Computing Approximate ℓ_p Sensitivities

Joint work with David P. Woodruff², and Richard Q. Zhang³

²Carnegie Mellon University; ³Google DeepMind

October 20, 2023 To appear in NeurIPS 2023

Problem Statement

Motivation

> Approximating a representative set of data points is an important pre-processing step when $n \gg d$

Motivation

- $\blacktriangleright\,$ Approximating a representative set of data points is an important pre-processing step when $n\gg d$
- One approach: uniform sampling

Motivation

- > Approximating a representative set of data points is an important pre-processing step when $n \gg d$
- One approach: uniform sampling
- Perhaps a more principled approach: importance sampling

> Consider the objective: $\min_{\mathbf{x} \in \mathcal{X}} \sum_{i=1}^{n} f_i(\mathbf{x})$

> Consider the objective: $\min_{\mathbf{x} \in \mathcal{X}} \sum_{i=1}^n f_i(\mathbf{x})$

The i^{th} sensitivity score for the above objective is

$$\sigma_i := \max_{\mathbf{x} \in \mathcal{X}} \frac{f_i(\mathbf{x})}{\sum_{j=1}^n f_j(\mathbf{x})}$$

> Consider the objective: $\min_{\mathbf{x} \in \mathcal{X}} \sum_{i=1}^n f_i(\mathbf{x})$

The i^{th} sensitivity score for the above objective is

$$\sigma_i := \max_{\mathbf{x} \in \mathcal{X}} \frac{f_i(\mathbf{x})}{\sum_{j=1}^n f_j(\mathbf{x})}$$

- Sampling $\propto \sigma_i$ preserves the objective in expectation for every $\mathbf{x} \in \mathcal{X}$

- Consider the objective: $\min_{\mathbf{x}\in\mathcal{X}}\sum_{i=1}^n f_i(\mathbf{x})$

The i^{th} sensitivity score for the above objective is

$$\sigma_i := \max_{\mathbf{x} \in \mathcal{X}} \frac{f_i(\mathbf{x})}{\sum_{j=1}^n f_j(\mathbf{x})}$$

Sampling ∝ σ_i preserves the objective in expectation for every x ∈ X
Sampling ∝ ε⁻² 𝔅 functions, where 𝔅 := Σⁿ_{i=1} σ_i, gives a (1 ± ε)-approximation to the objective (Braverman, Feldman, Lang, Statman, Zhou (2016))

- Consider the objective: $\min_{\mathbf{x}\in\mathcal{X}}\sum_{i=1}^n f_i(\mathbf{x})$

The i^{th} sensitivity score for the above objective is

$$\sigma_i := \max_{\mathbf{x} \in \mathcal{X}} \frac{f_i(\mathbf{x})}{\sum_{j=1}^n f_j(\mathbf{x})}$$

ightarrow Sampling $\propto \sigma_i$ preserves the objective in expectation for every $\mathbf{x} \in \mathcal{X}$

- Sampling ∝ ε⁻² 𝔅 functions, where 𝔅 := ∑ⁿ_{i=1} σ_i, gives a (1 ± ε)-approximation to the objective (Braverman, Feldman, Lang, Statman, Zhou (2016))
- Efficient computation of sensitivities less well-studied compared to related quantities like leverage scores and Lewis weights

The i^{th} leverage score of $\mathbf{A} \in \mathbb{R}^{n imes d}$ is defined as

$$\tau(\mathbf{a}_i) := \min_{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}^\top \mathbf{x} = \mathbf{a}_i} \|\mathbf{x}\|_2^2$$

The i^{th} leverage score of $\mathbf{A} \in \mathbb{R}^{n imes d}$ is defined as

$$\tau(\mathbf{a}_i) := \min_{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}^\top \mathbf{x} = \mathbf{a}_i} \|\mathbf{x}\|_2^2$$

Measures the importance of a row in composing the matrix's rowspace

The i^{th} leverage score of $\mathbf{A} \in \mathbb{R}^{n imes d}$ is defined as

$$\tau(\mathbf{a}_i) := \min_{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}^\top \mathbf{x} = \mathbf{a}_i} \|\mathbf{x}\|_2^2$$

Measures the importance of a row in composing the matrix's rowspace

Efficient computation (Cohen, Lee, Musco, Musco, Peng, Sidford (2014))

The i^{th} leverage score of $\mathbf{A} \in \mathbb{R}^{n imes d}$ is defined as

$$\tau(\mathbf{a}_i) := \min_{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}^\top \mathbf{x} = \mathbf{a}_i} \|\mathbf{x}\|_2^2$$

Measures the importance of a row in composing the matrix's rowspace

- Efficient computation (Cohen, Lee, Musco, Musco, Peng, Sidford (2014))
- Leverage scores give optimal sample complexity for ℓ_2 regression (Mahoney (2011))

The i^{th} leverage score of $\mathbf{A} \in \mathbb{R}^{n imes d}$ is defined as

$$\tau(\mathbf{a}_i) := \min_{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}^\top \mathbf{x} = \mathbf{a}_i} \|\mathbf{x}\|_2^2$$

- Measures the importance of a row in composing the matrix's rowspace
- Efficient computation (Cohen, Lee, Musco, Musco, Peng, Sidford (2014))
- Leverage scores give optimal sample complexity for ℓ_2 regression (Mahoney (2011))
- What about for ℓ_p regression?

The
$$i^{ ext{th}}$$
 Lewis weight of $\mathbf{A} \in \mathbb{R}^{n imes d}$ is $\mathbf{w}(\mathbf{a}_i) := au_i(\mathbf{W}^{1/2-1/p}\mathbf{A})$

 Generalizes leverage scores; generalizes John ellipsoid (used in D-optimal design); central to advances in interior point methods

The
$$i^{ ext{th}}$$
 Lewis weight of $\mathbf{A} \in \mathbb{R}^{n imes d}$ is $\mathbf{w}(\mathbf{a}_i) := au_i(\mathbf{W}^{1/2-1/p}\mathbf{A})$

Generalizes leverage scores; generalizes John ellipsoid (used in D-optimal design); central to advances in interior point methods
Efficient computation (Cohen & Peng (2015), Fazel, Lee, P., Sidford (2022))

The
$$i^{ ext{th}}$$
 Lewis weight of $\mathbf{A} \in \mathbb{R}^{n imes d}$ is $\mathbf{w}(\mathbf{a}_i) := au_i(\mathbf{W}^{1/2 - 1/p} \mathbf{A})$

- Generalizes leverage scores; generalizes John ellipsoid (used in D-optimal design); central to advances in interior point methods
- Efficient computation (Cohen & Peng (2015), Fazel, Lee, P., Sidford (2022))
- \blacktriangleright Give better sample complexity than leverage scores for ℓ_p regression

The
$$i^{ ext{th}}$$
 Lewis weight of $\mathbf{A} \in \mathbb{R}^{n imes d}$ is $\mathbf{w}(\mathbf{a}_i) := au_i(\mathbf{W}^{1/2-1/p}\mathbf{A})$

Generalizes leverage scores; generalizes John ellipsoid (used in D-optimal design); central to advances in interior point methods

 \mathbf{A}

- Efficient computation (Cohen & Peng (2015), Fazel, Lee, P., Sidford (2022))
- Give better sample complexity than leverage scores for ℓ_p regression
- Can we do better in practice?

Definition: ℓ_p **Sensitivities**

Leverage scores may alternately be defined as

$$\tau(\mathbf{a}_i) := \mathsf{max}_{\mathbf{x}:\mathbf{A}\mathbf{x}\neq\mathbf{0}} \frac{|\mathbf{a}_i^\top \mathbf{x}|^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

Definition: ℓ_p **Sensitivities**

Leverage scores may alternately be defined as

$$\tau(\mathbf{a}_i) := \mathsf{max}_{\mathbf{x}: \mathbf{A}\mathbf{x} \neq \mathbf{0}} \frac{|\mathbf{a}_i^\top \mathbf{x}|^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

 ℓ_p sensitivities are the values of the following convex program

$$\sigma_p(\mathbf{a}_i) := \max_{\mathbf{x}: \mathbf{A}\mathbf{x} \neq \mathbf{0}} \frac{|\mathbf{a}_i^\top \mathbf{x}|^p}{\|\mathbf{A}\mathbf{x}\|_p^p}$$

Definition: ℓ_p **Sensitivities**

Leverage scores may alternately be defined as

$$\tau(\mathbf{a}_i) := \mathsf{max}_{\mathbf{x}: \mathbf{A}\mathbf{x} \neq \mathbf{0}} \frac{|\mathbf{a}_i^\top \mathbf{x}|^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

 ℓ_p sensitivities are the values of the following convex program

$$\sigma_p(\mathbf{a}_i) := \max_{\mathbf{x}: \mathbf{A}\mathbf{x} \neq \mathbf{0}} \frac{|\mathbf{a}_i^\top \mathbf{x}|^p}{\|\mathbf{A}\mathbf{x}\|_p^p}$$

Introduced by Langberg & Schulman (2010)

Definition: ℓ_p **Sensitivities**

Leverage scores may alternately be defined as

$$\tau(\mathbf{a}_i) := \mathsf{max}_{\mathbf{x}:\mathbf{A}\mathbf{x}\neq\mathbf{0}} \frac{|\mathbf{a}_i^\top \mathbf{x}|^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

 ℓ_p sensitivities are the values of the following convex program

$$\sigma_p(\mathbf{a}_i) := \max_{\mathbf{x}: \mathbf{A}\mathbf{x} \neq \mathbf{0}} \frac{|\mathbf{a}_i^\top \mathbf{x}|^p}{\|\mathbf{A}\mathbf{x}\|_p^p}$$

Introduced by Langberg & Schulman (2010)

Sampling proportional to sensitivities preserves value

Definition: ℓ_p **Sensitivities**

Leverage scores may alternately be defined as

$$\tau(\mathbf{a}_i) := \mathsf{max}_{\mathbf{x}:\mathbf{A}\mathbf{x}\neq\mathbf{0}} \frac{|\mathbf{a}_i^\top \mathbf{x}|^2}{\|\mathbf{A}\mathbf{x}\|_2^2}$$

 ℓ_p sensitivities are the values of the following convex program

$$\sigma_p(\mathbf{a}_i) := \max_{\mathbf{x}: \mathbf{A}\mathbf{x} \neq \mathbf{0}} \frac{|\mathbf{a}_i^\top \mathbf{x}|^p}{\|\mathbf{A}\mathbf{x}\|_p^p}$$

- Introduced by Langberg & Schulman (2010)
- Sampling proportional to sensitivities preserves value
- Total sample complexity proportional to total sensitivity

- Applications:
 - shape-fitting (Varadarajan & Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))

- Applications:
 - shape-fitting (Varadarajan & Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
 - clustering (Feldman & Langberg (2011); Bachem, Lucic, Krause (2015))

Applications:

- shape-fitting (Varadarajan & Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
- clustering (Feldman & Langberg (2011); Bachem, Lucic, Krause (2015))
- regression (Huggins, Campbell, Broderick (2016); Munteanu, Schwiegelshohn, Sohler, Woodruff (2018))

Applications:

- shape-fitting (Varadarajan & Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
- clustering (Feldman & Langberg (2011); Bachem, Lucic, Krause (2015))
- regression (Huggins, Campbell, Broderick (2016); Munteanu, Schwiegelshohn, Sohler, Woodruff (2018))
- pruning of deep neural networks (Liebenwein, Baykal, Lang, Feldman, Rus (2019), Tukan, Mualen, Maalouf (2022), Mussay, Feldman, Zhou, Braverman, Osadchy (2021))

Applications:

- shape-fitting (Varadarajan & Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
- clustering (Feldman & Langberg (2011); Bachem, Lucic, Krause (2015))
- regression (Huggins, Campbell, Broderick (2016); Munteanu, Schwiegelshohn, Sohler, Woodruff (2018))
- pruning of deep neural networks (Liebenwein, Baykal, Lang, Feldman, Rus (2019), Tukan, Mualen, Maalouf (2022), Mussay, Feldman, Zhou, Braverman, Osadchy (2021))
- Superior to Lewis weights sampling in practical regimes

Applications:

- shape-fitting (Varadarajan & Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
- clustering (Feldman & Langberg (2011); Bachem, Lucic, Krause (2015))
- regression (Huggins, Campbell, Broderick (2016); Munteanu, Schwiegelshohn, Sohler, Woodruff (2018))
- pruning of deep neural networks (Liebenwein, Baykal, Lang, Feldman, Rus (2019), Tukan, Mualen, Maalouf (2022), Mussay, Feldman, Zhou, Braverman, Osadchy (2021))
- > Superior to Lewis weights sampling in practical regimes
 - when the total sensitivity is low (Woodruff & Yasuda (2023))

- Applications:
 - shape-fitting (Varadarajan & Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
 - clustering (Feldman & Langberg (2011); Bachem, Lucic, Krause (2015))
 - regression (Huggins, Campbell, Broderick (2016); Munteanu, Schwiegelshohn, Sohler, Woodruff (2018))
 - pruning of deep neural networks (Liebenwein, Baykal, Lang, Feldman, Rus (2019), Tukan, Mualen, Maalouf (2022), Mussay, Feldman, Zhou, Braverman, Osadchy (2021))
- Superior to Lewis weights sampling in practical regimes
 - when the total sensitivity is low (Woodruff & Yasuda (2023))
 - structured matrices like sparse/low-rank/combinations (Meyer, Musco, Musco, Woodruff, Zhou (2022))

Our Goal

Fast algorithms to approximate various functions of sensitivities

Our Goal

Fast algorithms to approximate various functions of sensitivities

- All sensitivities
- The total sensitivity
- The maximum sensitivity
Our Goal

Fast algorithms to approximate various functions of sensitivities

- All sensitivities
- The total sensitivity
- The maximum sensitivity

Runtime measured in number of sensitivity computations

I. Approximating All ℓ_1 Sensitivities

First Result: Estimating All ℓ_p Sensitivities

Theorem 1: Estimating All ℓ_1 Sensitivities

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\alpha \ge 1$, we compute a vector $\widetilde{\sigma} \in \mathbb{R}^n$ such that, with high probability, for each $i \in [n]$,

 $\sigma_1(\mathbf{a}_i) \le \widetilde{\sigma}_i \le O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A})).$

Our runtime is $\widetilde{O}(\mathbf{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega})$.

First Result: Estimating All ℓ_p Sensitivities

Theorem 1: Estimating All ℓ_1 Sensitivities

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\alpha \ge 1$, we compute a vector $\widetilde{\sigma} \in \mathbb{R}^n$ such that, with high probability, for each $i \in [n]$,

 $\sigma_1(\mathbf{a}_i) \le \widetilde{\sigma}_i \le O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A})).$

Our runtime is $\widetilde{O}(\mathbf{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega})$.

Extension to $p \ge 1$:

First Result: Estimating All ℓ_p Sensitivities

Theorem 1: Estimating All ℓ_1 Sensitivities

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\alpha \ge 1$, we compute a vector $\widetilde{\sigma} \in \mathbb{R}^n$ such that, with high probability, for each $i \in [n]$,

 $\sigma_1(\mathbf{a}_i) \le \widetilde{\sigma}_i \le O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A})).$

Our runtime is $\widetilde{O}(\mathbf{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega})$.

Extension to $p \ge 1$:

$$\blacktriangleright \text{ Guarantee: } \sigma_p(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O\left(\alpha^{p-1}\sigma_p(\mathbf{a}_i) + \frac{\alpha^p}{n}\mathfrak{S}_p(\mathbf{A})\right)$$

► Cost: $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot \mathcal{C}(d^{p/2}, d, p)\right)$

cost of ℓ_p regression on a $d^{p/2} \times d$ matrix

Our Algorithm: All ℓ_1 Sensitivities

- 1. Compute $\mathbf{SA} \in \mathbb{R}^{\widetilde{O}(d) imes d}$, an ℓ_1 subspace embedding of \mathbf{A}
- 2. Partition ${f A}$ into ${n\over lpha}$ random blocks ${f B}_1, {f B}_2, \ldots, {f B}_{n/lpha}$
- 3. Hash each block \mathbf{B}_i into 100 rows
- 4. Let $\mathbf{P} \in \mathbb{R}^{100\frac{n}{\alpha} \times d}$ be the matrix of the all the n/α hashed rows from step 4. Compute $\sigma_1^{\mathbf{SA}}(\mathbf{P})$
- 5. For i = 1, 2, 3, ..., n iterations, do:
 - Let J be the rows in ${f P}$ that ${f a}_i$ is mapped to in step 4

• Set
$$\widetilde{\sigma}_i := \max_{j \in J} \sigma_1^{\mathbf{SA}}(\mathbf{p}_j)$$

6. Return $\widetilde{\sigma}$

$$\left(\max_{\mathbf{x}:\mathbf{A}\mathbf{x}\neq\mathbf{0}}\frac{|\mathbf{a}_i^{\top}\mathbf{x}|}{\|\mathbf{S}\mathbf{A}\mathbf{x}\|_1}\right)$$

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

$$\sigma_{1}^{\mathbf{SA}}(\mathbf{p}_{j}) = \max_{\mathbf{x} \in \mathbb{R}^{d}} \frac{|\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell} \mathbf{x}|}{\|\mathbf{SAx}\|_{1}} \geq \frac{|\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell} \mathbf{x}^{*}|}{\|\mathbf{SAx}^{*}\|_{1}} \approx \frac{|\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell} \mathbf{x}^{*}|}{\|\mathbf{Ax}^{*}\|_{1}} \geq \Theta(1) \frac{|\mathbf{a}_{i}^{\top} \mathbf{x}^{*}|}{\|\mathbf{Ax}^{*}\|_{1}}$$
$$(\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell} \mathbf{x}^{*}| = |\mathbf{r}_{k,i} \mathbf{a}_{i}^{\top} \mathbf{x}^{*} + \sum_{j \neq i} \mathbf{r}_{k,j} (\mathbf{B}_{\ell} \mathbf{x}^{*})_{j}|}{\geq |\mathbf{a}_{i}^{\top} \mathbf{x}^{*}|} \text{ with a probability at least } 1/2$$

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

$$\sigma_1^{\mathbf{SA}}(\mathbf{p}_j) = \max_{\mathbf{x} \in \mathbb{R}^d} \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}|}{\|\mathbf{SAx}\|_1} \ge \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{SAx}^*\|_1} \approx \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \Theta(1) \frac{|\mathbf{a}_i^\top \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \sigma_1(\mathbf{a}_i)$$

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

$$\sigma_1^{\mathbf{SA}}(\mathbf{p}_j) = \max_{\mathbf{x} \in \mathbb{R}^d} \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}|}{\|\mathbf{SAx}\|_1} \ge \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{SAx}^*\|_1} \approx \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \Theta(1) \frac{|\mathbf{a}_i^\top \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \sigma_1(\mathbf{a}_i)$$

$$\sigma_1^{\mathbf{SA}}(\mathbf{p}_j) = \max_{\mathbf{x} \in \mathbb{R}^d} \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}|}{\|\mathbf{SAx}\|_1}$$

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

$$\sigma_1^{\mathbf{SA}}(\mathbf{p}_j) = \max_{\mathbf{x} \in \mathbb{R}^d} \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}|}{\|\mathbf{SAx}\|_1} \ge \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{SAx}^*\|_1} \approx \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \Theta(1) \frac{|\mathbf{a}_i^\top \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \sigma_1(\mathbf{a}_i)$$

$$\sigma_{1}^{\mathbf{SA}}(\mathbf{p}_{j}) = \max_{\mathbf{x} \in \mathbb{R}^{d}} \frac{|\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell} \mathbf{x}|}{\|\mathbf{SAx}\|_{1}} \leq \max_{\mathbf{x} \in \mathbb{R}^{d}} \frac{\|\mathbf{B}_{\ell} \mathbf{x}\|_{1}}{\|\mathbf{SAx}\|_{1}}$$
Hölder inequality

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

$$\sigma_1^{\mathbf{SA}}(\mathbf{p}_j) = \max_{\mathbf{x} \in \mathbb{R}^d} \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}|}{\|\mathbf{SAx}\|_1} \ge \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{SAx}^*\|_1} \approx \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \Theta(1) \frac{|\mathbf{a}_i^\top \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \sigma_1(\mathbf{a}_i)$$

$$\sigma_{1}^{\mathbf{SA}}(\mathbf{p}_{j}) = \max_{\mathbf{x} \in \mathbb{R}^{d}} \frac{|\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell} \mathbf{x}|}{\|\mathbf{SAx}\|_{1}} \leq \max_{\mathbf{x} \in \mathbb{R}^{d}} \frac{\|\mathbf{B}_{\ell} \mathbf{x}\|_{1}}{\|\mathbf{SAx}\|_{1}} \approx \max_{\mathbf{x} \in \mathbb{R}^{d}} \frac{\|\mathbf{B}_{\ell} \mathbf{x}\|_{1}}{\|\mathbf{Ax}\|_{1}}$$

since **SA** is
a subspace embedding

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

$$\sigma_1^{\mathbf{SA}}(\mathbf{p}_j) = \max_{\mathbf{x} \in \mathbb{R}^d} \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}|}{\|\mathbf{SAx}\|_1} \ge \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{SAx}^*\|_1} \approx \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \Theta(1) \frac{|\mathbf{a}_i^\top \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \sigma_1(\mathbf{a}_i)$$

$$\sigma_{1}^{\mathbf{SA}}(\mathbf{p}_{j}) = \max_{\mathbf{x} \in \mathbb{R}^{d}} \frac{|\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell} \mathbf{x}|}{\|\mathbf{SAx}\|_{1}} \leq \max_{\mathbf{x} \in \mathbb{R}^{d}} \frac{\|\mathbf{B}_{\ell} \mathbf{x}\|_{1}}{\|\mathbf{SAx}\|_{1}} \approx \max_{\mathbf{x} \in \mathbb{R}^{d}} \frac{\|\mathbf{B}_{\ell} \mathbf{x}\|_{1}}{\|\mathbf{Ax}\|_{1}} \leq \sum_{j: \mathbf{a}_{j} \in \mathbf{B}_{\ell}} \sigma_{1}(\mathbf{a}_{i})$$
(expanding $\|\mathbf{B}_{\ell} \mathbf{x}\|_{1}$)

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

$$\sigma_1^{\mathbf{SA}}(\mathbf{p}_j) = \max_{\mathbf{x} \in \mathbb{R}^d} \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}|}{\|\mathbf{SAx}\|_1} \ge \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{SAx}^*\|_1} \approx \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \Theta(1) \frac{|\mathbf{a}_i^\top \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \sigma_1(\mathbf{a}_i)$$

$$\sigma_1^{\mathbf{SA}}(\mathbf{p}_j) = \max_{\mathbf{x} \in \mathbb{R}^d} \frac{\|\mathbf{r}_k^\top \mathbf{B}_{\ell} \mathbf{x}\|}{\|\mathbf{SAx}\|_1} \le \max_{\mathbf{x} \in \mathbb{R}^d} \frac{\|\mathbf{B}_{\ell} \mathbf{x}\|_1}{\|\mathbf{SAx}\|_1} \approx \max_{\mathbf{x} \in \mathbb{R}^d} \frac{\|\mathbf{B}_{\ell} \mathbf{x}\|_1}{\|\mathbf{Ax}\|_1} \le \sum_{j: \mathbf{a}_j \in \mathbf{B}_{\ell}} \sigma_1(\mathbf{a}_i)$$
apply Markov to finish

Proof Sketch: Estimating All ℓ_1 **Sensitivities**

Theorem 1 (Informal): Estimating All ℓ_1 Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_1(\mathbf{a}_i) \leq \widetilde{\sigma}_i \leq O(\sigma_1(\mathbf{a}_i) + \frac{\alpha}{n}\mathfrak{S}_1(\mathbf{A}))$ for all $i \in [n]$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

$$\sigma_1^{\mathbf{SA}}(\mathbf{p}_j) = \max_{\mathbf{x} \in \mathbb{R}^d} \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}|}{\|\mathbf{SAx}\|_1} \ge \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{SAx}^*\|_1} \approx \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \Theta(1) \frac{|\mathbf{a}_i^\top \mathbf{x}^*|}{\|\mathbf{Ax}^*\|_1} \ge \sigma_1(\mathbf{a}_i)$$

$$\sigma_1^{\mathbf{SA}}(\mathbf{p}_j) = \max_{\mathbf{x} \in \mathbb{R}^d} \frac{|\mathbf{r}_k^\top \mathbf{B}_\ell \mathbf{x}|}{\|\mathbf{SAx}\|_1} \leq \max_{\mathbf{x} \in \mathbb{R}^d} \frac{\|\mathbf{B}_\ell \mathbf{x}\|_1}{\|\mathbf{SAx}\|_1} \approx \max_{\mathbf{x} \in \mathbb{R}^d} \frac{\|\mathbf{B}_\ell \mathbf{x}\|_1}{\|\mathbf{Ax}\|_1} \leq \sum_{j: \mathbf{a}_j \in \mathbf{B}_\ell} \sigma_1(\mathbf{a}_i)$$

Runtime: cost of computing n/α sensitivities w.r.t. $\mathbf{SA} \in \mathbb{R}^{d \times d}$.

Estimating All ℓ_p Sensitivities: Key Takeaway

Our computed sensitivities are approximate

Estimating All ℓ_p Sensitivities: Key Takeaway

- Our computed sensitivities are approximate
- Still, when compared to *true* sensitivities, they preserve l_p regression approximation guarantees well enough while increasing sample complexity by only a small amount

Estimating All ℓ_p Sensitivities: Key Takeaway

- Our computed sensitivities are approximate
- Still, when compared to *true* sensitivities, they preserve ℓ_p regression approximation guarantees well enough while increasing sample complexity by only a small amount
- Further, the increased sample complexity (due to approximate sensitivities) is still much lower than that due to Lewis weights

II. Approximating the Sum of ℓ_p Sensitivities

Estimating the Total ℓ_p Sensitivity

Theorem 2: Estimating Total ℓ_p Sensitivity

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\gamma \in (0,1)$, we compute a scalar $\tilde{\sigma}$ such that, with high probability,

 $\mathfrak{S}_p(\mathbf{A}) \leq \widetilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}).$

Our runtime is $\widetilde{O}\left(\mathbf{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)\right)$.

Estimating the Total ℓ_p Sensitivity

Theorem 2: Estimating Total ℓ_p Sensitivity

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\gamma \in (0,1)$, we compute a scalar $\tilde{\sigma}$ such that, with high probability,

 $\mathfrak{S}_p(\mathbf{A}) \le \widetilde{\sigma} \le (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}).$

Our runtime is $\widetilde{O}\left(\mathbf{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)},d,p)\right)$.

- Techniques used: importance sampling of ℓ_p Lewis weights

Estimating the Total ℓ_p Sensitivity

Theorem 2: Estimating Total ℓ_p Sensitivity

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\gamma \in (0,1)$, we compute a scalar $\tilde{\sigma}$ such that, with high probability,

 $\mathfrak{S}_p(\mathbf{A}) \leq \widetilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}).$ Our runtime is $\widetilde{O}\left(\mathbf{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)\right).$

 \blacktriangleright Techniques used: importance sampling of ℓ_p Lewis weights

For p = 1, we have a recursive algorithm using only leverage scores

Our Algorithm: Total ℓ_p Sensitivity

- 1. Compute $\mathbf{w}_p(\mathbf{A})$, the ℓ_p Lewis weights of \mathbf{A}
- 2. Define the sampling vector $v\in \mathbb{R}^n_{>0}$ such that $v_i=rac{\mathbf{w}_p(\mathbf{a}_i)}{d}$
- 3. Sample $m = O(d^{|1-p/2|})$ rows with replacement, where we pick the $i^{\rm th}$ row with a probability of v_i
- 4. Construct an ℓ_p sampling matrix $\mathbf{S}_p \mathbf{A}$ with $\{v_i\}_{i=1}^n$
- 5. For each sampled row i_j (where $j \in [m]$)

• Compute
$$r_j = \frac{\sigma_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{A})}{v_{i_j}}$$

6. Return $\frac{1}{m}\sum_{j=1}^m r_j$

Theorem 2 (Informal): Estimating Total $\overline{\ell_p}$ Sensitivity

Our output $\tilde{\sigma}$ satisfies $\mathfrak{S}_p(\mathbf{A}) \leq \tilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}))$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)\right)$.

Theorem 2 (Informal): Estimating Total ℓ_p Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\mathfrak{S}_p(\mathbf{A}) \leq \widetilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}))$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)},d,p)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

Theorem 2 (Informal): Estimating Total ℓ_p Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\mathfrak{S}_p(\mathbf{A}) \leq \widetilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}))$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

Theorem 2 (Informal): Estimating Total ℓ_p Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\mathfrak{S}_p(\mathbf{A}) \leq \widetilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}))$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

Theorem 2 (Informal): Estimating Total ℓ_p Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\mathfrak{S}_p(\mathbf{A}) \leq \widetilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}))$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

$$\operatorname{Var}\left(\frac{1}{m}\sum_{j\in[m]}r_j\right) \leq \frac{1}{m}\sum_{i=1}^n \frac{\sigma_p^{\mathbf{S}_p\mathbf{A}}(\mathbf{a}_i)^2}{v_i} = \frac{d}{m} \cdot \sum_{i=1}^n \frac{\sigma_p^{\mathbf{S}_p\mathbf{A}}(\mathbf{a}_i)^2}{\mathbf{w}_p(\mathbf{a}_i)}$$

When $p \geq 2$, we have

$$\frac{d}{m} \cdot \sum_{i=1}^{n} \frac{\sigma_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{a}_i)^2}{\mathbf{w}_p(\mathbf{a}_i)} \leq \frac{d}{m} \cdot \sum_{i=1}^{n} \sigma_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{a}_i) \cdot d^{p/2-1}}{\sigma_p(\mathbf{a}_i) \leq d^{p/2-1} \mathbf{w}_p(\mathbf{a}_i)}$$

Theorem 2 (Informal): Estimating Total ℓ_p Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\mathfrak{S}_p(\mathbf{A}) \leq \widetilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}))$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

$$\operatorname{Var}\left(\frac{1}{m}\sum_{j\in[m]}r_j\right) \leq \frac{1}{m}\sum_{i=1}^n \frac{\sigma_p^{\mathbf{S}_p\mathbf{A}}(\mathbf{a}_i)^2}{v_i} = \frac{d}{m} \cdot \sum_{i=1}^n \frac{\sigma_p^{\mathbf{S}_p\mathbf{A}}(\mathbf{a}_i)^2}{\mathbf{w}_p(\mathbf{a}_i)}$$

When $p \geq 2$, we have

Theorem 2 (Informal): Estimating Total ℓ_p Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\mathfrak{S}_p(\mathbf{A}) \leq \widetilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}))$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

$$\operatorname{Var}\left(\frac{1}{m}\sum_{\boldsymbol{j}\in[\boldsymbol{m}]}\boldsymbol{r}_{\boldsymbol{j}}\right) \leq \frac{1}{m}\sum_{i=1}^{n}\frac{\sigma_{p}^{\mathbf{S}_{p}\mathbf{A}}(\mathbf{a}_{i})^{2}}{v_{i}} = \frac{d}{m}\cdot\sum_{i=1}^{n}\frac{\sigma_{p}^{\mathbf{S}_{p}\mathbf{A}}(\mathbf{a}_{i})^{2}}{\mathbf{w}_{p}(\mathbf{a}_{i})}$$

When $p \geq 2$, we have

$$\frac{d}{m} \cdot \sum_{i=1}^{n} \frac{\sigma_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{a}_i)^2}{\mathbf{w}_p(\mathbf{a}_i)} \leq \frac{d}{m} \cdot \sum_{i=1}^{n} \sigma_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{a}_i) \cdot d^{p/2-1} \leq \frac{d^{p/2}}{m} \mathfrak{S}_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{A})$$

Theorem 2 (Informal): Estimating Total ℓ_p Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\mathfrak{S}_p(\mathbf{A}) \leq \widetilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}))$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

$$\operatorname{Var}\left(\frac{1}{m}\sum_{\boldsymbol{j}\in[\boldsymbol{m}]}\boldsymbol{r}_{\boldsymbol{j}}\right) \leq \frac{1}{m}\sum_{i=1}^{n}\frac{\sigma_{p}^{\mathbf{S}_{p}\mathbf{A}}(\mathbf{a}_{i})^{2}}{v_{i}} = \frac{d}{m}\cdot\sum_{i=1}^{n}\frac{\sigma_{p}^{\mathbf{S}_{p}\mathbf{A}}(\mathbf{a}_{i})^{2}}{\mathbf{w}_{p}(\mathbf{a}_{i})}$$

When $p \geq 2$, we have

$$\frac{d}{m} \cdot \sum_{i=1}^{n} \frac{\sigma_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{a}_i)^2}{\mathbf{w}_p(\mathbf{a}_i)} \leq \frac{d}{m} \cdot \sum_{i=1}^{n} \sigma_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{a}_i) \cdot d^{p/2-1} \leq \frac{d^{p/2}}{m} \mathfrak{S}_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{A})$$

By Chebyshev, pick $m = d^{p/2}/\mathfrak{S}_p^{\mathbf{S}_p\mathbf{A}}(\mathbf{A}) \approx d^{p/2}/\mathfrak{S}_p(\mathbf{A}) \leq d^{p/2-1}$.
18/25

Theorem 2 (Informal): Estimating Total ℓ_p Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\mathfrak{S}_p(\mathbf{A}) \leq \widetilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}))$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

$$\operatorname{Var}\left(\frac{1}{m}\sum_{\boldsymbol{j}\in[\boldsymbol{m}]}\boldsymbol{r}_{\boldsymbol{j}}\right) \leq \frac{1}{m}\sum_{i=1}^{n}\frac{\sigma_{p}^{\mathbf{S}_{p}\mathbf{A}}(\mathbf{a}_{i})^{2}}{v_{i}} = \frac{d}{m}\cdot\sum_{i=1}^{n}\frac{\sigma_{p}^{\mathbf{S}_{p}\mathbf{A}}(\mathbf{a}_{i})^{2}}{\mathbf{w}_{p}(\mathbf{a}_{i})}$$

When $p \geq 2$, we have

$$\frac{d}{m} \cdot \sum_{i=1}^{n} \frac{\sigma_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{a}_i)^2}{\mathbf{w}_p(\mathbf{a}_i)} \leq \frac{d}{m} \cdot \sum_{i=1}^{n} \sigma_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{a}_i) \cdot d^{p/2-1} \leq \frac{d^{p/2}}{m} \mathfrak{S}_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{A})$$
for $p \geq 2$, we have $\mathfrak{S}_p(\mathbf{A}) \geq d$
By Chebyshev, pick $m = d^{p/2}/\mathfrak{S}_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{A}) \approx d^{p/2}/\mathfrak{S}_p(\mathbf{A}) \leq d^{p/2-1}$.

18/25

Theorem 2 (Informal): Estimating Total ℓ_p Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\mathfrak{S}_p(\mathbf{A}) \leq \widetilde{\sigma} \leq (1 + O(\gamma))\mathfrak{S}_p(\mathbf{A}))$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + \frac{1}{\gamma^2} \cdot d^{|1-p/2|} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

$$\operatorname{Var}\left(\frac{1}{m}\sum_{\boldsymbol{j}\in[\boldsymbol{m}]}\boldsymbol{r}_{\boldsymbol{j}}\right) \leq \frac{1}{m}\sum_{i=1}^{n}\frac{\sigma_{p}^{\mathbf{S}_{p}\mathbf{A}}(\mathbf{a}_{i})^{2}}{v_{i}} = \frac{d}{m}\cdot\sum_{i=1}^{n}\frac{\sigma_{p}^{\mathbf{S}_{p}\mathbf{A}}(\mathbf{a}_{i})^{2}}{\mathbf{w}_{p}(\mathbf{a}_{i})}$$

When $p \geq 2$, we have

$$\frac{d}{m} \cdot \sum_{i=1}^{n} \frac{\sigma_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{a}_i)^2}{\mathbf{w}_p(\mathbf{a}_i)} \leq \frac{d}{m} \cdot \sum_{i=1}^{n} \sigma_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{a}_i) \cdot d^{p/2-1} \leq \frac{d^{p/2}}{m} \mathfrak{S}_p^{\mathbf{S}_p \mathbf{A}}(\mathbf{A})$$

Runtime: cost of Lewis weights and $d^{p/2-1}$ sensitivities w.r.t. $\mathbf{S}_p\mathbf{A}$

Estimating Total ℓ_p Sensitivity: Key Takeaway

- We can compute the total sensitivity up to a constant accuracy by only poly(d) sensitivity computations
- Our main technique is importance sampling using Lewis weights, which are in turn cheap to compute

III. Approximating the Maximum of ℓ_p Sensitivities

Estimating the Maximum ℓ_p Sensitivity

Theorem 3: Estimating Maximum ℓ_p Sensitivity

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m imes n}$, we compute a scalar $\widetilde{\sigma}$ such that

 $\|\sigma_p(\mathbf{A})\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d}\|\sigma_1(\mathbf{A})\|_{\infty}.$

Our runtime is $\widetilde{O}(\mathbf{nnz}(\mathbf{A}) + d^{\max(1,p/2)} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)).$

Estimating the Maximum ℓ_p Sensitivity

Theorem 3: Estimating Maximum ℓ_p Sensitivity

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m imes n}$, we compute a scalar $\widetilde{\sigma}$ such that

 $\|\sigma_p(\mathbf{A})\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d} \|\sigma_1(\mathbf{A})\|_{\infty}.$

Our runtime is $\widetilde{O}(\mathbf{nnz}(\mathbf{A}) + d^{\max(1,p/2)} \cdot \mathcal{C}(d^{\max(1,p/2)}, d, p)).$

 \blacktriangleright Key technique used: new results in sample-efficient ℓ_∞ subspace embeddings

Our Algorithm: Maximum ℓ_1 Sensitivity

- 1. Compute an ℓ_{∞} subspace embedding $S_{\infty}A$ such that it is a subset of rows of A (Woodruff & Yasuda (2022))
- 2. Compute an ℓ_1 subspace embedding $\mathbf{S}_1\mathbf{A}$ of \mathbf{A}

3. Return
$$\sqrt{d} \| \sigma_1^{\mathbf{S}_1 \mathbf{A}}(\mathbf{S}_\infty \mathbf{A}) \|_\infty$$

Our output $\widetilde{\sigma}$ satisfies $\|\sigma_1(\mathbf{A})\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\|\sigma_1(\mathbf{A})\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + d^{\omega+1}\right)$.

Our output $\widetilde{\sigma}$ satisfies $\|\sigma_1(\mathbf{A})\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d}) \|\sigma_1(\mathbf{A})\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + d^{\omega+1}\right)$.

Our output $\widetilde{\sigma}$ satisfies $\|\sigma_1(\mathbf{A})\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\|\sigma_1(\mathbf{A})\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + d^{\omega+1}\right)$.

$$\|\sigma_1^{\mathbf{S}_1\mathbf{A}}(\mathbf{S}_{\infty}\mathbf{A})\|_{\infty} = \max_{\substack{\mathbf{x} \in \mathbb{R}^d, \\ \mathbf{c}_j \in \mathbf{S}_{\infty}\mathbf{A}}} \frac{|\mathbf{c}_j^{\top}\mathbf{x}|}{\|\mathbf{S}_1\mathbf{A}\mathbf{x}\|_1}$$

by definition over $\mathbf{c}_j \in \mathbf{S}_{\infty}\mathbf{A}$

Our output $\widetilde{\sigma}$ satisfies $\|\sigma_1(\mathbf{A})\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\|\sigma_1(\mathbf{A})\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + d^{\omega+1}\right)$.

Our output $\tilde{\sigma}$ satisfies $\|\sigma_1(\mathbf{A})\|_{\infty} \leq \tilde{\sigma} \leq O(\sqrt{d})\|\sigma_1(\mathbf{A})\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + d^{\omega+1}\right)$.

Our output $\tilde{\sigma}$ satisfies $\|\sigma_1(\mathbf{A})\|_{\infty} \leq \tilde{\sigma} \leq O(\sqrt{d})\|\sigma_1(\mathbf{A})\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + d^{\omega+1}\right)$.

Our output $\tilde{\sigma}$ satisfies $\|\sigma_1(\mathbf{A})\|_{\infty} \leq \tilde{\sigma} \leq O(\sqrt{d})\|\sigma_1(\mathbf{A})\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^*, i^* := \arg \max_{\mathbf{x}, i \in [n]} \frac{|\mathbf{a}_i^\top \mathbf{x}|}{\|\mathbf{A}\mathbf{x}\|_1}$. Suppose $\mathbf{a}_{i^*} \notin \mathbf{S}_\infty \mathbf{A}$. Then,

 \mathbf{S}_∞ is an ℓ_∞ subspace embedding

Our output $\tilde{\sigma}$ satisfies $\|\sigma_1(\mathbf{A})\|_{\infty} \leq \tilde{\sigma} \leq O(\sqrt{d})\|\sigma_1(\mathbf{A})\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + d^{\omega+1}\right)$.

$$\|\sigma_1^{\mathbf{S}_1\mathbf{A}}(\mathbf{S}_{\infty}\mathbf{A})\|_{\infty} = \max_{\substack{\mathbf{x}\in\mathbb{R}^d,\\\mathbf{c}_j\in\mathbf{S}_{\infty}\mathbf{A}}} \frac{|\mathbf{c}_j^{\top}\mathbf{x}|}{\|\mathbf{S}_1\mathbf{A}\mathbf{x}\|_1} \ge \max_{\mathbf{x}\in\mathbb{R}^d} \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{S}_1\mathbf{A}\mathbf{x}\|_1} \ge \max_{\mathbf{x}\in\mathbb{R}^d} \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{A}\mathbf{x}\|_1}$$

Our output $\widetilde{\sigma}$ satisfies $\|\sigma_1(\mathbf{A})\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\|\sigma_1(\mathbf{A})\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + d^{\omega+1}\right)$.

$$\|\sigma_1^{\mathbf{S}_1\mathbf{A}}(\mathbf{S}_{\infty}\mathbf{A})\|_{\infty} = \max_{\substack{\mathbf{x}\in\mathbb{R}^d,\\\mathbf{c}_j\in\mathbf{S}_{\infty}\mathbf{A}}} \frac{|\mathbf{c}_j^{\top}\mathbf{x}|}{\|\mathbf{S}_1\mathbf{A}\mathbf{x}\|_1} \ge \max_{\mathbf{x}\in\mathbb{R}^d} \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{S}_1\mathbf{A}\mathbf{x}\|_1} \ge \max_{\mathbf{x}\in\mathbb{R}^d} \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{A}\mathbf{x}\|_1}$$

Our output $\widetilde{\sigma}$ satisfies $\|\sigma_1(\mathbf{A})\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\|\sigma_1(\mathbf{A})\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^*, i^* := \arg \max_{\mathbf{x}, i \in [n]} \frac{|\mathbf{a}_i^\top \mathbf{x}|}{\|\mathbf{A}\mathbf{x}\|_1}$. Suppose $\mathbf{a}_{i^*} \notin \mathbf{S}_\infty \mathbf{A}$. Then,

$$\|\sigma_1^{\mathbf{S}_1\mathbf{A}}(\mathbf{S}_{\infty}\mathbf{A})\|_{\infty} = \max_{\substack{\mathbf{x}\in\mathbb{R}^d,\\\mathbf{c}_j\in\mathbf{S}_{\infty}\mathbf{A}}} \frac{|\mathbf{c}_j^{\top}\mathbf{x}|}{\|\mathbf{S}_1\mathbf{A}\mathbf{x}\|_1} \ge \max_{\mathbf{x}\in\mathbb{R}^d} \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{S}_1\mathbf{A}\mathbf{x}\|_1} \ge \max_{\mathbf{x}\in\mathbb{R}^d} \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{A}\mathbf{x}\|_1}$$

 $\max_{\mathbf{x}\in\mathbb{R}^d} \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{A}\mathbf{x}\|_1} \geq \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}^*\|_{\infty}}{\|\mathbf{A}\mathbf{x}^*\|_1} \geq \frac{\|\mathbf{A}\mathbf{x}^*\|_{\infty}}{\sqrt{d}\|\mathbf{A}\mathbf{x}^*\|_1} \geq \frac{|\mathbf{a}_{i^*}\mathbf{x}^*|}{\sqrt{d}\|\mathbf{A}\mathbf{x}^*\|_1} \geq \frac{1}{\sqrt{d}}\|\sigma_1(\mathbf{A})\|_{\infty}$

Our output $\widetilde{\sigma}$ satisfies $\|\sigma_1(\mathbf{A})\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\|\sigma_1(\mathbf{A})\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A}) + d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^*, i^* := \arg \max_{\mathbf{x}, i \in [n]} \frac{|\mathbf{a}_i^\top \mathbf{x}|}{\|\mathbf{A}\mathbf{x}\|_1}$. Suppose $\mathbf{a}_{i^*} \notin \mathbf{S}_{\infty} \mathbf{A}$. Then,

$$\|\sigma_1^{\mathbf{S}_1\mathbf{A}}(\mathbf{S}_{\infty}\mathbf{A})\|_{\infty} = \max_{\substack{\mathbf{x}\in\mathbb{R}^d,\\\mathbf{c}_j\in\mathbf{S}_{\infty}\mathbf{A}}} \frac{|\mathbf{c}_j^{\top}\mathbf{x}|}{\|\mathbf{S}_1\mathbf{A}\mathbf{x}\|_1} \ge \max_{\mathbf{x}\in\mathbb{R}^d} \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{S}_1\mathbf{A}\mathbf{x}\|_1} \ge \max_{\mathbf{x}\in\mathbb{R}^d} \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{A}\mathbf{x}\|_1}$$

 $\max_{\mathbf{x}\in\mathbb{R}^d} \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}\|_{\infty}}{\|\mathbf{A}\mathbf{x}\|_1} \geq \frac{\|\mathbf{S}_{\infty}\mathbf{A}\mathbf{x}^*\|_{\infty}}{\|\mathbf{A}\mathbf{x}^*\|_1} \geq \frac{\|\mathbf{A}\mathbf{x}^*\|_{\infty}}{\sqrt{d}\|\mathbf{A}\mathbf{x}^*\|_1} \geq \frac{|\mathbf{a}_{i^*}^{\top}\mathbf{x}^*|}{\sqrt{d}\|\mathbf{A}\mathbf{x}^*\|_1} \geq \frac{1}{\sqrt{d}}\|\sigma_1(\mathbf{A})\|_{\infty}$

Runtime: cost of computing S_{∞} and d of ℓ_1 sensitivities w.r.t. S_1A .

Concluding Thoughts

Can we efficiently approximate sensitivities for other functions?

Thank You!

.