Computing Approximate ℓ_{p} Sensitivities

Joint work with
David P. Woodruff ${ }^{2}$, and Richard Q. Zhang ${ }^{3}$

${ }^{2}$ Carnegie Mellon University; ${ }^{3}$ Google DeepMind

October 20, 2023
To appear in NeurIPS 2023

Problem Statement

Motivation

Approximating a representative set of data points is an important pre-processing step when $n \gg d$

Motivation

Approximating a representative set of data points is an important pre-processing step when $n \gg d$

- One approach: uniform sampling

Motivation

- Approximating a representative set of data points is an important pre-processing step when $n \gg d$
- One approach: uniform sampling
- Perhaps a more principled approach: importance sampling

Introduction: Sensitivity Scores

Consider the objective: $\min _{\mathbf{x} \in \mathcal{X}} \sum_{i=1}^{n} f_{i}(\mathbf{x})$

Introduction: Sensitivity Scores

- Consider the objective: $\min _{\mathbf{x} \in \mathcal{X}} \sum_{i=1}^{n} f_{i}(\mathbf{x})$

The $i^{\text {th }}$ sensitivity score for the above objective is

$$
\sigma_{i}:=\max _{\mathbf{x} \in \mathcal{X}} \frac{f_{i}(\mathbf{x})}{\sum_{j=1}^{n} f_{j}(\mathbf{x})}
$$

Introduction: Sensitivity Scores

- Consider the objective: $\min _{\mathbf{x} \in \mathcal{X}} \sum_{i=1}^{n} f_{i}(\mathbf{x})$

The $i^{\text {th }}$ sensitivity score for the above objective is

$$
\sigma_{i}:=\max _{\mathbf{x} \in \mathcal{X}} \frac{f_{i}(\mathbf{x})}{\sum_{j=1}^{n} f_{j}(\mathbf{x})}
$$

\Rightarrow Sampling $\propto \sigma_{i}$ preserves the objective in expectation for every $\mathbf{x} \in \mathcal{X}$

Introduction: Sensitivity Scores

- Consider the objective: $\min _{\mathbf{x} \in \mathcal{X}} \sum_{i=1}^{n} f_{i}(\mathbf{x})$

The $i^{\text {th }}$ sensitivity score for the above objective is

$$
\sigma_{i}:=\max _{\mathbf{x} \in \mathcal{X}} \frac{f_{i}(\mathbf{x})}{\sum_{j=1}^{n} f_{j}(\mathbf{x})}
$$

- Sampling $\propto \sigma_{i}$ preserves the objective in expectation for every $\mathbf{x} \in \mathcal{X}$
\Rightarrow Sampling $\propto \varepsilon^{-2} \mathfrak{S}$ functions, where $\mathfrak{S}:=\sum_{i=1}^{n} \sigma_{i}$, gives a $(1 \pm \varepsilon)$-approximation to the objective (Braverman, Feldman, Lang, Statman, Zhou (2016))

Introduction: Sensitivity Scores

- Consider the objective: $\min _{\mathbf{x} \in \mathcal{X}} \sum_{i=1}^{n} f_{i}(\mathbf{x})$

The $i^{\text {th }}$ sensitivity score for the above objective is

$$
\sigma_{i}:=\max _{\mathbf{x} \in \mathcal{X}} \frac{f_{i}(\mathbf{x})}{\sum_{j=1}^{n} f_{j}(\mathbf{x})}
$$

- Sampling $\propto \sigma_{i}$ preserves the objective in expectation for every $\mathbf{x} \in \mathcal{X}$
\Rightarrow Sampling $\propto \varepsilon^{-2} \mathfrak{S}$ functions, where $\mathfrak{S}:=\sum_{i=1}^{n} \sigma_{i}$, gives a ($1 \pm \varepsilon$)-approximation to the objective (Braverman, Feldman, Lang, Statman, Zhou (2016))
- Efficient computation of sensitivities less well-studied compared to related quantities like leverage scores and Lewis weights

Related Quantity: Leverage Scores

The $i^{\text {th }}$ leverage score of $\mathbf{A} \in \mathbb{R}^{n \times d}$ is defined as

$$
\tau\left(\mathbf{a}_{i}\right):=\min _{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A}^{\top} \mathbf{x}=\mathbf{a}_{i}}\|\mathbf{x}\|_{2}^{2}
$$

Related Quantity: Leverage Scores

The $i^{\text {th }}$ leverage score of $\mathbf{A} \in \mathbb{R}^{n \times d}$ is defined as

$$
\tau\left(\mathbf{a}_{i}\right):=\min _{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A}^{\top} \mathbf{x}=\mathbf{a}_{i}}\|\mathbf{x}\|_{2}^{2}
$$

Measures the importance of a row in composing the matrix's rowspace

Related Quantity: Leverage Scores

The $i^{\text {th }}$ leverage score of $\mathbf{A} \in \mathbb{R}^{n \times d}$ is defined as

$$
\tau\left(\mathbf{a}_{i}\right):=\min _{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A}^{\top} \mathbf{x}=\mathbf{a}_{i}}\|\mathbf{x}\|_{2}^{2}
$$

- Measures the importance of a row in composing the matrix's rowspace
\downarrow Efficient computation (Cohen, Lee, Musco, Musco, Peng, Sidford (2014))

Related Quantity: Leverage Scores

The $i^{\text {th }}$ leverage score of $\mathbf{A} \in \mathbb{R}^{n \times d}$ is defined as

$$
\tau\left(\mathbf{a}_{i}\right):=\min _{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A}^{\top} \mathbf{x}=\mathbf{a}_{i}}\|\mathbf{x}\|_{2}^{2}
$$

- Measures the importance of a row in composing the matrix's rowspace
\downarrow Efficient computation (Cohen, Lee, Musco, Musco, Peng, Sidford (2014))
- Leverage scores give optimal sample complexity for ℓ_{2} regression (Mahoney (2011))

Related Quantity: Leverage Scores

The $i^{\text {th }}$ leverage score of $\mathbf{A} \in \mathbb{R}^{n \times d}$ is defined as

$$
\tau\left(\mathbf{a}_{i}\right):=\min _{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A}^{\top} \mathbf{x}=\mathbf{a}_{i}}\|\mathbf{x}\|_{2}^{2}
$$

- Measures the importance of a row in composing the matrix's rowspace
- Efficient computation (Cohen, Lee, Musco, Musco, Peng, Sidford (2014))
- Leverage scores give optimal sample complexity for ℓ_{2} regression (Mahoney (2011))
\downarrow What about for ℓ_{p} regression?

Related Quantity: Lewis Weights

The $i^{\text {th }}$ Lewis weight of $\mathbf{A} \in \mathbb{R}^{n \times d}$ is

$$
\mathbf{w}\left(\mathbf{a}_{i}\right):=\tau_{i}\left(\mathbf{W}^{1 / 2-1 / p} \mathbf{A}\right)
$$

Related Quantity: Lewis Weights

The $i^{\text {th }}$ Lewis weight of $\mathbf{A} \in \mathbb{R}^{n \times d}$ is

$$
\mathbf{w}\left(\mathbf{a}_{i}\right):=\tau_{i}\left(\mathbf{W}^{1 / 2-1 / p} \mathbf{A}\right)
$$

Generalizes leverage scores; generalizes John ellipsoid (used in D-optimal design); central to advances in interior point methods

Related Quantity: Lewis Weights

The $i^{\text {th }}$ Lewis weight of $\mathbf{A} \in \mathbb{R}^{n \times d}$ is

$$
\mathbf{w}\left(\mathbf{a}_{i}\right):=\tau_{i}\left(\mathbf{W}^{1 / 2-1 / p} \mathbf{A}\right)
$$

- Generalizes leverage scores; generalizes John ellipsoid (used in D-optimal design); central to advances in interior point methods
- Efficient computation (Cohen \& Peng (2015), Fazel, Lee, P., Sidford (2022))

Related Quantity: Lewis Weights

The $i^{\text {th }}$ Lewis weight of $\mathbf{A} \in \mathbb{R}^{n \times d}$ is

$$
\mathbf{w}\left(\mathbf{a}_{i}\right):=\tau_{i}\left(\mathbf{W}^{1 / 2-1 / p} \mathbf{A}\right)
$$

- Generalizes leverage scores; generalizes John ellipsoid (used in D-optimal design); central to advances in interior point methods
\Rightarrow Efficient computation (Cohen \& Peng (2015), Fazel, Lee, P., Sidford (2022))
- Give better sample complexity than leverage scores for ℓ_{p} regression

Related Quantity: Lewis Weights

The $i^{\text {th }}$ Lewis weight of $\mathbf{A} \in \mathbb{R}^{n \times d}$ is

$$
\mathbf{w}\left(\mathbf{a}_{i}\right):=\tau_{i}\left(\mathbf{W}^{1 / 2-1 / p} \mathbf{A}\right)
$$

- Generalizes leverage scores; generalizes John ellipsoid (used in D-optimal design); central to advances in interior point methods
\rightarrow Efficient computation (Cohen \& Peng (2015), Fazel, Lee, P., Sidford (2022))
\rightarrow Give better sample complexity than leverage scores for ℓ_{p} regression
- Can we do better in practice?

Definition: ℓ_{p} Sensitivities

Leverage scores may alternately be defined as

$$
\tau\left(\mathbf{a}_{i}\right):=\max _{\mathbf{x}: \mathbf{A x} \neq \mathbf{0}} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|^{2}}{\|\mathbf{A} \mathbf{x}\|_{2}^{2}}
$$

Definition: ℓ_{p} Sensitivities

Leverage scores may alternately be defined as

$$
\tau\left(\mathbf{a}_{i}\right):=\max _{\mathbf{x}: \mathbf{A x} \neq \mathbf{0}} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|^{2}}{\|\mathbf{A} \mathbf{x}\|_{2}^{2}}
$$

ℓ_{p} sensitivities are the values of the following convex program

$$
\sigma_{p}\left(\mathbf{a}_{i}\right):=\max _{\mathbf{x}: \mathbf{A} \mathbf{x} \neq \mathbf{0}} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|^{p}}{\|\mathbf{A} \mathbf{x}\|_{p}^{p}}
$$

Definition: ℓ_{p} Sensitivities

Leverage scores may alternately be defined as

$$
\tau\left(\mathbf{a}_{i}\right):=\max _{\mathbf{x}: \mathbf{A} \mathbf{x} \neq \mathbf{0}} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|^{2}}{\|\mathbf{A}\|_{2}^{2}}
$$

ℓ_{p} sensitivities are the values of the following convex program

$$
\sigma_{p}\left(\mathbf{a}_{i}\right):=\max _{\mathbf{x}: \mathbf{A} \mathbf{x} \neq \mathbf{0}} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|^{p}}{\|\mathbf{A} \mathbf{x}\|_{p}^{p}}
$$

- Introduced by Langberg \& Schulman (2010)

Definition: ℓ_{p} Sensitivities

Leverage scores may alternately be defined as

$$
\tau\left(\mathbf{a}_{i}\right):=\max _{\mathbf{x}: \mathbf{A} \mathbf{x} \neq \mathbf{0}} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|^{2}}{\|\mathbf{A}\|_{2}^{2}}
$$

ℓ_{p} sensitivities are the values of the following convex program

$$
\sigma_{p}\left(\mathbf{a}_{i}\right):=\max _{\mathbf{x}: \mathbf{A} \mathbf{x} \neq \mathbf{0}} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|^{p}}{\|\mathbf{A} \mathbf{x}\|_{p}^{p}}
$$

- Introduced by Langberg \& Schulman (2010)
- Sampling proportional to sensitivities preserves value

Definition: ℓ_{p} Sensitivities

Leverage scores may alternately be defined as

$$
\tau\left(\mathbf{a}_{i}\right):=\max _{\mathbf{x}: \mathbf{A x} \neq \mathbf{0}} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|^{2}}{\|\mathbf{A} \mathbf{x}\|_{2}^{2}}
$$

ℓ_{p} sensitivities are the values of the following convex program

$$
\sigma_{p}\left(\mathbf{a}_{i}\right):=\max _{\mathbf{x}: \mathbf{A} \mathbf{x} \neq \mathbf{0}} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|^{p}}{\|\mathbf{A} \mathbf{x}\|_{p}^{p}}
$$

- Introduced by Langberg \& Schulman (2010)
- Sampling proportional to sensitivities preserves value
- Total sample complexity proportional to total sensitivity

Applications of Sensitivities

Applications:

Applications of Sensitivities

Applications:

- shape-fitting (Varadarajan \& Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))

Applications of Sensitivities

Applications:

- shape-fitting (Varadarajan \& Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
- clustering (Feldman \& Langberg (2011); Bachem, Lucic, Krause (2015))

Applications of Sensitivities

- Applications:
- shape-fitting (Varadarajan \& Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
- clustering (Feldman \& Langberg (2011); Bachem, Lucic, Krause (2015))
- regression (Huggins, Campbell, Broderick (2016); Munteanu, Schwiegelshohn, Sohler, Woodruff (2018))

Applications of Sensitivities

- Applications:

- shape-fitting (Varadarajan \& Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
- clustering (Feldman \& Langberg (2011); Bachem, Lucic, Krause (2015))
- regression (Huggins, Campbell, Broderick (2016); Munteanu, Schwiegelshohn, Sohler, Woodruff (2018))
- pruning of deep neural networks (Liebenwein, Baykal, Lang, Feldman, Rus (2019), Tukan, Mualen, Maalouf (2022), Mussay, Feldman, Zhou, Braverman, Osadchy (2021))

Applications of Sensitivities

- Applications:
- shape-fitting (Varadarajan \& Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
- clustering (Feldman \& Langberg (2011); Bachem, Lucic, Krause (2015))
- regression (Huggins, Campbell, Broderick (2016); Munteanu, Schwiegelshohn, Sohler, Woodruff (2018))
- pruning of deep neural networks (Liebenwein, Baykal, Lang, Feldman, Rus (2019), Tukan, Mualen, Maalouf (2022), Mussay, Feldman, Zhou, Braverman, Osadchy (2021))
- Superior to Lewis weights sampling in practical regimes

Applications of Sensitivities

- Applications:
- shape-fitting (Varadarajan \& Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
- clustering (Feldman \& Langberg (2011); Bachem, Lucic, Krause (2015))
- regression (Huggins, Campbell, Broderick (2016); Munteanu, Schwiegelshohn, Sohler, Woodruff (2018))
- pruning of deep neural networks (Liebenwein, Baykal, Lang, Feldman, Rus (2019), Tukan, Mualen, Maalouf (2022), Mussay, Feldman, Zhou, Braverman, Osadchy (2021))
$>$ Superior to Lewis weights sampling in practical regimes
- when the total sensitivity is low (Woodruff \& Yasuda (2023))

Applications of Sensitivities

- Applications:
- shape-fitting (Varadarajan \& Xiao (2012); Braverman, Feldman, Lang, Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))
- clustering (Feldman \& Langberg (2011); Bachem, Lucic, Krause (2015))
- regression (Huggins, Campbell, Broderick (2016); Munteanu, Schwiegelshohn, Sohler, Woodruff (2018))
- pruning of deep neural networks (Liebenwein, Baykal, Lang, Feldman, Rus (2019), Tukan, Mualen, Maalouf (2022), Mussay, Feldman, Zhou, Braverman, Osadchy (2021))
- Superior to Lewis weights sampling in practical regimes
- when the total sensitivity is low (Woodruff \& Yasuda (2023))
- structured matrices like sparse/low-rank/combinations (Meyer, Musco, Musco, Woodruff, Zhou (2022))

Our Goal

Fast algorithms to approximate various functions of sensitivities

Our Goal

Fast algorithms to approximate various functions of sensitivities

Our Goal

Fast algorithms to approximate various functions of sensitivities

- All sensitivities
- The total sensitivity
- The maximum sensitivity

Our Goal

- Fast algorithms to approximate various functions of sensitivities
- All sensitivities
- The total sensitivity
- The maximum sensitivity
- Runtime measured in number of sensitivity computations

I. Approximating All ℓ_{1} Sensitivities

First Result: Estimating All ℓ_{p} Sensitivities

Theorem 1: Estimating All ℓ_{1} Sensitivities

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\alpha \geq 1$, we compute a vector $\widetilde{\sigma} \in \mathbb{R}^{n}$ such that, with high probability, for each $i \in[n]$,

$$
\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)
$$

Our runtime is $\widetilde{O}\left(\mathbf{n n z}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

First Result: Estimating All ℓ_{p} Sensitivities

Theorem 1: Estimating All ℓ_{1} Sensitivities

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\alpha \geq 1$, we compute a vector $\widetilde{\sigma} \in \mathbb{R}^{n}$ such that, with high probability, for each $i \in[n]$,

$$
\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)
$$

Our runtime is $\widetilde{O}\left(\mathbf{n n z}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Extension to $p \geq 1$:
\Rightarrow Guarantee: $\sigma_{p}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\alpha^{p-1} \sigma_{p}\left(\mathbf{a}_{i}\right)+\frac{\alpha^{p}}{n} \mathfrak{S}_{p}(\mathbf{A})\right)$

- Cost: $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot \mathcal{C}\left(d^{p / 2}, d, p\right)\right)$

First Result: Estimating All ℓ_{p} Sensitivities

Theorem 1: Estimating All ℓ_{1} Sensitivities

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\alpha \geq 1$, we compute a vector $\widetilde{\sigma} \in \mathbb{R}^{n}$ such that, with high probability, for each $i \in[n]$,

$$
\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)
$$

Our runtime is $\widetilde{O}\left(\mathbf{n n z}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Extension to $p \geq 1$:
\Rightarrow Guarantee: $\sigma_{p}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\alpha^{p-1} \sigma_{p}\left(\mathbf{a}_{i}\right)+\frac{\alpha^{p}}{n} \mathfrak{S}_{p}(\mathbf{A})\right)$

- Cost: $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot \mathcal{C}\left(d^{p / 2}, d, p\right)\right)$

$$
\text { cost of } \ell_{p} \text { regression on a } d^{p / 2} \times d \text { matrix }
$$

Our Algorithm: All ℓ_{1} Sensitivities

1. Compute $\mathbf{S A} \in \mathbb{R}^{\widetilde{O}(d) \times d}$, an ℓ_{1} subspace embedding of \mathbf{A}
2. Partition \mathbf{A} into $\frac{n}{\alpha}$ random blocks $\mathbf{B}_{1}, \mathbf{B}_{2}, \ldots, \mathbf{B}_{n / \alpha}$
3. Hash each block \mathbf{B}_{i} into 100 rows
4. Let $\mathbf{P} \in \mathbb{R}^{100 \frac{n}{\alpha} \times d}$ be the matrix of the all the n / α hashed rows from step 4. Compute $\sigma_{1}^{\mathbf{S A}}(\mathbf{P})$
5. For $i=1,2,3, \ldots, n$ iterations, do :

- Let J be the rows in \mathbf{P} that \mathbf{a}_{i} is mapped to in step 4
- Set $\widetilde{\sigma}_{i}:=\max _{j \in J} \sigma_{1}^{\mathbf{S A}}\left(\mathbf{p}_{j}\right) \quad \max _{\mathbf{x}: \mathbf{A x} \neq \mathbf{0}} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|}{\|\mathbf{S A x}\|_{1}}$

6. Return $\widetilde{\sigma}$

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities
Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma_{i}} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \Im_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities
Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

$$
\sigma_{1}^{\mathbf{S A}}\left(\mathbf{p}_{j}\right)=\max _{\mathbf{x} \in \mathbb{R}^{d}} \frac{\left|\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell} \mathbf{x}\right|}{\|\mathbf{S} \mathbf{A} \mathbf{x}\|_{1}}
$$

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,
$\begin{aligned} & \sigma_{1}^{\mathrm{SA}}\left(\mathrm{p}_{j}\right)=\max _{\mathbf{x} \in \mathbb{R}^{d}} \frac{\left|\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell} \mathbf{x}\right|}{\|\mathbf{S A x}\|_{1}} \geq \frac{\left|\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell} \mathbf{x}^{*}\right|}{\left\|\mathbf{S A} \mathbf{x}^{*}\right\|_{1}} \\ & \\ & \text { specific choice of } \mathbf{x}^{*}\end{aligned}$

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma_{i}} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \Im_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities
Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

$$
\sigma_{1}^{\mathbf{S A}}\left(\mathbf{p}_{j}\right)=\underbrace{\text { by defnition }^{\text {and }}}_{\underbrace{}_{\mathbf{x} \in \mathbb{R}^{d}} \frac{\left|\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell} \mathbf{x}\right|}{\|\mathbf{S A x}\|_{1}}}
$$

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma_{i}} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,
$\begin{aligned} \sigma_{1}^{\mathrm{SA}}\left(\mathrm{P}_{j}\right) & =\max _{\mathbf{x} \in \mathbb{R}^{d}} \frac{\left|\mathbf{r}_{k}^{\top} \mathbf{B}_{\ell \mathbf{x}}\right|}{\|\mathbf{S A x}\|_{1}} \leq \max _{\mathbf{x} \in \mathbb{R}^{d}} \frac{\left\|\mathbf{B}_{\ell} \mathbf{x}\right\|_{1}}{\|\mathbf{S A} \mathbf{x}\|_{1}} \\ & \text { Hölder inequality }\end{aligned}$

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma_{i}} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities

Our output $\widetilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma_{i}} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \Im_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

Proof Sketch: Estimating All ℓ_{1} Sensitivities

Theorem 1 (Informal): Estimating All ℓ_{1} Sensitivities

Our output $\tilde{\sigma}$ satisfies $\sigma_{1}\left(\mathbf{a}_{i}\right) \leq \widetilde{\sigma}_{i} \leq O\left(\sigma_{1}\left(\mathbf{a}_{i}\right)+\frac{\alpha}{n} \mathfrak{S}_{1}(\mathbf{A})\right)$ for all $i \in[n]$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{n}{\alpha} \cdot d^{\omega}\right)$.

Proof. We have,

$$
\sigma_{1}^{\mathbf{S A}}\left(\mathbf{p}_{j}\right)=\max _{\mathrm{x} \in \mathbb{R}^{d}} \frac{\left|\mathrm{r}_{k} \mathrm{~B}_{\ell \mathrm{x}}\right|}{\|\mathrm{SAx}\|_{1}} \leq \max _{\mathrm{x} \in \mathbb{R}^{d}} \frac{\|\mathrm{~B} \ell \mathrm{x}\|_{1}}{\|\mathrm{SAx}\|_{1}} \approx \max _{\mathrm{x} \in \mathbb{R}^{d}} \frac{\left\|\mathrm{~B} \mathrm{~A}_{\mathrm{x}}\right\|_{1}}{\| \mathrm{Ax}} \leq \sum_{j: \mathbf{a}_{j} \in \mathbf{B}_{\ell}} \sigma_{1}\left(\mathbf{a}_{i}\right)
$$

Runtime: cost of computing n / α sensitivities w.r.t. $\mathbf{S A} \in \mathbb{R}^{d \times d}$.

Estimating All ℓ_{p} Sensitivities: Key Takeaway

Our computed sensitivities are approximate

Estimating All ℓ_{p} Sensitivities: Key Takeaway

- Our computed sensitivities are approximate
- Still, when compared to true sensitivities, they preserve ℓ_{p} regression approximation guarantees well enough while increasing sample complexity by only a small amount

Estimating All ℓ_{p} Sensitivities: Key Takeaway

- Our computed sensitivities are approximate
- Still, when compared to true sensitivities, they preserve ℓ_{p} regression approximation guarantees well enough while increasing sample complexity by only a small amount
- Further, the increased sample complexity (due to approximate sensitivities) is still much lower than that due to Lewis weights

II. Approximating the Sum of ℓ_{p} Sensitivities

Estimating the Total ℓ_{p} Sensitivity

Theorem 2: Estimating Total ℓ_{p} Sensitivity
Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\gamma \in(0,1)$, we compute a scalar $\widetilde{\sigma}$ such that, with high probability,

$$
\mathfrak{S}_{p}(\mathbf{A}) \leq \tilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})
$$

Our runtime is $\widetilde{O}\left(\mathbf{n n z}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

Estimating the Total ℓ_{p} Sensitivity

Theorem 2: Estimating Total ℓ_{p} Sensitivity

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\gamma \in(0,1)$, we compute a scalar $\widetilde{\sigma}$ such that, with high probability,

$$
\mathfrak{S}_{p}(\mathbf{A}) \leq \tilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})
$$

Our runtime is $\widetilde{O}\left(\mathbf{n n z}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

- Techniques used: importance sampling of ℓ_{p} Lewis weights

Estimating the Total ℓ_{p} Sensitivity

Theorem 2: Estimating Total ℓ_{p} Sensitivity

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\gamma \in(0,1)$, we compute a scalar $\widetilde{\sigma}$ such that, with high probability,

$$
\mathfrak{S}_{p}(\mathbf{A}) \leq \tilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})
$$

Our runtime is $\widetilde{O}\left(\mathbf{n n z}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

- Techniques used: importance sampling of ℓ_{p} Lewis weights
- For $p=1$, we have a recursive algorithm using only leverage scores

Our Algorithm: Total ℓ_{p} Sensitivity

1. Compute $\mathbf{w}_{p}(\mathbf{A})$, the ℓ_{p} Lewis weights of \mathbf{A}
2. Define the sampling vector $v \in \mathbb{R}_{\geq 0}^{n}$ such that $v_{i}=\frac{\mathbf{w}_{p}\left(\mathbf{a}_{i}\right)}{d}$
3. Sample $m=O\left(d^{|1-p / 2|}\right)$ rows with replacement, where we pick the $i^{\text {th }}$ row with a probability of v_{i}
4. Construct an ℓ_{p} sampling matrix $\mathbf{S}_{p} \mathbf{A}$ with $\left\{v_{i}\right\}_{i=1}^{n}$
5. For each sampled row i_{j} (where $j \in[m]$)

$$
\text { Compute } r_{j}=\frac{\sigma_{p}^{\mathrm{S}_{p} \mathrm{~A}}(\mathbf{A})}{v_{i_{j}}}
$$

6. Return $\frac{1}{m} \sum_{j=1}^{m} r_{j}$

Theorem 2 (Informal): Estimating Total ℓ_{p} Sensitivity
Our output $\tilde{\sigma}$ satisfies $\left.\mathfrak{S}_{p}(\mathbf{A}) \leq \widetilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})\right)$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

Theorem 2 (Informal): Estimating Total ℓ_{p} Sensitivity

Our output $\tilde{\sigma}$ satisfies $\left.\mathfrak{S}_{p}(\mathbf{A}) \leq \widetilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})\right)$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

Theorem 2 (Informal): Estimating Total ℓ_{p} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left.\mathfrak{S}_{p}(\mathbf{A}) \leq \widetilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})\right)$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

$$
\operatorname{Var}\left(\frac{1}{m} \sum_{j \in[m]} r_{j}\right) \leq \frac{1}{m} \sum_{i=1}^{n} \frac{\sigma_{p}^{\mathbf{S}_{p} \mathbf{A}}\left(\mathbf{a}_{i}\right)^{2}}{v_{i}}
$$

Theorem 2 (Informal): Estimating Total ℓ_{p} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left.\mathfrak{S}_{p}(\mathbf{A}) \leq \widetilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})\right)$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

Theorem 2 (Informal): Estimating Total ℓ_{p} Sensitivity

$$
\begin{aligned}
& \text { Our output } \left.\widetilde{\sigma} \text { satisfies } \mathfrak{S}_{p}(\mathbf{A}) \leq \widetilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})\right) \text {. Our } \\
& \text { runtime is } O\left(\operatorname{nnz}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)
\end{aligned}
$$

Proof. Our estimate is unbiased; the variance satisfies:

When $p \geq 2$, we have

$$
\begin{aligned}
& \frac{d}{m} \cdot \sum_{i=1}^{n} \frac{\sigma_{p}^{\mathbf{S}_{p} \mathbf{A}}\left(\mathbf{a}_{i}\right)^{2}}{\mathbf{w}_{p}\left(\mathbf{a}_{i}\right)} \leq \frac{d}{m} \cdot \sum_{i=1}^{n} \sigma_{p}^{\mathbf{S}_{p} \mathbf{A}}\left(\mathbf{a}_{i}\right) \cdot d^{p / 2-1} \\
& \sigma_{p}\left(\mathbf{a}_{i}\right) \leq d^{p / 2-1} \mathbf{w}_{p}\left(\mathbf{a}_{i}\right)
\end{aligned}
$$

Theorem 2 (Informal): Estimating Total ℓ_{p} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left.\mathfrak{S}_{p}(\mathbf{A}) \leq \widetilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})\right)$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

When $p \geq 2$, we have

Theorem 2 (Informal): Estimating Total ℓ_{p} Sensitivity

Our output $\tilde{\sigma}$ satisfies $\left.\mathfrak{S}_{p}(\mathbf{A}) \leq \widetilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})\right)$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

$$
\operatorname{Var}\left(\frac{1}{m} \sum_{j \in[m]} r_{j}\right) \leq \frac{1}{m} \sum_{i=1}^{n}
$$

When $p \geq 2$, we have

Theorem 2 (Informal): Estimating Total ℓ_{p} Sensitivity

Our output $\tilde{\sigma}$ satisfies $\left.\mathfrak{S}_{p}(\mathbf{A}) \leq \widetilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})\right)$. Our

 runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.Proof. Our estimate is unbiased; the variance satisfies:

$$
\operatorname{Var}\left(\frac{1}{m} \sum_{j \in[m]} r_{j}\right)
$$

When $p \geq 2$, we have

$$
\leq \frac{d^{p / 2}}{m} \mathfrak{S}_{p}^{\mathbf{S}_{p} \mathbf{A}}(\mathbf{A})
$$

By Chebyshev, pick $m=d^{p / 2} / \mathfrak{S}_{p}^{\mathbf{S}_{p} \mathbf{A}}(\mathbf{A}) \approx d^{p / 2} / \mathfrak{S}_{p}(\mathbf{A}) \leq d^{p / 2-1}$.

Theorem 2 (Informal): Estimating Total ℓ_{p} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left.\mathfrak{S}_{p}(\mathbf{A}) \leq \widetilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})\right)$. Our runtime is $O\left(\mathrm{nnz}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

Proof. Our estimate is unbiased; the variance satisfies:

$$
\operatorname{Var}\left(\frac{1}{m} \sum_{j \in[m]} r_{j}\right)
$$

When $p \geq 2$, we have

$$
\leq \frac{d^{p / 2}}{m} \mathfrak{S}_{p}^{\mathbf{S}_{p} \mathbf{A}}(\mathbf{A})
$$

By Chebyshev, pick $m=d^{p / 2} / \mathfrak{S}_{p}^{\mathbf{S}_{p} \mathbf{A}}(\mathbf{A}) \approx d^{p / 2} / \mathfrak{S}_{p}(\mathbf{A})^{\text {for } p \geq 2, \text { we have } \mathfrak{S}_{p}(\mathbf{A}) \geq d}$

Theorem 2 (Informal): Estimating Total ℓ_{p} Sensitivity

$$
\begin{aligned}
& \text { Our output } \left.\widetilde{\sigma} \text { satisfies } \mathfrak{S}_{p}(\mathbf{A}) \leq \widetilde{\sigma} \leq(1+O(\gamma)) \mathfrak{S}_{p}(\mathbf{A})\right) \text {. Our } \\
& \text { runtime is } O\left(\operatorname{nnz}(\mathbf{A})+\frac{1}{\gamma^{2}} \cdot d^{|1-p / 2|} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right) \text {. }
\end{aligned}
$$

Proof. Our estimate is unbiased; the variance satisfies:

$$
\operatorname{Var}\left(\frac{1}{m} \sum_{j \in[m]} r_{j}\right)
$$

When $p \geq 2$, we have

Runtime: cost of Lewis weights and $d^{p / 2-1}$ sensitivities w.r.t. $\mathbf{S}_{p} \mathbf{A}$

Estimating Total ℓ_{p} Sensitivity: Key Takeaway

- We can compute the total sensitivity up to a constant accuracy by only poly (d) sensitivity computations
- Our main technique is importance sampling using Lewis weights, which are in turn cheap to compute

III. Approximating the Maximum of ℓ_{p} Sensitivities

Estimating the Maximum ℓ_{p} Sensitivity

Theorem 3: Estimating Maximum ℓ_{p} Sensitivity
Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$, we compute a scalar $\widetilde{\sigma}$ such that

$$
\left\|\sigma_{p}(\mathbf{A})\right\|_{\infty} \leq \tilde{\sigma} \leq O\left(\sqrt{d}\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}\right.
$$

Our runtime is $\widetilde{O}\left(\mathbf{n n z}(\mathbf{A})+d^{\max (1, p / 2)} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

Estimating the Maximum ℓ_{p} Sensitivity

Theorem 3: Estimating Maximum ℓ_{p} Sensitivity

Given a full-rank $\mathbf{A} \in \mathbb{R}^{m \times n}$, we compute a scalar $\widetilde{\sigma}$ such that

$$
\left\|\sigma_{p}(\mathbf{A})\right\|_{\infty} \leq \tilde{\sigma} \leq O\left(\sqrt{d}\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}\right.
$$

Our runtime is $\widetilde{O}\left(\mathbf{n n z}(\mathbf{A})+d^{\max (1, p / 2)} \cdot \mathcal{C}\left(d^{\max (1, p / 2)}, d, p\right)\right)$.

- Key technique used: new results in sample-efficient ℓ_{∞} subspace embeddings

Our Algorithm: Maximum ℓ_{1} Sensitivity

1. Compute an ℓ_{∞} subspace embedding $\mathbf{S}_{\infty} \mathbf{A}$ such that it is a subset of rows of \mathbf{A} (Woodruff \& Yasuda (2022))
2. Compute an ℓ_{1} subspace embedding $\mathbf{S}_{1} \mathbf{A}$ of \mathbf{A}
3. Return $\sqrt{d}\left\|\sigma_{1}^{\mathbf{S}_{1}} \mathbf{A}\left(\mathbf{S}_{\infty} \mathbf{A}\right)\right\|_{\infty}$

Theorem 3 (Informal): Estimating Maximum ℓ_{1} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A})+d^{\omega+1}\right)$.

Theorem 3 (Informal): Estimating Maximum ℓ_{1} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A})+d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^{*}, i^{*}:=\arg \max _{\mathbf{x}, i \in[n]} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|}{\|\mathbf{A} \mathbf{x}\|_{1}}$. Suppose $\mathbf{a}_{i^{*}} \notin \mathbf{S}_{\infty} \mathbf{A}$. Then,

Theorem 3 (Informal): Estimating Maximum ℓ_{1} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A})+d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^{*}, i^{*}:=\arg \max _{\mathbf{x}, i \in[n]} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|}{\|\mathbf{A} \mathbf{x}\|_{1}}$. Suppose $\mathbf{a}_{i^{*}} \notin \mathbf{S}_{\infty} \mathbf{A}$. Then,

$$
\begin{array}{r}
\left\|\sigma_{1}^{\mathbf{S}_{1} \mathbf{A}}\left(\mathbf{S}_{\infty} \mathbf{A}\right)\right\|_{\infty}=\max _{\substack{\mathbf{x} \in \mathbb{R}^{d}, \mathbf{c} \\
\mathbf{c}_{j} \in \mathbf{S}_{\infty}}} \frac{\left|\mathbf{c}_{j}^{\top} \mathbf{A}\right|}{\left\|\mathbf{S}_{1} \mathbf{A} \mathbf{x}\right\|_{1}} \\
\text { by definition over } \mathbf{c}_{j} \in \mathbf{S}_{\infty} \mathbf{A}
\end{array}
$$

Theorem 3 (Informal): Estimating Maximum ℓ_{1} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A})+d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^{*}, i^{*}:=\arg \max _{\mathbf{x}, i \in[n]} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|}{\|\mathbf{A} \mathbf{x}\|_{1}}$. Suppose $\mathbf{a}_{i^{*}} \notin \mathbf{S}_{\infty} \mathbf{A}$. Then,

Theorem 3 (Informal): Estimating Maximum ℓ_{1} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A})+d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^{*}, i^{*}:=\arg \max _{\mathbf{x}, i \in[n]} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|}{\|\mathbf{A} \mathbf{x}\|_{1}}$. Suppose $\mathbf{a}_{i^{*}} \notin \mathbf{S}_{\infty} \mathbf{A}$. Then,

$$
\begin{aligned}
& \max _{\mathbf{x} \in \mathbb{R}^{d}} \frac{\left\|\mathbf{S}_{\infty} \mathbf{A} \mathbf{x}\right\|_{\infty}}{\left\|\mathbf{S}_{1} \mathbf{A} \mathbf{x}\right\|_{1}} \geq \max _{\mathbf{x} \in \mathbb{R}^{d}} \frac{\left\|\mathbf{S}_{\infty} \mathbf{A} \mathbf{x}\right\|_{\infty}}{\|\mathbf{A} \mathbf{x}\|_{1}} \\
& \quad \text { since } \mathbf{S}_{1} \mathbf{A} \text { is } \\
& \text { an } \ell_{1} \text { subspace embedding }
\end{aligned}
$$

Theorem 3 (Informal): Estimating Maximum ℓ_{1} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A})+d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^{*}, i^{*}:=\arg \max _{\mathbf{x}, i \in[n]} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|}{\|\mathbf{A} \mathbf{x}\|_{1}}$. Suppose $\mathbf{a}_{i^{*}} \notin \mathbf{S}_{\infty} \mathbf{A}$. Then,

$$
\max _{\mathbf{x} \in \mathbb{R}^{d}} \frac{\left\|\mathbf{S}_{\infty} \mathbf{A} \mathbf{x}\right\|_{\infty}}{\|\mathbf{A} \mathbf{x}\|_{1}} \geq \underbrace{\frac{\left\|\mathbf{S}_{\infty} \mathbf{A} \mathbf{x}^{*}\right\|_{\infty}}{\left\|\mathbf{A} \mathbf{x}^{*}\right\|_{1}}}
$$

Theorem 3 (Informal): Estimating Maximum ℓ_{1} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A})+d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^{*}, i^{*}:=\arg \max _{\mathbf{x}, i \in[n]} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|}{\|\mathbf{A} \mathbf{x}\|_{1}}$. Suppose $\mathbf{a}_{i^{*}} \notin \mathbf{S}_{\infty} \mathbf{A}$. Then,

$$
\frac{\left\|\mathbf{S}_{\infty} \mathbf{A x}\right\|_{\infty}}{\|\mathbf{A x}\|_{1}} \geq \frac{\left\|\mathbf{S}_{\infty} \mathbf{A} \mathbf{x}^{*}\right\|_{\infty}}{\left\|\mathbf{A} \mathbf{x}^{*}\right\|_{1}} \geq \frac{\left\|\mathbf{A} \mathbf{x}^{*}\right\|_{\infty}}{\sqrt{d}\left\|\mathbf{A} \mathbf{x}^{*}\right\|_{1}}
$$ \mathbf{S}_{∞} is an ℓ_{∞} subspace embedding

Theorem 3 (Informal): Estimating Maximum ℓ_{1} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A})+d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^{*}, i^{*}:=\arg \max _{\mathbf{x}, i \in[n]} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|}{\|\mathbf{A} \mathbf{x}\|_{1}}$. Suppose $\mathbf{a}_{i^{*}} \notin \mathbf{S}_{\infty} \mathbf{A}$. Then,

Theorem 3 (Informal): Estimating Maximum ℓ_{1} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A})+d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^{*}, i^{*}:=\arg \max _{\mathbf{x}, i \in[n]} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|}{\|\mathbf{A} \mathbf{x}\|_{1}}$. Suppose $\mathbf{a}_{i^{*}} \notin \mathbf{S}_{\infty} \mathbf{A}$. Then,

Theorem 3 (Informal): Estimating Maximum ℓ_{1} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A})+d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^{*}, i^{*}:=\arg \max _{\mathbf{x}, i \in[n]} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|}{\|\mathbf{A} \mathbf{x}\|_{1}}$. Suppose $\mathbf{a}_{i^{*}} \notin \mathbf{S}_{\infty} \mathbf{A}$. Then,
$\left\|\sigma_{1}^{\mathbf{S}_{1} \mathbf{A}}\left(\mathbf{S}_{\infty} \mathbf{A}\right)\right\|_{\infty}$

Theorem 3 (Informal): Estimating Maximum ℓ_{1} Sensitivity

Our output $\widetilde{\sigma}$ satisfies $\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty} \leq \widetilde{\sigma} \leq O(\sqrt{d})\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}$. Our runtime is $O\left(\operatorname{nnz}(\mathbf{A})+d^{\omega+1}\right)$.

Proof. Let $\mathbf{x}^{*}, i^{*}:=\arg \max _{\mathbf{x}, i \in[n]} \frac{\left|\mathbf{a}_{i}^{\top} \mathbf{x}\right|}{\|\mathbf{A x}\|_{1}}$. Suppose $\mathbf{a}_{i^{*}} \notin \mathbf{S}_{\infty} \mathbf{A}$. Then,
$\left\|\sigma_{1}^{\mathbf{S}_{1} \mathbf{A}}\left(\mathbf{S}_{\infty} \mathbf{A}\right)\right\|_{\infty}$

$$
\geq \frac{1}{\sqrt{d}}\left\|\sigma_{1}(\mathbf{A})\right\|_{\infty}
$$

Runtime: cost of computing \mathbf{S}_{∞} and d of ℓ_{1} sensitivities w.r.t. $\mathbf{S}_{1} \mathbf{A}$.

Concluding Thoughts

Can we efficiently approximate sensitivities for other functions?

Thank You!

