on g_k , we have: Inner Product Oracle This matches the requirement for $u \in \partial_{\delta} f(x)$ with $\langle u, g \rangle \leq \frac{1}{2} ||g||^2$.

Our Main Result: Formal Statement

Theorem 4: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an *L*-Lipschitz function f, fix an initial point $x_0 \in \mathbb{R}^d$, and define $f(x_0) - \inf_x f(x)$. Then, with probability $1 - \gamma$, our algorithm returns x_T satisfying $\min_{g \in \partial_{\delta} f(x_T)} \|g\| \le \epsilon$ in at most

 $\lceil \frac{4\Delta}{\delta \epsilon} \rceil \cdot \lceil \frac{64L^2}{\epsilon^2} \rceil \cdot \lceil 2 \log \left(\frac{4\Delta}{\gamma \delta \epsilon} \right) \rceil \text{ function-value and gradient evaluations.}$

Our Main Result: Formal Statement

Theorem 4: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an *L*-Lipschitz function f, fix an initial point $x_0 \in \mathbb{R}^d$, and define $f(x_0) - \inf_x f(x)$. Then, with probability $1 - \gamma$, our algorithm returns x_T satisfying $\min_{g \in \partial_{\delta} f(x_T)} \|g\| \le \epsilon$ in at most

 $\lceil \frac{4\Delta}{\delta \epsilon} \rceil \cdot \lceil \frac{64L^2}{\epsilon^2} \rceil \cdot \lceil 2 \log \left(\frac{4\Delta}{\gamma \delta \epsilon} \right) \rceil \text{ function-value and gradient evaluations.}$

Goldstein descent iterations

Our Main Result: Formal Statement

Theorem 4: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an *L*-Lipschitz function f, fix an initial point $x_0 \in \mathbb{R}^d$, and define $f(x_0) - \inf_x f(x)$. Then, with probability $1 - \gamma$, our algorithm returns x_T satisfying $\min_{g \in \partial_{\delta} f(x_T)} \|g\| \le \epsilon$ in at most

 $\lceil \frac{4\Delta}{\delta\epsilon} \rceil \cdot \lceil \frac{64L^2}{\epsilon^2} \rceil \cdot \lceil 2 \log\left(\frac{4\Delta}{\gamma\delta\epsilon}\right) \rceil$ function-value and gradient evaluations.

Goldstein descent iterations MinNorm iterations

Our Second Question in this Thread

Recall that $g \in \partial_{\delta} f(x)$ satisfies the descent condition at x if

$$f\left(x-\delta\frac{g}{\|g\|}\right) \le f(x)-\frac{\delta\epsilon}{3}.$$

Recall that $g \in \partial_{\delta} f(x)$ satisfies the descent condition at x if

$$f\left(x-\delta\frac{g}{\|g\|}\right) \le f(x)-\frac{\delta\epsilon}{3}.$$

If not, the Inner Product Oracle outputs $u\in\partial_{\delta}f(x)$ such that

$$\langle u,g\rangle \leq \frac{\epsilon}{3} \|g\|.$$

Recall that $g\in\partial_\delta f(x)$ satisfies the descent condition at x if

$$f\left(x-\delta\frac{g}{\|g\|}\right) \le f(x)-\frac{\delta\epsilon}{3}.$$

<mark>If not</mark>, the Inner Product Oracle outputs $u\in\partial_{\delta}f(x)$ such that

$$\langle u,g\rangle \leq \frac{\epsilon}{3} \|g\|.$$

This vector u is combined with g to generate a vector that either corresponds to the desired stationarity or is a descent direction

Recall that $g\in\partial_\delta f(x)$ satisfies the descent condition at x if

$$f\left(x-\delta\frac{g}{\|g\|}\right) \le f(x)-\frac{\delta\epsilon}{3}.$$

<mark>If not</mark>, the Inner Product Oracle outputs $u\in\partial_{\delta}f(x)$ such that

$$\langle u,g\rangle \leq \frac{\epsilon}{3} \|g\|.$$

This vector u is combined with g to generate a vector that either corresponds to the desired stationarity or is a descent direction

Are there settings in which we can use the vector u more efficiently?

Our Main Idea

Recall that given $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, we can output $u \in \partial_{\delta} f(x)$ such that $\langle u, g \rangle \leq \frac{\epsilon}{2} ||g||$.

Inner Product Oracle

Our Main Idea

Recall that given $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, we can output $u \in \partial_{\delta} f(x)$ such that $\langle u, g \rangle \leq \frac{\epsilon}{2} ||g||$.

Inner Product Oracle

Our Key Insight.

The above oracle is essentially the gradient oracle of the MinNorm element problem.

Our Main Idea

Recall that given $g \in \partial_{\delta} f(x)$ not satisfying the descent condition, we can output $u \in \partial_{\delta} f(x)$ such that $\langle u, g \rangle \leq \frac{\epsilon}{2} ||g||$.

Inner Product Oracle

Our Key Insight.

The above oracle is essentially the gradient oracle of the MinNorm element problem. We can therefore use it in a cutting-plane method.

Notation Denote $Q := \partial_{\delta} f(x)$; and $\widehat{x} := x/\|x\|$ for some vector x

Notation Denote $Q:=\partial_{\delta}f(x)$; and $\widehat{x}:=x/\|x\|$ for some vector x

Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $g \in Q$ be a vector not satisfying the descent condition, and let $u \in Q$ be the output of the inner product oracle. Let $g_Q^{\star} \in \min_{g \in Q} \|g\| \ge \epsilon/2$. Then, $\widehat{g_Q^{\star}} \in \{w \in \mathbb{R}^d : \langle u, \widehat{g} - w \rangle \le 0\}$.

Notation Denote $Q:=\partial_{\delta}f(x)$; and $\widehat{x}:=x/\|x\|$ for some vector x

Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $g \in Q$ be a vector not satisfying the descent condition, and let $u \in Q$ be the output of the inner product oracle. Let $g_Q^{\star} \in \min_{g \in Q} \|g\| \ge \epsilon/2$. Then, $\widehat{g_Q^{\star}} \in \{w \in \mathbb{R}^d : \langle u, \widehat{g} - w \rangle \le 0\}$.

Proof Combining the above definitions and a technical lemma gives:

Notation Denote $Q:=\partial_{\delta}f(x)$; and $\widehat{x}:=x/\|x\|$ for some vector x

Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $g \in Q$ be a vector not satisfying the descent condition, and let $u \in Q$ be the output of the inner product oracle. Let $g_Q^{\star} \in \min_{g \in Q} \|g\| \ge \epsilon/2$. Then, $\widehat{g_Q^{\star}} \in \{w \in \mathbb{R}^d : \langle u, \widehat{g} - w \rangle \le 0\}$.

Proof Combining the above definitions and a technical lemma gives:

The inner product oracle guarantees:

$$\langle u, \widehat{g} \rangle \leq \frac{\epsilon}{2}$$

Notation Denote $Q:=\partial_{\delta}f(x)$; and $\widehat{x}:=x/\|x\|$ for some vector x

Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $g \in Q$ be a vector not satisfying the descent condition, and let $u \in Q$ be the output of the inner product oracle. Let $g_Q^{\star} \in \min_{g \in Q} \|g\| \ge \epsilon/2$. Then, $\widehat{g_Q^{\star}} \in \{w \in \mathbb{R}^d : \langle u, \widehat{g} - w \rangle \le 0\}$.

Proof Combining the above definitions and a technical lemma gives:

The inner product oracle guarantees:

$$\langle u, \widehat{g} \rangle \leq \frac{\epsilon}{2}$$

The technical lemma (extra slide) shows:

$$\left\langle u, \widehat{g_Q^\star} \right\rangle \geq \|g_Q^\star\|$$

Notation Denote $Q:=\partial_{\delta}f(x)$; and $\widehat{x}:=x/\|x\|$ for some vector x

Lemma 1: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $g \in Q$ be a vector not satisfying the descent condition, and let $u \in Q$ be the output of the inner product oracle. Let $g_Q^{\star} \in \min_{g \in Q} \|g\| \ge \epsilon/2$. Then, $\widehat{g_Q^{\star}} \in \{w \in \mathbb{R}^d : \langle u, \widehat{g} - w \rangle \le 0\}$.

Proof Combining the above definitions and a technical lemma gives:

The inner product oracle guarantees:

$$\langle u, \widehat{g} \rangle \leq \frac{\epsilon}{2}$$

The technical lemma (extra slide) shows: $\langle u, \widehat{g_Q^\star} \rangle \geq \|g_Q^\star\|$

Combining these two inequalities yields:

$$\boxed{\langle u, \widehat{g} - \widehat{g_Q^\star} \rangle \le \frac{\epsilon}{2} - \|g_Q^\star\| \le \frac{\epsilon}{2}}$$

Theorem 5: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an L-Lipschitz function f. Fix an initial point $x_0 \in \mathbb{R}^d$, and define $f(x_0) - \inf_x f(x)$. Then, with probability $1 - \gamma$, our algorithm returns x_T satisfying $\min_{g \in \partial_\delta f(x_T)} \|g\| \le \epsilon$ in at most

 $\lceil \frac{4\Delta}{\delta \epsilon} \rceil \cdot \lceil 8d \log \left(\frac{8L}{\epsilon} \right) \rceil \cdot \lceil \frac{36L}{\epsilon} \rceil \text{ function-value and gradient evaluations.}$

Theorem 5: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an *L*-Lipschitz function f. Fix an initial point $x_0 \in \mathbb{R}^d$, and define $f(x_0) - \inf_x f(x)$. Then, with probability $1 - \gamma$, our algorithm returns x_T satisfying $\min_{g \in \partial_\delta f(x_T)} \|g\| \le \epsilon$ in at most

 $\lceil \frac{4\Delta}{\delta\epsilon} \rceil \cdot \lceil 8d \log\left(\frac{8L}{\epsilon}\right) \rceil \cdot \lceil \frac{36L}{\epsilon} \rceil \text{ function-value and gradient evaluations.}$

Goldstein descent iterations

Theorem 5: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an *L*-Lipschitz function f. Fix an initial point $x_0 \in \mathbb{R}^d$, and define $f(x_0) - \inf_x f(x)$. Then, with probability $1 - \gamma$, our algorithm returns x_T satisfying $\min_{g \in \partial_\delta f(x_T)} \|g\| \le \epsilon$ in at most

 $\begin{bmatrix} \frac{4\Delta}{\delta\epsilon} \\ \cdot \begin{bmatrix} 8d \log\left(\frac{8L}{\epsilon}\right) \\ \cdot \begin{bmatrix} \frac{36L}{\epsilon} \end{bmatrix} \end{bmatrix} \text{ function-value and gradient evaluations.}$

Theorem 5: (Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Given an *L*-Lipschitz function f. Fix an initial point $x_0 \in \mathbb{R}^d$, and define $f(x_0) - \inf_x f(x)$. Then, with probability $1 - \gamma$, our algorithm returns x_T satisfying $\min_{g \in \partial_\delta f(x_T)} \|g\| \le \epsilon$ in at most

Notation. Let $\phi_Q(v) := \min_{g \in Q} \langle g, v \rangle$; let $\widehat{x} := x/\|x\|$.

Notation. Let $\phi_Q(v) := \min_{g \in Q} \langle g, v \rangle$; let $\widehat{x} := x/||x||$.

Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let $g_Q^\star \in \arg\min_Q \|g\|$. Then, $\widehat{g_Q^\star}$ satisfies two properties:

Notation. Let $\phi_Q(v) := \min_{g \in Q} \langle g, v \rangle$; let $\widehat{x} := x/||x||$.

Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let
$$g_Q^{\star} \in \arg \min_Q \|g\|$$
. Then, $\widehat{g_Q^{\star}}$ satisfies two properties:
 $\langle \widehat{g_Q^{\star}}, g \rangle \ge \|g_Q^{\star}\|$ for all $g \in Q$,
 $\widehat{g_Q^{\star}} = \arg \max_{\|v\| \le 1} \phi_Q(v)$.

Notation. Let
$$\phi_Q(v) := \min_{g \in Q} \langle g, v \rangle$$
; let $\widehat{x} := x/\|x\|$.

Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let
$$g_Q^{\star} \in \arg \min_Q \|g\|$$
. Then, $\widehat{g_Q^{\star}}$ satisfies two properties:
 $\langle \widehat{g_Q^{\star}}, g \rangle \ge \|g_Q^{\star}\|$ for all $g \in Q$,
 $\widehat{g_Q^{\star}} = \arg \max_{\|v\| \le 1} \phi_Q(v)$.

Notation. Let
$$\phi_Q(v) := \min_{g \in Q} \langle g, v \rangle$$
; let $\widehat{x} := x/\|x\|$.

Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let
$$g_Q^{\star} \in \arg \min_Q \|g\|$$
. Then, $\widehat{g_Q^{\star}}$ satisfies two properties
 $\langle \widehat{g_Q^{\star}}, g \rangle \ge \|g_Q^{\star}\|$ for all $g \in Q$,
 $\widehat{g_Q^{\star}} = \arg \max_{\|v\| \le 1} \phi_Q(v)$.

$$\phi(\widehat{g^{\star}}) = \|g^{\star}\|$$
first inequality
& definition of ϕ_Q

Notation. Let
$$\phi_Q(v) := \min_{g \in Q} \langle g, v \rangle$$
; let $\widehat{x} := x/\|x\|$.

Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let
$$g_Q^{\star} \in \arg \min_Q \|g\|$$
. Then, $\widehat{g_Q^{\star}}$ satisfies two properties
 $\langle \widehat{g_Q^{\star}}, g \rangle \ge \|g_Q^{\star}\|$ for all $g \in Q$,
 $\widehat{g_Q^{\star}} = \arg \max_{\|v\| \le 1} \phi_Q(v)$.

$$\phi(\widehat{g^{\star}}) = \|g^{\star}\| = \min_{Q} \|g\|$$

$$\text{definition of } \phi_{Q}$$

Notation. Let
$$\phi_Q(v) := \min_{g \in Q} \langle g, v \rangle$$
; let $\widehat{x} := x/\|x\|$.

Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let
$$g_Q^{\star} \in \arg \min_Q \|g\|$$
. Then, $\widehat{g_Q^{\star}}$ satisfies two properties
 $\langle \widehat{g_Q^{\star}}, g \rangle \ge \|g_Q^{\star}\|$ for all $g \in Q$,
 $\widehat{g_Q^{\star}} = \arg \max_{\|v\| \le 1} \phi_Q(v)$.

$$\phi(\widehat{g^{\star}}) = \|g^{\star}\| = \min_{Q} \|g\| = \min_{Q} \max_{\|v\| \leq 1} \langle g, v \rangle$$
dual representation

Notation. Let
$$\phi_Q(v) := \min_{g \in Q} \langle g, v \rangle$$
; let $\widehat{x} := x/\|x\|$.

Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let
$$g_Q^{\star} \in \arg \min_Q \|g\|$$
. Then, $\widehat{g_Q^{\star}}$ satisfies two properties
 $\langle \widehat{g_Q^{\star}}, g \rangle \ge \|g_Q^{\star}\|$ for all $g \in Q$,
 $\widehat{g_Q^{\star}} = \arg \max_{\|v\| \le 1} \phi_Q(v)$.

$$\phi(\widehat{g^{\star}}) = \|g^{\star}\| = \min_{Q} \|g\| = \min_{Q} \max_{\|v\| \le 1} \langle g, v \rangle = \max_{\|v\| \le 1} \min_{Q} \langle g, v \rangle$$

Notation. Let
$$\phi_Q(v) := \min_{g \in Q} \langle g, v \rangle$$
; let $\widehat{x} := x/\|x\|$.

Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let
$$g_Q^* \in \arg \min_Q \|g\|$$
. Then, $\widehat{g_Q^*}$ satisfies two properties:
 $\langle \widehat{g_Q^*}, g \rangle \ge \|g_Q^*\|$ for all $g \in Q$,
 $\widehat{g_Q^*} = \arg \max_{\|v\| \le 1} \phi_Q(v)$.

$$\phi(\widehat{g^{\star}}) = \|g^{\star}\| = \min_{Q} \|g\| = \min_{Q} \max_{\|v\| \le 1} \langle g, v \rangle = \max_{\|v\| \le 1} \min_{Q} \langle g, v \rangle = \max_{\|v\| \le 1} \phi(v).$$
Definition of ϕ

Notation. Let
$$\phi_Q(v) := \min_{g \in Q} \langle g, v \rangle$$
; let $\widehat{x} := x/\|x\|$.

Lemma 2: (informal; Davis, Drusvyatskiy, Lee, Padmanabhan, Ye; 2022)

Let
$$g_Q^* \in \arg \min_Q \|g\|$$
. Then, $\widehat{g_Q^*}$ satisfies two properties:
 $\langle \widehat{g_Q^*}, g \rangle \ge \|g_Q^*\|$ for all $g \in Q$,
 $\widehat{g_Q^*} = \arg \max_{\|v\| \le 1} \phi_Q(v)$.

$$\phi(\widehat{g^{\star}}) = \|g^{\star}\| = \min_{Q} \|g\| = \min_{Q} \max_{\|v\| \le 1} \langle g, v \rangle = \max_{\|v\| \le 1} \min_{Q} \langle g, v \rangle = \max_{\|v\| \le 1} \phi(v).$$

Takeaways & Future Directions

- 1. A faster algorithm for nonsmooth nonconvex optimization
- 2. Improved (optimal) rates in low dimensions
- 3. Key ideas: randomization; cutting-plane methods

Takeaways & Future Directions

- 1. A faster algorithm for nonsmooth nonconvex optimization
- 2. Improved (optimal) rates in low dimensions
- 3. Key ideas: randomization; cutting-plane methods
- 4. Future Direction. More practical notions of convergence?

Thank You!

.