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Motivation

Approximating a representative set of data points is an important
pre-processing step when n. > d

One approach: uniform sampling

Perhaps a more principled approach: importance sampling
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Introduction: Sensitivity Scores

Consider the objective: minyex Y ;v fi(x)

The i*? sensitivity score for the above objective is

[ 0; ‘= MaXxex ngij(x) ]

Sampling & o; preserves the objective in expectation for every x € X
Sampling oc €726 functions, where & := Yoo givesa

(1 + &)-approximation to the objective (Braverman, Feldman, Lang,
Statman, Zhou (2016))

Efficient computation of sensitivities less well-studied compared to
related quantities like leverage scores and Lewis weights
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Related Quantity: Leverage Scores

The it" leverage score of A € R"*4 is defined as

[ 7(@3) = MiNeegn a7 xa||X]2

Measures the importance of a row in composing the matrix’s rowspace
Efficient computation (Cohen, Lee, Musco, Musco, Peng, Sidford (2014))

Leverage scores give optimal sample complexity for /5 regression
(Mahoney (2011))

What about for £,, regression?
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Related Quantity: Lewis Weights

The i*™? Lewis weight of A € R"*% s

[ wiay) = 7(WL/2-1/pA) ]

Generalizes leverage scores; generalizes John ellipsoid (used in
D-optimal design); central to advances in interior point methods

Efficient computation (Cohen & Peng (2015), Fazel, Lee, P, Sidford
(2022))

Give better sample complexity than leverage scores for /,, regression

Can we do better in practice?
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Definition: 7, Sensitivities

Leverage scores may alternately be defined as

a x|?
o )
T(a;) := MA%: Ax£0 A2

£, sensitivities are the values of the following convex program

Tx|P
o (a;):=Maxe axso 2
Pt x:Ax70 [[Ax]]?

Introduced by Langberg & Schulman (2010)
Sampling proportional to sensitivities preserves value

Total sample complexity proportional to total sensitivity
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Applications:

» shape-fitting (Varadarajan & Xiao (2012); Braverman, Feldman, Lang,
Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))

» clustering (Feldman & Langberg (2011); Bachem, Lucic, Krause (2015))

> regression (Huggins, Campbell, Broderick (2016); Munteanu,
Schwiegelshohn, Sohler, Woodruff (2018))

» pruning of deep neural networks (Liebenwein, Baykal, Lang, Feldman,
Rus (2019), Tukan, Mualen, Maalouf (2022), Mussay, Feldman, Zhou,
Braverman, Osadchy (2021))

Superior to Lewis weights sampling in practical regimes

» when the total sensitivity is low (Woodruff & Yasuda (2023))
> structured matrices like sparse/low-rank/combinations (Meyer, Musco,
Musco, Woodruff, Zhou (2022))
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Our Goal

Fast algorithms to approximate various functions of sensitivities

> All sensitivities
» The total sensitivity
» The maximum sensitivity

Runtime measured in number of sensitivity computations
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Theorem 1: Estimating All /; Sensitivities

Given a full-rank A € R™*™ and o > 1, we compute a vector o € R"
such that, with high probability, for each i € [n],

o1(a;) < 0; < O(o1(a;) + $61(A)).

Our runtime is O(nnz(A) + 2. d¥).

Extensiontop > 1:
Guarantee: op(a;) < 0; < O (o top(a;) + %p@p(A))
Cost: O (nnz(A) + 2 - C(dP/%,d, p))

[cost of £,, regression ona dP/2 x d matrix)
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Our Algorithm: All /; Sensitivities

7

1. Compute SA € Ré(d)x‘i, an £1 subspace embedding of A
2. Partition A into ¢ random blocks By, Ba, ..., B, /o
3. Hash each block B; into 100 rows

n
4 Let P € R "4 pe the matrix of the all the n/a hashed
rows from step 4. Compute oP4(P)
5. Fori =1,2,3,...,n iterations, do:
» Let.J be the rows in P that a; is mapped to in step 4

- SA a x
> Set 0i = manGJ o1 (pJ) maXx: Ax#0 m]

6. Return o
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Theorem 1 (Informal): Estimating All /1 Sensitivities

Our output 7 satisfies o1 (a;) < 0; < O(01(a;) + 5 61(A)) forall
i € [n]. Our runtime is O (nnz(A) + 2 - d).

Proof . We have,

|t Bex| _ [rf Bex*|
max >
xeRd ||[SAx||1 7 [|[SAx*||;

specific choice of x*
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Proof . We have,

]r;—ng*\ N \r;—ng*]

||w” | Ax

since SA is
a subspace embedding
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Theorem 1 (Informal): Estimating All /1 Sensitivities

Our output 7 satisfies o1 (a;) < 0; < O(01(a;) + 5 61(A)) forall
i € [n]. Our runtime is O (nnz(A) + 2 - d).

Proof . We have,

) Bex"| ( la) x|

[Ax* [y 7~ 7 | Ax*]y

|r,Ing*| = |rga) x* + 21 Thi (Bex™)1
> |a,] x*| with a probability at least 1/2
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Theorem 1 (Informal): Estimating All /1 Sensitivities

Our output 7 satisfies o1 (a;) < 0; < O(01(a;) + 5 61(A)) forall
i € [n]. Our runtime is O (nnz(A) + 2 - d).

Proof . We have,

la)

x*|

>o1(a;)

Wlax]

by definition



13/25

Proof Sketch: Estimating All /; Sensitivities

Theorem 1 (Informal): Estimating All /1 Sensitivities
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Proof . We have,

o7 (p;) >o1(a;)



13/25

Proof Sketch: Estimating All /; Sensitivities

Theorem 1 (Informal): Estimating All /1 Sensitivities

Our output 7 satisfies o1 (a;) < 0; < O(01(a;) + 5 61(A)) forall
i € [n]. Our runtime is O (nnz(A) + 2 - d).

Proof . We have,

by definition



13/25

Proof Sketch: Estimating All /; Sensitivities

Theorem 1 (Informal): Estimating All /1 Sensitivities

Our output 7 satisfies o1 (a;) < 0; < O(01(a;) + 5 61(A)) forall
i € [n]. Our runtime is O (nnz(A) + 2 - d).

Proof . We have,

max |rgB5x| < max [Bexlly
x€eR4 HSAX“ F xeRd ||SAX||1

Holder inequality
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Proof Sketch: Estimating All /; Sensitivities

Theorem 1 (Informal): Estimating All /1 Sensitivities

Our output 7 satisfies o1 (a;) < 0; < O(01(a;) + 5 61(A)) forall
i € [n]. Our runtime is O (nnz(A) + 2 - d).

Proof . We have,

BBl
xcRd ”SAX x€R4 HAXH1

since SA is
a subspace embedding
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Proof Sketch: Estimating All /; Sensitivities

Theorem 1 (Informal): Estimating All /1 Sensitivities

Our output 7 satisfies o1 (a;) < 0; < O(01(a;) + 5 61(A)) forall
i € [n]. Our runtime is O (nnz(A) + 2 - d).

Proof . We have,

expanding || B,x||1
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Proof Sketch: Estimating All /; Sensitivities

Theorem 1 (Informal): Estimating All /1 Sensitivities

Our output 7 satisfies o1 (a;) < 0; < O(01(a;) + 5 61(A)) forall
i € [n]. Our runtime is O (nnz(A) + 2 - d).

Proof . We have,
ot (pj) >o1(a;)

ot (p;) < Z o1(a;)

////"’__’_,,,//f j:a;€By

(apply Markov to ﬁnish]
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Proof Sketch: Estimating All /; Sensitivities

Theorem 1 (Informal): Estimating All /1 Sensitivities

Our output 7 satisfies o1 (a;) < 0; < O(01(a;) + 5 61(A)) forall
i € [n]. Our runtime is O (nnz(A) + 2 - d).

Proof . We have,

o7 (p;) >o1(a;)

ot (p;) < Z o1(ay)
a;eB

Runtime: cost of computing n/« sensitivities w.rt. SA € Raxd,
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Estimating All /, Sensitivities: Key Takeaway

Our computed sensitivities are approximate

Still, when compared to true sensitivities, they preserve ¢,, regression
approximation guarantees well enough while increasing sample
complexity by only a small amount

Further, the increased sample complexity (due to approximate
sensitivities) is still much lower than that due to Lewis weights



15/25

Il. Approximating the Sum of /, Sensitivities



Estimating the Total /, Sensitivity

Theorem 2: Estimating Total £,, Sensitivity
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Estimating the Total ¢, Sensitivity

Theorem 2: Estimating Total £/, Sensitivity

Given a full-rank A € R™*" and v € (0, 1), we compute a scalar &
such that, with high probability,

G,(A) <7 < (1+0(7))6,(A).

our runtime is O (nnz(A) + ;1; o )AL (), d,p)).

Techniques used: importance sampling of £, Lewis weights

For p = 1, we have a recursive algorithm using only leverage scores
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Our Algorithm: Total ¢, Sensitivity

1. Compute w,(A), the £, Lewis weights of A

2. Define the sampling vector v € RZ such that v; = w

3. Sample mm = O(d!I*~?/2l) rows with replacement, where we
pick the i*® row with a probability of v;

4. Construct an £, sampling matrix S, A with {v; }I" ;

5. For each sampled row i; (where j € [m)])
op" " (A)

i

» Compute r; =

1 m
6. Return - > 70 7;




Theorem 2 (Informal): Estimating Total £, Sensitivity
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Theorem 2 (Informal): Estimating Total £, Sensitivity

Proof . Our estimate is unbiased; the variance satisfies:
n _SpA

Var % Z T Slz = Uéai)2

i=1 v

by definition
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Theorem 2 (Informal): Estimating Total £, Sensitivity

Our output & satisfies §,(A) < 7 < (1 4+ O(7))S,(A)). Our
1
1 °

runtime is O (nnz(A) dl=r/2l . ¢(gmax(p/?) g, p)).

Proof . Our estimate is unbiased; the variance satisfies:

n SpA

1y olek af 4 $op )
m — a;

our choice of v;
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Theorem 2 (Informal): Estimating Total £, Sensitivity

Proof . Our estimate is unbiased; the variance satisfies:

When p > 2, we have

n S, A N2 n
i Z Upp (az) Si O_gpA(a ) dp/Q—l
m = wp(a;) Am pot

(ov(a0) < /2 1wy (a) |
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Theorem 2 (Informal): Estimating Total £, Sensitivity

Our output & satisfies §,(A) < 7 < (1 4+ O(7))S,(A)). Our
runtime is O (nnz(A) + 712 - dit=p/2l . ¢ (gmax(Lp/2) g p))

Proof . Our estimate is unbiased; the variance satisfies:

When p > 2, we have

Sl

Z S8 (a,) . 21 <P 50 )
pot m

by definition
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Theorem 2 (Informal): Estimating Total £, Sensitivity

Proof . Our estimate is unbiased; the variance satisfies:
var 2
ar [ — T
m J
JE€[m]

When p > 2, we have

dp/?
<=——e&,"*(A)
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Theorem 2 (Informal): Estimating Total £, Sensitivity

Our output & satisfies §,(A) < 7 < (1 4+ O(7))S,(A)). Our
runtime is O (nnz(A) + 712 - dit=p/2l . ¢ (gmax(Lp/2) g p))

Proof . Our estimate is unbiased; the variance satisfies:

Z Tj

ye[m

When p > 2, we have

p/2
<TeSAa)
m

By Chebyshev, pick m = dP/Q/Gg”A(A) ~ dP? /&, (A)<dP/> 1,



18/25

Theorem 2 (Informal): Estimating Total £, Sensitivity

Our output & satisfies §,(A) < 7 < (1 4+ O(7))S,(A)). Our
runtime is O (nnz(A) + 712 - dit=p/2l . ¢ (gmax(Lp/2) g p))

Proof . Our estimate is unbiased; the variance satisfies:

Z"“ﬂ

ye[m

When p > 2, we have

p/2
<TeSAa)
m

@3 > 2, we have S, (A) > d}
By Chebyshev, pick m = dP/Q/Gg”A(A) ~ dp/2/6p(A)§dp/2—1.
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Theorem 2 (Informal): Estimating Total £, Sensitivity

Proof . Our estimate is unbiased; the variance satisfies:

1
Var ooy Z T

JE€[m]

When p > 2, we have

dp/?
SWGEPA(A)

Runtime: cost of Lewis weights and d?/?~! sensitivities w.rt. S,A
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Estimating Total /, Sensitivity: Key Takeaway

We can compute the total sensitivity up to a constant accuracy by only
poly(d) sensitivity computations

Our main technique is importance sampling using Lewis weights,
which are in turn cheap to compute
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Il. Approximating the Maximum of ¢, Sensitivities
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Estimating the Maximum /,, Sensitivity

Theorem 3: Estimating Maximum £, Sensitivity
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Estimating the Maximum /,, Sensitivity

Theorem 3: Estimating Maximum £, Sensitivity

Given a full-rank A € R™*"™, we compute a scalar o such that

lop(A)llee <7 < O(Vdllo1(A)]|oo.

our runtime is O (nnz(A) + dmex(tp/2) . ¢ (qmax(1p/2) 4, p)).

Key technique used: new results in sample-efficient £/, subspace
embeddings
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Our Algorithm: Maximum /; Sensitivity

1. Compute an /., subspace embedding S A such thatitis a
subset of rows of A (Woodruff & Yasuda (2022))

2. Compute an #1 subspace embedding S;1A of A
3. Return v/d|| oS (SaoA)]




Theorem 3 (Informal): Estimating Maximum #; Sensitivity
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Theorem 3 (Informal): Estimating Maximum ¢; Sensitivity

Our output & satisfies [|o1(A)[oc < & < O(Vd)||o1(A)]|oo. Our
runtime is O (nnz(A) + d“*1).

.
Proof. Let x*,i" := arg maxX, ;cp] ﬁ. Suppose a;« ¢ S, A. Then,



23/25

Theorem 3 (Informal): Estimating Maximum ¢; Sensitivity

Our output & satisfies [|o1(A)[oc < & < O(Vd)||o1(A)]|oo. Our
runtime is O (nnz(A) + d“*1).

.
Proof. Let x*,i" := arg maxX, ;cp] ﬁ. Suppose a;« ¢ S, A. Then,

T

S,A |cj x|
o S A = max ————
” 1 ( e e} )”00 xERd, ||SlAX”1
Cj A

(by definition over c; € SOOA)
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Theorem 3 (Informal): Estimating Maximum ¢; Sensitivity

Our output & satisfies [|o1(A)[oc < & < O(Vd)||o1(A)]|oo. Our
runtime is O (nnz(A) + d“*1).

.
Proof. Let x*,i" := arg maxX, ;cp] ﬁ. Suppose a;« ¢ S, A. Then,

) x| IS 00 Ax]|o
max ———> -
xERd, ||SlAX” xeR? ||SlAX”1

CjGSoo

(speciﬁc choice of numerator]
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Runtime: cost of computing S, and d of /1 sensitivities w.rt. S{A.
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Concluding Thoughts

Can we efficiently approximate sensitivities for other functions?
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Thank You!
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