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Motivation

I Approximating a representative set of data points is an important
pre-processing step when n� d

I One approach: uniform sampling

I Perhaps a more principled approach: importance sampling
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Introduction: Sensitivity Scores

I Consider the objective: minx∈X
∑n

i=1 fi(x)

Problem Statement 1

The ith sensitivity score for the above objective is

σi := maxx∈X
fi(x)∑n

j=1 fj(x)

I Sampling∝ σi preserves the objective in expectation for every x ∈ X
I Sampling∝ ε−2S functions, where S :=

∑n
i=1 σi, gives a

(1± ε)-approximation to the objective (Braverman, Feldman, Lang,
Statman, Zhou (2016))

I E�cient computation of sensitivities less well-studied compared to
related quantities like leverage scores and Lewis weights
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Related Quantity: Leverage Scores

Problem Statement 2

The ith leverage score of A ∈ Rn×d is defined as

τ(ai) := minx∈Rn:A>x=ai
‖x‖22

I Measures the importance of a row in composing the matrix’s rowspace

I E�cient computation (Cohen, Lee, Musco, Musco, Peng, Sidford (2014))

I Leverage scores give optimal sample complexity for `2 regression
(Mahoney (2011))

I What about for `p regression?
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Related Quantity: Lewis Weights

Problem Statement 3

The ith Lewis weight of A ∈ Rn×d is

w(ai) := τi(W
1/2−1/pA)

I Generalizes leverage scores; generalizes John ellipsoid (used in
D-optimal design); central to advances in interior point methods

I E�cient computation (Cohen & Peng (2015), Fazel, Lee, P., Sidford
(2022))

I Give better sample complexity than leverage scores for `p regression

I Can we do better in practice?
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Definition: `p Sensitivities
Problem Statement 4

Leverage scores may alternately be defined as

τ(ai) := maxx:Ax 6=0
|a>i x|2
‖Ax‖22

Problem Statement 5

`p sensitivities are the values of the following convex program

σp(ai):=maxx:Ax 6=0
|a>i x|p
‖Ax‖pp

w.r.t. A

I Introduced by Langberg & Schulman (2010)

I Sampling proportional to sensitivities preserves value

I Total sample complexity proportional to total sensitivity
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Applications of Sensitivities

I Applications:

I shape-fitting (Varadarajan & Xiao (2012); Braverman, Feldman, Lang,
Statman, Zhou (2021); Tukan, Wu, Zhou, Braverman, Feldman (2022))

I clustering (Feldman & Langberg (2011); Bachem, Lucic, Krause (2015))
I regression (Huggins, Campbell, Broderick (2016); Munteanu,

Schwiegelshohn, Sohler, Woodru� (2018))
I pruning of deep neural networks (Liebenwein, Baykal, Lang, Feldman,

Rus (2019), Tukan, Mualen, Maalouf (2022), Mussay, Feldman, Zhou,
Braverman, Osadchy (2021))

I Superior to Lewis weights sampling in practical regimes

I when the total sensitivity is low (Woodru� & Yasuda (2023))
I structured matrices like sparse/low-rank/combinations (Meyer, Musco,

Musco, Woodru�, Zhou (2022))
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Our Goal

I Fast algorithms to approximate various functions of sensitivities

I All sensitivities
I The total sensitivity
I The maximum sensitivity

I Runtime measured in number of sensitivity computations

additive
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I. Approximating All `1 Sensitivities
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First Result: Estimating All `p Sensitivities

Theorem 1: Estimating All `1 Sensitivities

Given a full-rank A ∈ Rm×n and α ≥ 1, we compute a vector σ̃ ∈ Rn

such that, with high probability, for each i ∈ [n],

σ1(ai) ≤ σ̃i ≤ O(σ1(ai) + α
nS1(A)).

Our runtime is Õ(nnz(A) + n
α · d

ω).

Extension to p ≥ 1:

I Guarantee: σp(ai) ≤ σ̃i ≤ O
(
αp−1σp(ai) + αp

n Sp(A)
)

I Cost: O
(
nnz(A) + n

α · C(d
p/2, d, p)

)
cost of `p regression on a dp/2 × d matrix
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Our Algorithm: All `1 Sensitivities

1. Compute SA ∈ RÕ(d)×d, an `1 subspace embedding of A

2. Partition A into n
α random blocks B1,B2, . . . ,Bn/α

3. Hash each block Bi into 100 rows

4. Let P ∈ R100
n
α×d be the matrix of the all the n/α hashed

rows from step 4. Compute σSA1 (P)

5. For i = 1, 2, 3, . . . , n iterations, do:
I Let J be the rows in P that ai is mapped to in step 4

I Set σ̃i := maxj∈J σ
SA
1 (pj)

6. Return σ̃

maxx:Ax 6=0
|a>i x|
‖SAx‖1
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Proof Sketch: Estimating All `1 Sensitivities
Theorem 1 (Informal): Estimating All `1 Sensitivities

Our output σ̃ satisfies σ1(ai) ≤ σ̃i ≤ O(σ1(ai) + α
nS1(A)) for all

i ∈ [n]. Our runtime is O
(
nnz(A) + n

α · d
ω
)
.

Proof . We have,

σSA1 (pj)= max
x∈Rd

|r>kB`x|
‖SAx‖1

≥
|r>kB`x

∗|
‖SAx∗‖1

≈
|r>kB`x

∗|
‖Ax∗‖1

≥Θ(1)
|a>i x∗|
‖Ax∗‖1

≥σ1(ai)

σSA1 (pj)= max
x∈Rd

|r>kB`x|
‖SAx‖1

≤max
x∈Rd

‖B`x‖1
‖SAx‖1

≈max
x∈Rd

‖B`x‖1
‖Ax‖1

≤
∑

j:aj∈B`

σ1(ai)

Runtime: cost of computing n/α sensitivities w.r.t. SA ∈ Rd×d.

by definitionspecific choice of x∗
since SA is

a subspace embedding

|r>k B`x
∗| = |rk,ia>i x∗ +

∑
j 6=i rk,j(B`x

∗)j |

≥ |a>i x∗| with a probability at least 1/2
by definition

by definitionHölder inequality
since SA is

a subspace embedding expanding ‖B`x‖1apply Markov to finish
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Estimating All `p Sensitivities: Key Takeaway

I Our computed sensitivities are approximate

I Still, when compared to true sensitivities, they preserve `p regression
approximation guarantees well enough while increasing sample
complexity by only a small amount

I Further, the increased sample complexity (due to approximate
sensitivities) is still much lower than that due to Lewis weights
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II. Approximating the Sum of `p Sensitivities
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Estimating the Total `p Sensitivity

Theorem 2: Estimating Total `p Sensitivity

Given a full-rank A ∈ Rm×n and γ ∈ (0, 1), we compute a scalar σ̃
such that, with high probability,

Sp(A) ≤ σ̃ ≤ (1 +O(γ))Sp(A).

Our runtime is Õ
(
nnz(A) + 1

γ2
· d|1−p/2| · C(dmax(1,p/2), d, p)

)
.

I Techniques used: importance sampling of `p Lewis weights

I For p = 1, we have a recursive algorithm using only leverage scores
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Our Algorithm: Total `p Sensitivity

1. Compute wp(A), the `p Lewis weights of A

2. Define the sampling vector v ∈ Rn≥0 such that vi =
wp(ai)
d

3. Sample m = O(d|1−p/2|) rows with replacement, where we
pick the ith row with a probability of vi

4. Construct an `p sampling matrix SpA with {vi}ni=1

5. For each sampled row ij (where j ∈ [m])

I Compute rj =
σ
SpA
p (A)
vij

6. Return 1
m

∑m
j=1 rj
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Theorem 2 (Informal): Estimating Total `p Sensitivity

Our output σ̃ satisfies Sp(A) ≤ σ̃ ≤ (1 + O(γ))Sp(A)). Our

runtime is O
(
nnz(A) + 1

γ2
· d|1−p/2| · C(dmax(1,p/2), d, p)

)
.

Proof . Our estimate is unbiased; the variance satisfies:

Var

 1

m

∑
j∈[m]

rj

≤ 1

m

n∑
i=1

σ
SpA
p (ai)

2

vi

=
d

m
·
n∑
i=1

σ
SpA
p (ai)

2

wp(ai)

When p ≥ 2, we have

d

m
·
n∑
i=1

σ
SpA
p (ai)

2

wp(ai)
≤ d

m
·
n∑
i=1

σ
SpA
p (ai) · dp/2−1

≤d
p/2

m
S

SpA
p (A)

By Chebyshev, pick m = dp/2/S
SpA
p (A) ≈ dp/2/Sp(A)≤dp/2−1.

by definitionour choice of vi

σp(ai) ≤ dp/2−1wp(ai)by definition

for p ≥ 2, we have Sp(A) ≥ d
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Estimating Total `p Sensitivity: Key Takeaway

I We can compute the total sensitivity up to a constant accuracy by only
poly(d) sensitivity computations

I Our main technique is importance sampling using Lewis weights,
which are in turn cheap to compute
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III. Approximating the Maximum of `p Sensitivities
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Estimating the Maximum `p Sensitivity

Theorem 3: Estimating Maximum `p Sensitivity

Given a full-rank A ∈ Rm×n, we compute a scalar σ̃ such that

‖σp(A)‖∞ ≤ σ̃ ≤ O(
√
d‖σ1(A)‖∞.

Our runtime is Õ
(
nnz(A) + dmax(1,p/2) · C(dmax(1,p/2), d, p)

)
.

I Key technique used: new results in sample-e�cient `∞ subspace
embeddings
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Our Algorithm: Maximum `1 Sensitivity

1. Compute an `∞ subspace embedding S∞A such that it is a
subset of rows of A (Woodru� & Yasuda (2022))

2. Compute an `1 subspace embedding S1A of A

3. Return
√
d‖σS1A

1 (S∞A)‖∞
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Theorem 3 (Informal): Estimating Maximum `1 Sensitivity

Our output σ̃ satisfies ‖σ1(A)‖∞ ≤ σ̃ ≤ O(
√
d)‖σ1(A)‖∞. Our

runtime is O
(
nnz(A) + dω+1

)
.

Proof . Let x∗, i∗ := arg maxx,i∈[n]
|a>i x|
‖Ax‖1 . Suppose ai∗ /∈ S∞A. Then,

‖σS1A
1 (S∞A)‖∞= max

x∈Rd,
cj∈S∞A

|c>j x|
‖S1Ax‖1

≥max
x∈Rd

‖S∞Ax‖∞
‖S1Ax‖1

≥max
x∈Rd

‖S∞Ax‖∞
‖Ax‖1

max
x∈Rd

‖S∞Ax‖∞
‖Ax‖1

≥‖S∞Ax∗‖∞
‖Ax∗‖1

≥ ‖Ax∗‖∞√
d‖Ax∗‖1

≥ |a>i∗x∗|√
d‖Ax∗‖1

≥ 1√
d
‖σ1(A)‖∞

by definition over cj ∈ S∞Aspecific choice of numerator
since S1A is

an `1 subspace embedding

specific choice of xS∞ is an `∞ subspace embeddingsince ai∗ ∈ A by definition of i∗

Runtime: cost of computing S∞ and d of `1 sensitivities w.r.t. S1A.
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Concluding Thoughts

I Can we e�ciently approximate sensitivities for other functions?
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Thank You!
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