
Some Problems in Conic, Nonsmooth, and Online
Optimization

Swati Padmanabhan

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington
2023

Reading Committee:

Yin Tat Lee, Chair
Dmitriy Drusvyatskiy

Maryam Fazel

Program Authorized to Offer Degree:
Electrical and Computer Engineering

© Copyright 2023

Swati Padmanabhan

University of Washington

Abstract

Some Problems in Conic, Nonsmooth, and Online Optimization

Swati Padmanabhan

Chair of the Supervisory Committee:

Yin Tat Lee

Paul G. Allen School of Computer Science and Engineering

In this thesis, we study algorithms with provable guarantees for structured optimization problems

arising in machine learning and theoretical computer science.

One of the threads of this thesis is semidefinite programs (SDPs), a problem class with a variety

of uses in engineering, computational mathematics, and computer science. Concretely, we study

approximately solving the MaxCUT SDP. Aside from its significance as the SDP relaxation of an

NP-hard problem, it has found use in matrix completion algorithms. Our algorithm for this problem

combines ideas from the multiplicative weights framework and variance-reduced estimators. We

adopt this idea of robust updates to give a faster high-accuracy algorithm to solve general SDPs

via interior-point methods. Conceptually, our result for this general problem resolves the prior

paradox of cutting-plane methods being faster at solving SDPs than interior-point methods, despite

the former tracking far less structural information about the iterates.

A common structural assumption on real-world datasets is that of sparsity or low rank. This

structure is mathematically captured by convex non-smooth functions, thus making convex non-

smooth optimization a cornerstone of signal processing and machine learning (e.g., in compressed

sensing and low-rank matrix problems). Non-smooth optimization has risen in prominence on

the non-convex front as well in the context of deep learning (e.g., in deep neural networks). In

this thesis, we focus on two problems under the umbrella of nonsmooth optimization: In the

convex setting, we study minimizing finite sum problems with each function depending only on a

subset of the coordinates of the problem variable, and our proposed scheme develops a generalized

cutting-plane framework; in the nonconvex setting, we focus on the problem of finding a Goldstein

stationary point, and our solution combines randomization with geometric insights into prior work

along with a novel application of cutting-plane methods.

Optimization techniques have been used with great success to further progress in foundational

questions in applied linear algebra. We explore this interplay in two questions. We first study

least-squares regression with non-negative data and problem variables. This structure appears in

several real-world datasets (e.g., in astronomy, text mining, and image processing) but has generally

not been leveraged by standard least-squares algorithms (including ones in commercial software);

in contrast, we utilize this structure, yielding improvements in the runtime (in both theory and

experiments). We further study the computation of ℓp Lewis weights. These are generalized

importance scores of a given matrix used to sample a small number of key rows in tall data matrices

and thus a crucial primitive in modern machine learning pipelines. We offer a fresh perspective to

this problem, departing from the prior approach of using a fixed-point iteration.

We also apply optimization theory in the context of market economics. Specifically, we study

budget-constrained online advertising, an important problem for many technological companies,

and develop an optimal-regret bidding algorithm under the “return-on-spend” constraint. Our

main insight combines a novel white-box analysis of first-order methods for packing LPs with

problem-specific structure.

Acknowledgements

This thesis would not exist without the guidance and support of many amazing people.

First, I would like to thank my wonderful advisor, Yin Tat Lee. Yin Tat introduced me to theoretical
computer science and, over the course of six years, mentored me with tremendous kindness, patience,
and care. I will always cherish our numerous discussions on whiteboards and LyX. Yin Tat is not just
a great research collaborator, but also a generous and caring advisor, who would regularly check in
especially during the difficult pandemic times. It has been a massive privilege to be advised by him.

Next, I would like to thank my thesis committee: Dmitriy Drusvyatskiy, Maryam Fazel, and
Mehran Mesbahi. I am especially grateful to Dima for his wonderful class on convex analysis, for
introducing me to non-convex optimization, and for his extensive support during my job search;
to Maryam for her convex optimization class; and to Mehran for his fun network analysis class.

I am deeply grateful to Jelena Diakonikolas for taking a chance on me by offering me a lovely
summer research visit with her and for her supportive mentorship ever since. I am also extremely
grateful to Aranyak Mehta, Di Wang, Zhe Feng, Sagi Perel, Richard Zhang, and David Woodruff
for fun internships at Google, where I got the chance to work on theory for real-world problems.
I am especially grateful to Di for numerous discussions and his constant encouragement.

One of the greatest joys of my PhD was the chance to learn from brilliant collaborators: I am
indebted to each of my amazing co-authors — Yin Tat Lee, Haotian Jiang, Tarun Kathuria, Zhao
Song, Kevin Tian, Arun Jambulapati, Jerry li, Maryam Fazel, Aaron Sidford, Jelena Diakonikolas,
Chenghui Li, Chaobing Song, Dmitriy Drusvyatskiy, Damek Davis, Guanghao Ye, Di Wang, Zhe
Feng, Sally Dong, Mehrdad Ghadiri, Richard Zhang, and David Woodruff. I would particularly
like to acknowledge Kevin, Arun, and Guanghao, with whom I have spent the most time during
my PhD thinking about research — thank you for making research discussions so joyful!

I owe much of my learning at UW to the wonderful CS Theory group, both faculty — Yin Tat,
Shayan, Anna, Thomas, James, Paul, Rachel, Stefano, Kevin, Jamie, and Anup — and students —
Becca, Harish, Kira, Siva, Makrand, Jeffrey, Cyrus, Xin, Vincent, Alireza, Robbie, Sami, Jennifer,
Farzam, Dorna, Ewin, Kuikui, Guanghao, Haotian, Ruoqi, Sally, Xinzhi, Daogao, Victor, Ashrujit,
Siddharth, Nathan, Oscar, Ansh, Michael, and Artin. I am also grateful to friends and mentors from
the broader optimization community — Reza Eghbali, Courtney Paquette, Kevin Tian, Krishna
Pillutla, John Thickstun, Ankit Pensia, Elizabeth Yang, Deeksha Adil, Taisuke Yasuda, Madhur
Tulsiani, Lijun Ding, Georgina Hall, Rachitesh Kumar, Balu Sivan, and Stephen Mussmann — for
their generous research advice and many technical discussions. I’d also like to express my gratitude
to Elise Dorough and to the UW CSE community for help navigating all administrative procedures.

I thank Krishna, Robbie, John, Srini, Chandra, Romain, Matt, and Erin for most of my hallway conver-
sations in Allen through much of my PhD. I would like to especially thank Ruta, Jennifer, Bittoo, Eliz-
abeth, Ewin, Becca, and Sparrow for their warm friendship and constant support through the years.

Finally, I thank my parents for a happy, loving, and carefree childhood that continues to this day.

3

Contents

1 Introduction 7

1.1 Semidefinite Programs . 7

1.2 Nonsmooth Optimization . 9

1.3 Linear Algebraic Problems . 10

1.4 Online Optimization . 11

1.5 Organization of the Thesis . 12

2 An Õ(m/ε3.5) Cost Algorithm for Semidefinite Programs with Diagonal Constraints 13

2.1 Introduction . 13

2.2 Our Approach . 18

3 A Faster Interior Point Method for Semidefinite Programs 24

3.1 Introduction . 24

3.2 An Overview of Our Techniques . 27

3.3 Bottlenecks to Improving Our Result . 32

4 Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient Oracle
Complexity 34

4.1 Introduction . 34

4.2 Notation and Preliminaries . 39

4.3 Our Algorithm . 41

4.4 Our Analysis . 45

4.5 Initialization . 56

5 A Gradient Sampling Algorithm for Lipschitz Functions in High and Low Dimensions 61

5.1 Introduction . 61

5.2 Interpolated Normalized Gradient Descent (INGD) 64

5.3 Faster INGD in Low Dimensions . 68

6 A Fast Scale-Invariant Algorithm for Non-negative Least Squares with Non-negative Data 73

6.1 Introduction . 73

4

6.2 Notation and Preliminaries . 76

6.3 Our Algorithm and Convergence Analysis . 78

6.4 Adaptive Restart . 82

6.5 Numerical Experiments and Discussion . 82

7 Computing Lewis Weights to High Precision 85

7.1 Introduction to Lewis Weights . 85

7.2 Our Algorithm . 90

7.3 Analysis of Round(·): The Parallel Algorithm . 94

7.4 Analysis of Round(·): Sequential Algorithm . 96

7.5 A “One-Step” Parallel Algorithm . 97

8 Online Bidding Algorithms for Return-on-Spend Constrained Advertisers 99

8.1 Introduction . 99

8.2 Preliminaries . 102

8.3 Approximate RoS Constraint . 104

8.4 Strict RoS Constraint . 109

8.5 RoS and Budget Constraints . 111

8.6 Conclusion . 113

Appendices 138

A Appendix for Chapter 2 139

A.1 Previous Results . 139

A.2 Analysis Common to Both Algorithms . 140

A.3 Analysis of the Arora-Kale Algorithm . 144

A.4 Analysis of our Proposed Algorithm . 149

A.5 General Technical Results . 173

B Appendix for Chapter 3 174

B.1 Notation and Preliminaries . 174

B.2 Matrix Multiplication . 175

B.3 Our Main Theorem . 179

B.4 Approximate Central Path via Approximate Hessian 179

B.5 Low-Rank Update . 182

B.6 Runtime Analysis . 187

B.7 Comparison with Cutting Plane Method . 191

B.8 Initialization . 192

C Appendix for Chapter 4 195

C.1 Decomposable submodular function minimization . 195

D Appendix for Chapter 5 197

D.1 Missing Proofs . 197

D.2 Implementation of The Oracles . 198

E Appendix for Chapter 6 200

E.1 Appendix: Omitted Technical Details . 200

E.2 Implementation Version of SI-NNLS+ . 213

F Appendix for Chapter 7 217

F.1 Technical Proofs: Gradient, Hessian, Initial Error, Minimum Progress 217

F.2 From Optimization Problem to Lewis Weights . 219

F.3 A Geometric View of Rounding . 224

F.4 Explanations of Runtimes in Prior Work . 224

G Appendix for Chapter 8 225

G.1 Proofs: Strict RoS Constraint . 225

G.2 Proofs: Both Strict Constraints . 226

Chapter 1

Introduction

Mathematical optimization is a key tool in engineering, operations research, computational
mathematics, and data science. Due to its ubiquity and centrality, it is now regarded as a mature field
of study with algorithms and associated theoretical guarantees well-understood in classical regimes.
However, the aforementioned fields are witnessing the rapid emergence of applications for which the
theoretical guarantees of existing optimization algorithms do not suffice. This is particularly acute
when pursuing the goal of scalability for problems with structures increasingly prevalent in practice.
This void necessitates novel algorithmic solutions beyond classical frameworks. In this thesis, we
address some of these needs by focusing on the theoretical aspects of designing fast optimization
algorithms for structured problems arising in modern data science applications, as we highlight next.

1.1 Semidefinite Programs

Semidefinite programs (SDPs) — a class of convex programs maximizing a linear function over
the intersection of a finite number of halfspaces and the positive semidefinite cone — constitute
a core optimization primitive generalizing linear and second-order cone programs.

The vastness of this problem class makes SDPs ubiquitous in approximation algorithms [GM12]
(e.g., in obtaining the best approximation ratios for multiple NP-Hard problems such as Max-
CUT [GW95], coloring 3-colorable graphs [KMS94], and sparsest cut [ARV09]), quantum complexity
theory [JJUW11], robust statistics [CG18, CDG19, CDGW19], algorithmic discrepancy and round-
ing [BDG16, BG17, Ban19]), control theory [BEGFB94], polynomial optimization [Par00, Hal18],
and machine learning (e.g., kernel learning [LCB+04], variational inference [Bac22], and robustness
certification for neural networks [RSL18]). We study fast algorithms for approximately solving SDPs.

SDPs with Diagonal Constraints. The first problem we study is the MaxCUT SDP, one of the
simplest and most well-studied SDPs. Given an n × n cost matrix C, this problem seeks a positive
definite matrix X ⪰ 0 that satisfies Xii ≤ 1 for all i ∈ [n].

The MaxCUT SDP [GW95] arises naturally as the SDP relaxation of the MaxCUT problem and
has seen widespread utility in circuit design [CKC83], statistical physics [BGJR88], phase recovery
[WdM15], rank minimization [Jag11, SS05, FHB04], community detection [ABH15, GV16, MS16a],
the group synchronization problem [SS11, BCSZ14], and semi-supervised learning [WJC13].

Our goal is to solve this problem to ε-accuracy. Specifically, given the n × n cost matrix C, we seek a
matrix X ⪰ 0 with Xii ≤ 1 for all i ∈ [n], such that C•X ≥ OPT− ε

∑
i, j |Ci j|, where OPT is the optimal

value. We focus on first-order methods with a linear dependence on the number of non-zero entries
of C) and operating in the regime of moderate ε. Prior work on this problem in this algorithm class in-
cludes saddle-point optimization [GH16a], mirror-prox combined with low-rank sketching [BBN13,
CDST19a], low-rank first-order methods [YTF+19a], and algorithms for “covering SDPs” [JLL+20a].

7

Our Contribution. In joint work [LP20] with Yin Tat Lee, we obtain for this problem a first-
order algorithm at a cost of Õ

(
m
ε3.5

)
, where m is the number of non-zeroes in the cost matrix.

This improves upon the previously fastest solver of Arora-Kale[AK07]. We build upon Arora-Kale’s
multiplicative weights framework with the simple modification of making frequent low-accuracy
approximations (to reduce the cost) and infrequent exact computations (to “reset” the error resulting
from approximation). Our solver has found use in coding theory [JST21] and adversarial robustness
[AJRV20]. We detail our result in Chapter 2.

General SDPs. We adopt our above idea of robust updates in a general-purpose SDP solver as
well. We now, however, shift gears from the regime of moderate ε to low ε, for which, broadly,
there exist two classes of iterative algorithms: cutting-plane methods and interior-point methods.

Cutting-plane methods iteratively search for a small ball containing the function optimum we seek.
They start with a large convex set guaranteed to contain the optimum and, in each iteration, query at a
point in this set a separation oracle that tells them which half of the current search space the optimum
lies in. Using this information, they shrink this search set by a constant factor in each iteration and,
in a finite number of iterations, zero in on the optimum. Since Khachiyan proved [Kha80] that the
ellipsoid method solves linear programs in polynomial time, cutting plane methods have become
an active area of research in both discrete and continuous optimization [GLS81a, GV02]

In contrast, interior point methods turn the original constrained optimization problem into a
sequence of unconstrained optimization problems parametrized by a scaling factor that ascribes
relative weight to optimizing the objective versus enforcing feasibility. The solutions to these
successive problems form a well-defined central path through the original feasible set and converge
to the approximate optimum in a finite number of steps. Since Karmarkar’s proof [Kar84] that
interior point methods can solve linear programs in polynomial time, these methods have seen
tremendous progress [NN92, NN94, Ans00] and have been central to several recent breakthroughs
in algorithms for combinatorial optimization [Lee16, LS14, VDBLL+21, vdB21, KLS22].

Thus, the two algorithms greatly differ in terms of the amount of information known about the opti-
mum: For cutting plane methods, all one knows is that the solution lies inside an intersection of all
the halfspaces returned by the oracle so far; for interior point methods, we have a system of equations
(given by, for example, the KKT conditions) that precisely describe the optimum at each step. Since
cutting plane methods use less structural information than interior point methods, they are slower
at solving almost all problems where interior point methods are known to apply. However, prior to
our work, the fastest cutting-plane method[LSW15] was faster than interior-point methods for SDPs.

Our Contribution. In joint work [JKL+20] with Haotian Jiang, Tarun Kathuria, Yin Tat Lee,
and Zhao Song, our contribution is to resolve this paradox via a new interior point method
that solves an n × n variable SDP with m constraints at a cost of Õ(

√
n · (mn2 +mω + nω)).

We obtain our result by a simple, intuitive modification to the IPM framework of Nesterov and
Nemirovskii [NN92] Instead of maintaining the true slack matrix, we maintain a spectral ap-
proximation to it that admits low-rank updates and introduce a novel potential function to show
the correctness of using this approximate matrix. Our technique has spurred further advances
in fast algorithms for specialized settings like tall dense SDPs [HJST21] and robust correlation
clustering [CPRT22]. We detail our result in Chapter 3.

1.2 Nonsmooth Optimization

In the previous section, we described our modification of the classical interior point method for
solving SDPs. In this section, we turn our attention to another second order method, the cutting
plane method, and modify it to obtain improved rates in nonsmooth optimization.

This problem class spans a multitude of practical applications: In convex settings, nonsmooth func-
tions capture properties like sparsity and low rank, both pervasive structural assumptions imposed
on real-world datasets [UT19] and the backbone of compressed sensing [CRT06] and low-rank
matrix problems [RFP10]. Nonsmooth optimization has risen in prominence on the nonconvex front
as well in the context of deep learning, for example to train deep neural networks with non-linear
activations. We study two problems in nonsmooth optimization, one convex, and one nonconvex.

Nonsmooth Convex Optimization. We study finite-sum minimization of minθ∈Rd
∑n

i=1 fi(θ) of
convex, non-smooth functions, where each function is supported on a subset of coordinates of the
problem variable. This problem is notably exemplified by decomposable submodular function
minimization (SFM), with applications in, e.g., determinantal point processes [KT10] and computer
vision [KLT09, VKR09, FJPZ13]. Our goal here is low subgradient oracle complexity.

The general “finite sum minimization” problem has been extensively studied in the setting with
smooth fi’s and has spurred the development of well-known variants of stochastic gradient methods
[RM51, BC03, Zha04, Bot12] such as [RSB12, SSZ13b, JZ13a, MZJ13, DBLJ14b, Mai15, AZY16, HL16a,
SLRB17a], which in turn powered tremendous empirical success in machine learning through widely
used software packages such as libSVM [CL11a]; almost universally, these algorithms leverage the
“sum structure” of the objective by sampling, in each iteration, one fi with which to make progress.

However, these prior algorithms chose such an fi arbitrarily, which fails to make sufficient progress
in our setting. In particular, all variants of gradient descent for this problem have a polynomial
dependence on the condition number. Existing cutting plane methods, on the other hand, trade off
dependence on condition number for a suboptimal dependence on the dimension. Additionally, the
work on non-smooth ERM crucially requires the objective function to be a sum of a smooth ERM
part and a non-smooth regularizer. These results do not apply to the many important problems
for which the objective function cannot be split in this way.

Our Contribution. In joint work [DJL+22] with Sally Dong, Haotian Jiang, Yin Tat Lee, and
Guanghao Ye, we provide an algorithm that solves this problem in a nearly-linear (in total
effective dimension) number of queries to the subgradient oracle.

Our subgradient oracle complexity obtained here is nearly optimal. We obtain our result by
adaptively choosing the fi to make progress on in any given iteration; we operate in a conceptually
novel cutting-plane framework. This work also implies state-of-the-art theoretical results for
decomposable SFM. The detailed presentation is in Chapter 4.

Nonsmooth Nonconvex Optimization. Relative to its convex counterpart, e.g., described above,
scant research has investigated non-convexity in the non-smooth setting. However, with the advent
of deep learning, the question of studying convergence guarantees of algorithms for optimizing
non-smooth non-convex functions (of which modern neural networks are a classic example) has
come to be one of paramount importance. While there has been a growing body of research on
this topic [BHS05, Kiw07, MMM18, DDKL20, BP21], the question of non-asymptotic convergence
guarantees has seen relatively scant results.

To make progress towards this goal, the first difficulty one encounters with the class of non-smooth
non-convex problems is in defining “convergence”. For example, it is generally impossible to
obtain local minima or approximate-stationary points [NY83b, ZLSJ20], and it is even impossible
to get close to such points within any finite time independent of the dimension [KS21]. Thus,
in general, these problems are known to be impossible to solve at a dimension-free rate without
further assumptions such as convexity or smoothness.

[ZLSJ20] showed that what is in fact tractable notion of convergence for this problem class is
(δ, ϵ)-stationarity, as pioneered by [Gol77]. Put simply, a point is (δ, ϵ)-stationary if within a δ-ball
around it one can find a convex combination of subgradients that have a total norm of at most ϵ.
We remark that this is weaker than all the aforementioned notions of stationarity [ZLSJ20, KS21].
[ZLSJ20] presented an algorithm that, for an L-Lipschitz function, can achieve (δ, ϵ)-stationarity
in O

(
∆L2

δϵ3

)
calls to a specific type of first-order oracle. While a remarkable breakthrough in this field,

the oracle used in [ZLSJ20] was quite non-standard.

Our Contribution. In joint work [DDL+22] with Damek Davis, Dmitriy Drusvyatskiy, Yin
Tat Lee, and Guanghao Ye, we strengthen this result by the use of a standard first-order
oracle. We also improve the complexity guarantee for low-dimensional settings.

We obtain our first result by applying simple ideas from randomization to our geometric insights into
the algorithm of [ZLSJ20]. To achieve our second result, we use a novel cutting-plane technique.
We describe this work in Chapter 5.

1.3 Linear Algebraic Problems

Optimization techniques have been used with great success to further progress in the most founda-
tional questions in applied linear algebra. We study two questions at the interplay of these topics.

Non-Negative Least Squares Regression. Our first question under this umbrella concerns the
computational complexity of solving least squares regression when the problem data and variables
are both element-wise non-negative. Nonnegative least squares (NNLS) problems, defined as
minx≥0

1
2∥Ax − b∥22, where A ∈ Rm×n and b ∈ Rm, have been studied for decades in optimization

and statistical learning [LH95, BJ97, KSD13], with various off-the-shelf solvers available in many
standard programming languages. Within machine learning, NNLS problems arise whenever
having negative labels is not meaningful, for example, when representing prices, age, pixel
intensities, chemical concentrations, or frequency counts. NNLS is also widely used as a subroutine
in nonnegative matrix factorization [CZPA09, Gil14, KSK13] to extract sparse features in applications
like clustering, collaborative filtering, and community detection.

From an algorithmic standpoint, the nonnegativity constraint in NNLS problems is typically viewed
as an obstacle: most NNLS algorithms perform additional work to handle it, and the problem is con-
sidered harder than unconstrained least squares. However, in many important applications of NNLS,
such as text mining [BBL+07], functional MRI [AR04, JHD18], EEG data analysis [MMSBVS08],
pulse oximetry [JP87, WPTP88], statistical procedures in observational astronomy [IFAB90], and
those traditionally addressed using nonnegative matrix factorization [CZPA09], the data is also
nonnegative. We study NNLS with nonnegative data and argue that in this setting it possible to
obtain stronger guarantees than for traditional least squares.

Our Contribution. In joint work [DLPS22] with Jelena Diakonikolas, Chenghui Li, and
Chaobing Song, we introduce a width-independent, accelerated algorithm for non-negative
least squares on non-negative data. We further improve this to a linear convergence rate and
supplement all our theoretical results with experiments on real datasets.

In our result, “width” is the maximum ratio between the non-negative elements of the matrix;
width-independence means the convergence depends at most poly-logarithmically on the width,
a feature highly desirable in many problems such as those in the literature on packing/covering
LPs [Wan17]. Without additional structure, width-dependent algorithms are often not polynomial-
time. We achieve our result by leveraging structural properties specific to this problem, a novel
acceleration technique, and by incorporating a restart strategy. We present this result in Chapter 6.

Computing Lewis Weights to High Precision. While the previous problem was concerned with ℓ2
regression, we now shift gears to ℓp regression. This problem has been a fixture of machine learning
and theoretical computer science, capturing fundamental problems like linear programming (p = 1),
least squares regression (p = 2), and max-flow (p = ∞). As a first step, we study the computation
of ℓp-Lewis weights. ℓp-Lewis weights are “generalized importance scores” one can compute for
each row of a matrix, generalizing leverage scores. An alternate geometric interpretation of Lewis
weights is as the solution to the problem of computing a minimum-volume ℓp ellipsoid.

These two meanings one can assign Lewis weights lends them ubiquity in a variety of fields. Their
property of assigning importance to each row of a matrix makes it possible to use them to sample a
small number of their key rows of an input matrix in a way that the ℓp norms of the product of the ma-
trix with vectors are preserved. This has wide-ranging applications, e.g., in row sampling algorithms
for data pre-processing [DMM06, DMIMW12, LMP13, CLM+15a, CP15], for computing dimension-
free strong coresets for k-median and subspace approximation [SW18], for fast tensor factorization
in the streaming model [CCDS20], and for ℓ1 regression, a popular model in machine learning
used to capture robustness to outliers, in: [DLS18] for stochastic gradient descent pre-conditioning,
[LWYZ20] for quantile regression, and [BDM+20] to provide algorithms for linear algebraic problems
in the sliding window model. They are also used in statistics (e.g., in D-optimal design) and opti-
mization (e.g., in the construction of nearly-optimal self-concordance barriers for polytopes [LS13]).

Computing ℓp-Lewis weights, thus, is an essential algorithmic primitive, and faster ℓp-Lewis
weights computation can have wider ramifications for exciting runtime improvements in the
aforementioned areas. The previous known high-accuracy ℓp-Lewis weights solver [CP15] was
limited to the range p ∈ (0, 4), and there was no such result for the range p ≥ 4.

Our Contribution. In joint work [FLPS22] with Maryam Fazel, Yin Tat Lee, and Aaron
Sidford, we give the first high-precision ℓp-Lewis weights solver for p ≥ 4.

Our work thus completes the picture on efficient ℓp-Lewis weight computation for all p > 0. The
prior approach was limited by its use of fixed-point iterations, which, by design, do not converge
for p ≥ 4. Departing from this technique, our new insight for p ≥ 4 is to instead use the structural
properties of the convex program describing ℓp-Lewis weights. We present this result in Chapter 7.

1.4 Online Optimization

Outside of the theme of scalability as exemplified in the previous sections, we also study the
application of optimization theory to the design of low-regret algorithms in market economics. This

was work done as an intern at Google Research (Market Algorithms). Specifically, we study budget-
constrained online advertising, a problem of paramount importance to modern technological giants.
The broad goal of our problem is to determine bids for incoming queries to maximize advertisers’
targets subject to their specified constraints. We focus on a single value-maximizing advertiser
under an increasingly popular constraint: Return-on-Spend (RoS). We quantify efficiency in terms
of regret relative to the optimal algorithm, which knows all queries a priori.

Our Contribution. In joint work [FPW23] with Di Wang and Zhe Feng, we contribute
a simple online algorithm that achieves near-optimal regret in expectation while always
respecting the specified RoS constraint when the input sequence of queries are i.i.d. samples
from some distribution. Integrating this with the previous work of Balseiro, Lu, and Mirrokni,
we also achieve near-optimal regret while respecting both RoS and fixed budget constraints.

Our algorithm follows the primal-dual framework and uses online mirror descent (OMD) for the
dual updates. However, we need a non-canonical setup of OMD, and therefore the classic low-regret
guarantee of OMD, which is for the adversarial setting in online learning, no longer holds. This
necessitates a novel white-box analysis of first-order methods seen in the literature on packing
LPs [Wan17] in conjunction with problem-specific structure. This result is presented in Chapter 8.

1.5 Organization of the Thesis

The work presented in this thesis is the result of several research collaborations. Prior publications
of the work in this thesis are listed below. All publications follow the alphabetical ordering of
authors, per the convention in theoretical computer science.

• Chapter 2: An Õ(m/ε3.5) Algorithm for Semidefinite Programs with Diagonal Constraints;
joint work with Yin Tat Lee; published in Conference on Learning Theory (COLT), 2020

• Chapter 3: A Faster Interior Point Method for Semidefinite Programming; joint work with
Haotian Jiang, Tarun Kathuria, Yin Tat Lee, and Zhao Song; published in Foundations of
Computer Science (FOCS) 2020

• Chapter 4 Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient
Oracle Complexity; joint work with Sally Dong, Haotian Jiang, Yin Tat Lee, and Guanghao Ye;
published in Advances in Neural Information Processing Systems (NeurIPS) 2022

• Chapter 5 A gradient sampling method with complexity guarantees for Lipschitz functions
in high and low dimensions; joint work with Damek Davis, Dmitriy Drusvyatskiy, Yin Tat
Lee, and Guanghao Ye; published in Advances in Neural Information Processing Systems
(NeurIPS) 2022

• Chapter 6: A Fast Scale-Invariant Algorithm for Non-negative Least Squares with Non-
negative Data; joint work with Jelena Diakonikolas, Chenghui Li, and Chaobing Song;
published in Advances in Neural Information Processing Systems (NeurIPS) 2022

• Chapter 7 Computing Lewis Weights to High Precision; joint work with Maryam Fazel, Yin
Tat Lee, and Aaron Sidford; published in Symposium on Discrete Algorithms (SODA) 2022

• Chapter 8: Online Bidding Algorithms for Return-on-Spend Constrained Advertisers; joint
work with Di Wang and Zhe Feng; published in TheWebConf (called WWW until recently) 2023

Chapter 2

An Õ(m/ε3.5) Cost Algorithm for Semidefinite Programs with
Diagonal Constraints

In this chapter, we study semidefinite programs with diagonal constraints. This problem class
appears in combinatorial optimization and has a wide range of engineering applications such
as in circuit design, channel assignment in wireless networks, phase recovery, covariance matrix
estimation, and low-order controller design. We give a first-order algorithm to solve this problem
to ε-accuracy, with a run time of Õ(m/ε3.5), where m is the number of non-zero entries in the cost
matrix. We improve upon the previous best run time of Õ(m/ε4.5) by Arora and Kale. As a corollary
of our result, given an instance of the Max-Cut problem with n vertices and m ≫ n edges, our
algorithm when applied to the standard SDP relaxation of Max-Cut returns a (1 − ε) − αGW cut in
time Õ(m/ε3.5), where αGW = 0.878567 is the Goemans-Williamson approximation ratio. We obtain
this run time via the stochastic variance reduction framework applied to the Arora-Kale algorithm,
by constructing a constant-accuracy estimator to maintain the primal iterates.

2.1 Introduction

Consider the SDP maximizing C • X def
= Tr(CX) over the set of n × n positive semidefinite matrices

with every diagonal entry bounded by a constant:

maximize C • X subject to X ⪰ 0,Xii ≤ 1 for all i ∈ [n]. (2.1.1)

We seek a matrix X̃∗ ⪰ 0 with X̃∗ii ≤ 1 for all indices i ∈ [n], such that X̃∗ satisfies C • X̃∗ ≥
C • X∗ − ε

∑
i, j

∣∣∣Ci j
∣∣∣, where X∗ is an optimal solution of (2.1.1). This is not an ε-multiplicative

guarantee (C • X̃∗ ≥ C • X∗(1 − ε)), but a slightly weaker one, since1 we have
∑

i, j |Ci j| ≥ C • X∗. We
remark that a multiplicative guarantee is not always easy to provide; indeed, even many classical
optimization algorithms provide a guarantee that is only additive in some quantity that bounds
from above the difference of the function values between the initial and optimal points. For example,
gradient descent on an L-smooth convex function f over a set with diameter D returns, after k
iterations, a point xk such that f (xk) − f (x∗) ≤ O(LD2k−1), where f (x0) − f (x∗) ≤ O(LD2).

To solve (2.1.1) as per the above accuracy criterion, it suffices to solve (2.1.2):

minimize f (X) def
= −Ĉ • X +

n∑
i=1

(Xii − ρi)+, subject to X ⪰ 0. (2.1.2)

1Since X∗ ⪰ 0, we have |X∗i j| ≤ Xii, which, by the SDP constraint, is upper bounded by 1. Then, applying Hölder’s
inequality gives C • X∗ ≤

∑
i, j |Ci j|maxi, j |X∗i j| ≤

∑
i, j |Ci j|.

13

This problem is derived from (2.1.1) by promoting the diagonal constraints to the objective and

appropriately scaling C to Ĉ def
= diag(1/

√
ρ)Cdiag(1/

√
ρ), where ρ ∈ Rn such that ρi =

∑
j∈[n]

∣∣∣Ci j
∣∣∣.

By rescaling the entries of the matrix C as Ci j = nCi j/
∑

i, j |Ci j|, we assume
∑

i∈[n] ρi = n. Lemma 2.1.4
gives a solution of (2.1.1) from a solution of (2.1.2).

For (2.1.1), [AK07] have the previous best run time linear in m def
= nnz(C), the size of the input.

Though there exist algorithms with better dependence on ε, their dependence on n is superlinear, as
we describe in Section 2.1.1. In this chapter, we operate in the regime of moderate ε and large n, focusing
on first-order methods with linear dependence on m.

To solve (2.1.1), [AK07] use the algorithm “matrix multiplicative weights (MMW) update”, which,
in this setting, can be interpreted as mirror descent in the nuclear norm2, using the negative entropy
function, Φ(X) = X • log X, over the scaled simplex,D = {X : X ⪰ 0,Tr X = n}, as the mirror map.
Their iterates at iteration t are given by

X(t) = n
exp

(
Y(t)

)
Tr exp

(
Y(t)) , where Y(t) =

t−1∑
s=1

−η∇ f (X(s)), (2.1.3)

with step size η = O(ε) and gradient ∇ f (M) = diag(1M≥ρ)− Ĉ. Computing this gradient entails only
comparing the diagonal entries of the current iterate with a fixed vector. Therefore, in each iteration,
the naïve computational cost of this method is dominated by Ω(nω) for the matrix exponentiation
[PC99], prohibitively expensive for a large problem dimension. [AK07] circumvent this by
approximating the diagonal entries of the matrix exponential. Therefore, their overall cost is composed
of the following three parts: (1) mirror descent requiring O(1/ε2) iterations to converge, (2) degree
O(1/ε) Taylor approximation of the matrix exponential, each matrix-vector product costing O(m),
and (3) O(1/ε2) random projections [JL84] to estimate the diagonal entries of the matrix exponential;
combined, these give a run time of Õ(m/ε5), which, [AZL17a] observe, can be sped up to O(m/ε4.5)
by using Chebyshev (instead of Taylor) approximation of matrix exponentials (see [SV+14]).

Our contribution. In this chapter (published, in joint work [LP20] with Yin Tat Lee, at the
Conference on Learning Theory, 2020), we solve (2.1.1) with a run time of Õ(m/ε3.5), thus speeding
up the previous best run time for this problem. Our result (formally stated in Theorem 2.2.1) is
effected by careful technical work that incorporates into the Arora-Kale framework of mirror descent
for SDPs, variance-reduced estimators and fast products of matrix exponentials with vectors.

We use the generalized negative entropy, Φ(X) = X • log(X) − Tr X, as our mirror map, and our pri-
mary high-level idea is the following: instead of exactly computing the primal iterate in each iteration, we
frequently approximate it at a low accuracy (to reduce the cost) and infrequently at a high accuracy (to “reset”
the error resulting from approximation). This idea is inspired by recent variance-reduction methods
[SSZ13c, JZ13b, DBLJ14a, HL16b, SLRB17b]. The periodic high-accuracy computations and small
bias and variance of estimators in the low-accuracy computations ensure sufficient closeness, in the
appropriate norm, of the estimated iterates to the true ones, which, by the convergence guarantee
of approximate mirror descent, leads to an ε-optimal solution. Making this variance-reduction
work in the MMW setting requires several technical ideas, as follows.

We introduce the technical idea of expanding the domain of our mirror map by a polylogarithmic
factor. Due to the expanded domain and our choice of the mirror map, the gradient step of mirror
descent falls in the interior of this domain. An upshot of these modifications to the domain and mirror

2The nuclear norm of a matrix X ∈ Rm×n is the sum of its singular values: ∥X∥nuc
def
=

∑min(m,n)
i=1 σi(X).

map is that the primal iterate is related to the dual via simply a matrix exponential, with no trace nor-
malization of the form seen in Equation (2.1.3). Thus, the quantity for which we require an estimator
is greatly simplified. Drawing on the observation of [AK07] that the gradient uses only the diagonal
entries of the primal iterate, we build an estimator, with a small bias and variance, for the change in di-
agonal entries of the (dual) matrix exponential. We also prove the strong convexity parameter of our
mirror map on the expanded domain by confecting classical results from convex analysis in a novel
way. Due to the ubiquity of the MMW framework in optimization, efficient algorithms for SDPs,
balanced separators, Ramanujan sparsifiers, packing/covering, and machine learning, we anticipate
that our technical contributions will be useful for problems that hinge on the MMW foundation.

Applications. When C is a graph Laplacian, (2.1.1) is the SDP relaxation of the Max-Cut problem,
as was given by Goemans and Williamson [GW95]. An NP-complete problem [Kar72], Max-
Cut has seen widespread utility in circuit design [CKC83], statistical physics [BGJR88], semi-
supervised learning [WJC13], and phase recovery [WdM15]. Another instance of (2.1.1) is max-
norm regularization [Jag11], a convex surrogate for rank minimization [SS05] enforcing simplicity
in modeling observations [FHB04]. SDPs of the form of (2.1.1) have also found applications
in community detection [ABH15, GV16, MS16a] and as relaxations to the maximum-likelihood
estimator in the group synchronization problem [SS11, BCSZ14]. We also highlight an interesting
recent application of (2.1.1) in the area of adversarial robustness [AJRV20].

Chapter outline. After surveying related work (Section 2.1.1), we lay out required background (
Section 2.1.2). Our algorithm is in Section 2.2, our estimator and proof sketch of the main result in
Section 2.2.1, and complete mathematical details in the Appendices.

2.1.1 Related work

We describe in this section previous work on (2.1.1) using first-order methods, other than that of
[AK07]. Of note is that most papers below solve problems more general than (2.1.1), and the run
times we mention occur when specialized to (2.1.1). For the sake of completeness of exposition,
we explain some details of these results in Section A.1. Though our focus is restricted to first-order
methods, for completeness, we mention that the interior-point method by [HRVW96] applied to
(2.1.1) costs O(nω+1/2), and the current fastest cutting plane method [LSW15] costs Õ(n(nω +m)).

Saddle-point formulation. Since any SDP can be instantiated as an online convex optimization
problem we apply to our setting some notable results from online convex optimization. To do so,
we first reduce (2.1.1) to a feasibility problem following the approach of [AHK05].

The first step in this reduction requires obtaining a range of values of the optimum solution, which is
what we derive in this paragraph. Recall our assumption that

∑
i, j |Ci j| = n. The facts X∗ ⪰ 0 and X∗ii ≤

1 for i ∈ [n] together imply that |X∗i j|
2
≤ X∗iiX

∗

j j ≤ 1, which in turn bounds the optimum from above
as OPT =

∑
i, j Ci jX∗i j ≤

∑
i, j |Ci j||X∗i j| ≤ n. We can also bound the optimum from below by choosing X

to be the zero matrix, thus bounding OPT by some variable λ that satisfies the inclusion λ ∈ [0,n].

Next, we use this range to construct appropriate feasibility problems, which when solved, reduce to
solutions to (2.1.1). Let A0 =

1
λC, b0 = 1, Ai = −eie⊤i , and bi = −1 for i ∈ [n]. Therefore, solving (2.1.1)

requires, for each guess of λ (obtained via a binary search over its range), solving the feasibility
problem:

Find Z ∈ Sn
≥0 subject to Ai • Z − bi ≥ 0, for all i ∈ {0,n},Tr Z ≤ n. (2.1.4)

To solve (2.1.4), we leverage the technique of [GH16a], in solving the saddle point problem

max
X∈Sn

≥0,Tr X=1
min

p∈Rm
≥0,∥p∥1=1

m∑
i=1

pi(Ai • X − bi). (2.1.5)

Notice that the inner (minimization) problem returns the j corresponding to the smallest value of
A j • X − b j, since p is a vector in the simplex, and we can choose it to be the vector of all zeroes
with one at the j-th index. Then, if the optimum of (2.1.5) is non-negative, solving (2.1.5) up to
an additive accuracy of ε is equivalent to finding a solution in the spectrahedron that satisfies all
Ai • X − bi ≥ 0 upto an additive error of ε. Solving (2.1.5) using the definitions of Ai, bi, and C
from the problem (2.1.4), we get a solution X that satisfies Xii ≈ 1/n ± ε. However, note that the
requirement of (2.1.1) is Xii ≈ 1 ± ε, and therefore the accuracy parameter of (2.1.5) needs to be
scaled down to ε/n. This causes the run time of [GH16a] for (2.1.1) to be Õ(m(n/ε)2.5).

By the same reasoning, when solving (2.1.1) to ε-multiplicative accuracy, the work of [BBN13], which
uses a randomized Mirror-Prox algorithm, incurs a cost of Õ(n5/ε3), and Follow the Compressed
Leader by [AZL17a] and rank-1 sketch by [CDST19a] incur a cost of Õ(m(n∥C∥∞/ε)2.5).

Thus, all the above saddle-point algorithms, when specialized to (2.1.1) with our accuracy re-
quirements, have superlinear runtimes. We emphasize that [GH16a], [AZL17a], and [CDST19a]
provide algorithms satisfying ε-additive accuracy. When we translate our accuracy results to their
language, the costs are not quite comparable. For instance, [CDST19a], for ε-additive accuracy
for (2.1.1), incurs a cost of Õ(m(n∥C∥∞/ε)2.5). Our algorithm, using this accuracy criterion, incurs a
cost of Õ(m(

∑
i, j |Ci j|/ε)3.5). Unless we assume additional structure on the matrix C, the comparison

between these two costs is inconclusive.

Low-rank updates. When C is the graph Laplacian in (2.1.1), it is known that there exists an
ε-accurate solution of rank as low as O(1/ε) [RS09, MS16b, MMMO17]. Many researchers capitalize
on this fact and perform low-rank updates, which reduces cost per iteration.

For example, [KL96] base their algorithm on the framework of [PST91] in conjunction with the
power method to achieve a run time of Õ(mn/ε3). As another example, [Haz08] incorporates into
the Frank-Wolfe algorithm [FW56] fast computation of an approximate minimum eigenvector
and provides an Õ(mn3/ε3)-algorithm. Another noteworthy result [YTF+19a] returns a rank-R
approximation to an ε-optimal solution at a cost Õ(Rn/ε2 + n/ε3). Even though, as alluded to
earlier, there exists a rank-O(1/ε) solution to the MaxCut SDP, perturbing such a solution by an
appropriately small amount gives an ε-optimal solution that is in fact full rank. Indeed, per Theorem
6.2 of [YTF+19a], for any r < R, the iterate X̂t returned by their algorithm in iteration t satisfies
lim supt→∞EΩdist∗(X̂t,Ψ∗) ≤ (1+ r/(R− r− 1)) ·maxX∈Ψ∗ ∥X− [X]r∥∗, whereΩ is the randomness in
their algorithm,Ψ∗ is the solution set, R is the rank of the iterate returned, and [X]r is an r-truncated
singular value decomposition of matrix X. The existence of full-rank matrices in the solution set
Ψ∗ implies a possibly large bound on the right hand side above, thereby making it inconclusive
that [YTF+19a] is faster than our achieved run time. We do conjecture, though, that exploiting the
existence of a low-rank solution is a promising approach to speed up our run time even more.

Polynomial mirror map. An attempt we had previously made to improve the run time over that of
[AK07] was to use a “polynomial-style” mirror map inspired by that in [AZL17a], in the hopes that
we can avoid matrix exponentiation. Specifically, we considered the map Φ(X) = 1

1+1/2p Tr X1+1/2p.
One reason this mirror map fails to give us the desired speed-up is that the projection step with this

map is X = (Y+)2p, where Y+ is the matrix obtained by zeroing out the negative eigenvalues of Y; note
that this step is as expensive as matrix exponentiation. We believe that the exploration of alternative
mirror maps with cheaper projection steps is an interesting (and fundamental) open problem.

Variance-reduction methods. Our main idea of low-accuracy estimation interspersed with pe-
riodic high-accuracy estimates may, at first glance, seem similar to that in variance reduction
algorithms such as SVRG [JZ13b]. We wish to highlight one key difference here: in [JZ13b], the
objective is a sum of functions ψi, each usually representing the loss incurred by the use of a training
example and label, and the algorithm employs an unbiased estimator of the gradient. In our case,
neither is (2.1.2) a sum of such functions, nor is its gradient (diag(1X>=ρ) − Ĉ) cheap to estimate due
to X being a matrix exponential. In view of these obstacles, we use dimension-reduction techniques
to maintain an estimator of the slow-changing diag(X). Since this quantity is not the gradient itself,
its estimator need not be unbiased, a fact we use to our benefit in reducing the cost of estimation.

2.1.2 Preliminaries

Notation. We use Rn to denote the subspace of n-dimensional real vectors, 1 for the vector
of all ones, and 1{E} for the all-zero vector with one at coordinates where E is true. We use x+

to denote the non-smooth function that equals x when x ≥ 0 and truncated to zero otherwise.
Denote by Sn the subspace of n × n symmetric matrices and by In the n × n identity matrix. For
u ∈ Rn, diag(u) is the n × n diagonal matrix with diag(u)ii = ui. For A,B ∈ Sn, the trace inner

product is A • B def
= Tr(AB) =

∑
i, j Ai jBi j. We define |||A||| =

∑
i |Aii|. Given a scalar function f and

a vector u, we use f (u) to mean that entrywise, and similarly, for a symmetric matrix A with
eigendecomposition A = UΛU⊤, f (A) = U f (Λ)U⊤. Given A ∈ Rn×n and p ∈ Rn, A ≥ p means

Aii ≥ pi for all i ∈ [n]. For u ∈ Rn, N ∈ N, and vectors ζk
i.i.d.
∼ N(0, In) for k ∈ [N], the scalar

v = RandProj(u,N) def
= 1

N
∑N

k=1(u⊤ζk)2. This definition gives us the property Ev = ∥u∥22, by using
linearity of expectation. We overload the definition of RandProj by applying it to symmetric
matrices: given A ∈ Sn, we use RandProj(A,N) to denote the diagonal matrix obtained by applying
RandProj to each row of A. Then the diagonal matrix B = RandProj(A,N) satisfies the property
EB = diag(A)2. We use Õ to denote polylogarithmic factors. The superscript ∗ denotes optimality
for variables and Fenchel conjugate for functions.

Fact 2.1.1 ([ALO16a]). Given A ⪰ 0, B ∈ Sn, and α ∈ [0, 1], the inequality Tr
(
BAαBA1−α

)
≤ A • B2 holds.

Fact 2.1.2 ([Wil67]). For a symmetric matrix-valued function X(t) with argument scalar t, we have
d
dt exp(X(t)) =

∫ 1
α=0 exp(αX(t)) d

dt X(t) exp((1 − α)X(t))dα.

Setup. Our underlying algorithm to solve (2.1.2) is a slight variant of lazy mirror descent (also
called Nesterov’s Dual Averaging [Nes09]), which we term approximate lazy mirror descent. To solve
minx∈X f (x) using this algorithm, select a mirror mapΦ : D→ R and a norm; the associated Bregman

Divergence isDΦ(x, y) def
= Φ(x) −Φ(y) −

〈
∇Φ(y), x − y

〉
; set x(1)

∈ argmin
X∩D
Φ(x) and z(1)

∈ ∇
−1Φ(0).

We repeat, in succession, the gradient update, ∇Φ(z(t+1)) = ∇Φ(z(t)) − η∇ f (x(t)), and the approximate
projection, finding x̃(t+1) satisfyingE∥x̃(t+1)

−x(t+1)
∥ ≤ δ, where x(t+1)

∈ argminx∈X∩DDΦ(x, z(t+1)). This
is displayed in the appendix in Algorithm A.2.1 with its convergence guarantee in Theorem 2.1.3.

Theorem 2.1.3 (Convergence of Lazy Mirror Descent). Fix a norm ∥ · ∥. Given an α-strongly convex
mirror map Φ : D → R and a convex, G-Lipschitz objective f : X → R, run Algorithm A.2.1 with step

size η and E∥x(t)
− x̃(t)

∥ ≤ δ. Let D
def
= supx∈X∩DΦ (x) − infx∈X∩DΦ (x) and x∗ = arg minX f (x). Then,

Algorithm A.2.1, after T iterations, returns x̃t∗ , satisfying

E f (x̃(t∗)) − f (x∗) ≤
D
Tη
+

2ηG2

α
+ δG. (2.1.6)

Lemma 2.1.4. Given C ∈ Rn×n and 0 ⪯ X, let ρ ∈ Rn with ρi =
∑n

j=1

∣∣∣Ci j
∣∣∣; diagonal matrix S with

Sii = min(1/√ρi, 1/√Xii) for i ∈ [n]; X̂ = SXS; Ĉ = diag(1/√ρ)Cdiag(1/√ρ). Then, X̂ ⪰ 0, X̂ii ≤ 1 for all
i ∈ [n], and Ĉ • X −

∑n
i=1

(
Xii − ρi

)+
≤ C • X̂.

2.2 Our Approach

We present below our main result.

Theorem 2.2.1 (Main Result). Given C ∈ Rn×n with m ≥ n non-zero entries and 0 < ε ≤ 1
2 , we can find, in

time Õ(m/ε3.5) and with high probability, a matrix Y ∈ Sn withO (m) non-zero entries and a diagonal matrix

S ∈ Rn×n so that3 X̃∗
def
= S · exp Y · S satisfies X̃∗ ⪰ 0, X̃∗ii ≤ 1 for i ∈ [n], and C • X̃∗ ≥ C • X∗ − ε

∑
i, j |Ci j|,

where X∗ is an optimal solution of (2.1.1).

Our algorithm achieving this result is presented in Algorithm 2.2.1, with parameters in Table 2.1.
As a corollary, for the Max-Cut problem on a graph with n nodes and m edges, our algorithm gives
a cut that is (1 − ε)αGW optimal4, in time Õ(m/ε3.5), where αGW ≈ 0.878567.

Algorithm 2.2.1 Our Algorithm
Input: Cost matrix C ∈ Rn×n, accuracy ε
Parameters: Displayed in Table 2.1

1: Initialize t← 0, Y(1)
← 0. Set Ĉ and ρ from Lemma 2.1.4 and ∇ f (X) = diag(1X≥ρ) − Ĉ

2: for Touter iterations do
3: t← t + 1
4: ẽxp(1

2 Y(t))← ChebyExp(1
2 Y(t),TCheby, δCheby) ▷ Defined in Corollary A.4.17

5: X̃(t)
← RandProj(ẽxp(1

2 Y(t)),Tjl) ▷ High-accuracy projection
6: Y(t+1)

← Y(t)
− η∇ f (X̃(t)) ▷ Gradient update

7: for ti = 1→ Tinner do
8: t← t + 1
9: θ̂(ti) ← UpdateEstimator(X̃(t−1),Y(t−1), ε, η) ▷ See Algorithm 2.2.2

10: X̃(t)
j j ← (

√
X̃(t−1)

j j + 1 + θ̂(ti)
j)2
− 1 for j ∈ [n] ▷ Constant-accuracy projection

11: Y(t+1)
← Y(t)

− η∇ f (X̃(t)) ▷ Gradient update
12: end for
13: end for
14: For t∗ unif.

∼ {1, 2, . . . ,Touter}, return Y(t∗) and S, where S is from Lemma 2.1.4.

Before proceeding to the proof sketch of Theorem 2.2.1, we call attention to a technical concept
crucial to our analysis: we add to (2.1.2) the constraint Tr X ≤ K, where K = 40n(log n)10. The optimal
X∗ remains valid under this constraint because Tr X∗ = n < K. We show, in Lemma 2.2.8, that

3Since X̃∗ can be dense, we represent it implicitly by only returning the matrices Y and S.
4Assuming the Unique Games Conjecture, this is the best we can hope for Max-Cut [KKMO07].

Parameter Value Proof

Diameter D K log K Lemma A.4.1
Strong convexity α 1/(4K) Lemma 2.2.9

Step size η 1
8×104(log(n/ε))11 ε

2 Lemma A.4.24
Inner iteration count Tinner ε−2 Section A.4.4
Outer iteration count Touter

1
ε · 24 × 105(log(n/ε))11 log n Lemma 2.2.8

JL projection count Tjl (2 × 105) · (log n)21
· ε−2 Lemma A.4.24

Chebyshev approximation degree TCheby 150 log(n/ε) · ε−1/2 Lemma A.4.19
Chebyshev approximation accuracy δCheby (ε/n)401 Lemma A.4.19

Table 2.1: All Algorithm 2.2.1 parameters and where their values are set. K = 40n(log n)10.

throughout our algorithm, this inequality remains inactive. Coupled with the Legendre dual of
our mirror map Φ(X) = X • log X − Tr X, this fact results in X = exp(Y) (Lemma A.4.25). Since
the gradient of our objective in (2.1.2) requires computing only the diagonal entries of the primal
iterate, approximate mirror descent requires estimators only for the diagonal entries of exp(Y).

Proof Sketch of Theorem 2.2.1. We now compute the run time of Algorithm 2.2.1, thus proving
Theorem 2.2.1. In doing so, we provide intuition for the parameters in Table 2.1. This sketch
assumes that we are in iteration t and drops all superscripts.

(1) To compute exp(Y)ii, we first approximate ẽxp(Y/2) to ε-accuracy using Chebyshev polynomials.
We show in Lemma A.4.18 that the spectrum of Y lies in the range [−O(1/ε), Õ(1)], which allows
for Chebyshev approximation with Õ(1/

√
ε) terms, thus giving the cost of each projection to be

Õ(m/
√
ε). The upper bound of Õ(1) on the spectrum is critical to getting this cost, because in

case of a symmetric range of [−O(1/ε),O(1/ε)], the number of terms required would be Õ(1/ε).
The Õ(1/

√
ε) terms is in contrast with the O(1/ε) required for Taylor approximation. Having

approximated ẽxp(Y/2), we then estimate each exp(Y)ii with Õ(1/ε2) projections via the JL sketch
in the high-accuracy steps and with Õ(1) randomized projections in the Tinner low-accuracy steps.
Therefore the total cost of the algorithm over Touter iterations is roughly Touter · (m/

√
ε) · (1/ε2+Tinner).

From this expression, the optimal choice of Tinner (up to polylogarithmic factors) is Tinner = 1/ε2.

(2) Due to the small bias and variance of our estimator, after Tinner inner iterations, the estimated
iterate is roughly within εK distance of the true iterate. Thus, the condition in Theorem 2.1.3
is satisfied, and its error bound applies at the end of our algorithm: E f (X̃∗) − f (X∗) ≤ D/(Tη) +
2ηG2/α + δG. Using D, G, and α from Table 2.1 and Tinner from Step 1 and bounding by εK, this
inequality simplifies to ε2/(ηTouter) + η ≤ ε.

(3) The step size η is chosen by studying the error generated in each estimation step versus the error
our framework can tolerate. Estimating (exp(Y + ∆))ii from (exp Y)ii via a first-order approximation
accrues an error of Tr

(
∆ exp Y

)
. Applying Hölder’s inequality, the value of G, and the trace bound

enforced by Lemma 2.2.8 yields Tr
(
∆ exp Y

)
≤ ηK. Therefore, after Tinner iterations, the variance

of the error is Tinnerη2K2. Equivalently, the overall error after Tinner iterations is
√

TinnerηK. For this
to be bounded by εK, we must have η ≤ ε/

√
Tinner. Plugging in Tinner from Step 1 gives η ≈ ε2.

(4) The value of η from Step 3 and the inequality from Step 2 give Touter ≈ 1/ε. Plugging this value
of Touter above gives the overall algorithm cost Õ(m/ε3.5). We show the cost breakdown comparing
our algorithm to Arora-Kale in Table 2.2.

We boost our result to the high probability statement of Theorem 2.2.1 over multiple runs of the
algorithm. We sidestep the issue of storage cost of X̃∗ and cost of matrix-matrix products by
dimension reduction techniques. This finishes the proof of our error guarantee. Lemma 2.1.4
implies that X̃∗ ⪰ 0 and satisfies the diagonal constraints. Table 2.2 shows the steps in our algorithm
that help us improve upon the runtime of [AK07]. □

Table 2.2: Comparing [AK07] to our algorithm.

[AK07] Algorithm 2.2.1

(Previous best) Low-accuracy steps + High-accuracy steps

Number of iterations Õ(ε−2) Õ(ε−3) + Õ(ε−1)
Number of projections per iteration Õ(ε−2) Õ(1) + Õ(ε−2)

Cost per projection O(mε−1) Õ(mε−1/2) + Õ(mε−1/2)
Total Cost Õ(mε−5) Õ(mε−3.5) + Õ(mε−3.5)

2.2.1 Our Estimator

In this section, we consider the ti’th iteration in the inner loop of Algorithm 2.2.1; suppose this is
the t’th overall iteration. For now, we drop all superscripts and fix the notation.

Definition 2.2.2. Let ∆ = −η∇ f (X), Ys = Y+ s∆ for s ∈ [0, 1], τ̄ = 1−τ, δexp =
4800ε401

n390 , θ1i = (exp(Ys)ii+

1)−1/2, θ2i =
1
2 (exp(τ̄Ys)∆ exp((τ − 1/2)Ys) exp((1/2)Ys))ii, b1i = θ1i(2δexp+

√
2(1+ 2δexp)(ε/n)400), and

b2i = 15δexpηK.

To construct an estimator for the update from exp(Y) to exp(Y + ∆), we estimate the update in√
(exp Y)ii + 1 using the Fundamental Theorem of Calculus. The motivation for this choice of

function is two-fold: (1) because of the square root, the variance of error in update is controlled by
the trace of the matrix exponential, which in turn is bounded by Lemma 2.2.8; (2) the update term
has the derivative of the function at the current term in it, and since the derivative of the square
root is the inverse square root, we need to use

√
exp(Y)ii + 1 instead of

√
exp(Y)ii to prevent the

update term from becoming unbounded in case exp(Y)ii is too small. By chain rule, Fact 2.1.2, and
the fundamental theorem of Calculus,√

(exp(Y + ∆)) j j + 1 =
√

(exp(Y)) j j + 1 +
∫ 1

s=0
((exp Ys) j j + 1)−1/2︸ ︷︷ ︸

def
= θ1 j ; estimated using θ̂1 j

1
2 (

∫ 1

τ=0
exp(τYs)∆ exp(τ̄Ys)dτ) j j︸ ︷︷ ︸

def
= θ2 j ; estimated using θ̂2 j

ds

︸ ︷︷ ︸
def
= θ j; estimated using θ̂ j

.

(2.2.1)

As indicated in Equation (2.2.1), we split the quantity to be estimated into two parts, separately
estimating each. Estimating the first part, θ̂1 j , requires first estimating exp(Ys) j j+1 using a JL sketch
and then passing through the following Taylor approximation for the function g(u) = u−1/2, where

g(k)(x) is the k’th derivative of g at x,

InvSqrt(X̃,N) def
=

N−1∑
k=0

1
k!

g(k)(x0)
k∏

j=1

(xk, j − x0), where x0, xk, j
i.i.d.
∼ X̃. (2.2.2)

Since θ̂1 j must be unbiased, it is essential to do the Taylor approximation instead of simply evaluating
g(u) = u−1/2 at the estimator of exp(Ys) j j + 1. Indeed, for a general f and a random variable x̃ that is
an unbiased estimator of x, E f (x̃) = f (Ex̃) does not hold, as evidenced by Jensen’s inequality; on
the other hand, the intuition for the quantity from Equation (2.2.2) to be unbiased is that each term
in the sum is a product of independent, unbiased random variables. We estimate θ2 j by splitting it
into carefully chosen parts and applying the JL sketch. Algorithm 2.2.2 is the complete estimator.

Algorithm 2.2.2 UpdateEstimator(Primal X,dual Y, accuracy ε, step size η)

1: Parameters Testjl = 222104(log(n/ε))2 and Testisq = 1600 log(n/ε) (set in Lemma 2.2.4)
2: Sample s and τ uniformly from [0, 1]. Compute ∆ and Ys as per Definition 2.2.2. Let

X̃s = RandProj(ẽxp(Ys/2),Testjl). Sample ζ ∼N(0, In).

3: Compute θ̂1 j = InvSqrt(X̃s j j + 1,Testisq) for j ∈ [n].

4: Compute θ̂2 j =
1
2 (ẽxp((τ − 1

2)Ys)∆ẽxp(τ̄Ys)ζ) j
(
ẽxp(Ys/2)ζ

)
j for j ∈ [n].

5: Return the overall estimator, θ̂ j = θ̂1 jθ̂2 j , for j ∈ [n]. ▷ Coordinate-wise product

Properties of ohe estimator. The bounds on bias and variance of the estimator, as required by
Theorem 2.2.1, are stated in Lemma 2.2.3. Since θ̂ is constructed from θ̂1 and θ̂2, we first state their
properties and use them to sketch a proof of Lemma 2.2.3.

Lemma 2.2.3. The estimator θ̂(t) has the following bounds on its first and second moments.

(1) |Eθ̂i −
∫ 1

s=0

∫ 1
τ=0 θ1iθ2idsdτ| ≤ b1iθ2i + b2iθ1i + b1ib2i for i ∈ [n].

(2) E∥θ̂∥22 ≤ 19600 log(n/ε)Kη2 + 147000K2η2δexp.

Lemma 2.2.4. Given Testisq = 1600 log(n/ε), Testjl = 214T2
estisq

, Z ∈ Sn, and ε ∈ (0, 1/2), let Z̃2 =

RandProj(Z,Testjl) and θ̂1i ∼ InvSqrt((Z̃2)ii + 1,Testisq) for i ∈ [n]. Then,

(1) The first moment satisfies
∣∣∣∣∣Eθ̂1i −

1√
(Z2)ii+1

∣∣∣∣∣ ≤ √2(ε/n)400
√

(Z2)ii+1
.

(2) The second moment satisfies E|θ̂1i |
2
≤

1
(Z2)ii

1630 log(n/ε).

Lemma 2.2.5. Consider Z1,Z2,Z, and ∆ all in Sn. Sample ζ ∼ N(0, In), and define θ̂2 ∈ Rn as

θ̂2i = (Z1∆Z2ζ)i (Zζ)i. Define θ2i

def
= (Z1∆Z2Z)ii. Then for i ∈ [n]:

(1) The first moment satisfies Eθ̂2i = θ2i

(2) The second moment satisfies E|θ̂2i |
2
≤ 3

(
Z1∆Z2

2∆Z1

)
ii

(
Z2

)
ii
.

Proof sketch for Lemma 2.2.3. By construction,Es,τ,ζ1,ζ2∥θ̂∥
2
2 =

∫ 1
s=0

∫ 1
τ=0

∑n
i=1Eζ1 |θ̂1i |

2Eζ2 |θ̂2i |
2dsdτ.Plug-

ging in the second moment bounds from Lemma 2.2.4 and Lemma 2.2.5 gives

Es,τ,ζ1,ζ2∥θ̂∥
2
2 = 4890 log(n/ε)

∫ 1

s=0

∫ 1

τ=0
Tr

(
ẽxp(2τ̄Ys)∆ẽxp((2τ − 1)Ys)∆

)
dsdτ.

This step is made possible by the careful choice of split in θ̂2 that enable cancellations of 1
(ẽxpYs)ii

and (ẽxpYs)ii. Applying Fact 2.1.1 and the fact that ẽxpYs is close to the true exp Ys, the above trace
term is bounded by Tr

(
exp(Y + s∆)∆2

)
(plus a small error term). Applying Hölder’s Inequality,

Lemma 2.2.8, and values of η and G completes the proof. □

To provide proof sketches of Lemma 2.2.4 and Lemma 2.2.5, we need two technical lemmas (proved
in the Appendix) about RandProj and InvSqrt, the main workhorses for our estimators.

Lemma 2.2.6. Consider a positive random variable x sampled from a distribution X with mean µ and variance
σ2. For some integer k > 0, construct the distribution G(X) = InvSqrt (X, k) defined in Equation (2.2.2).
Then the random variable g ∼ G(X) satisfies

(1) |Eg − µ−1/2
| ≤ E

(
|x−µ|k

min(µ,x)k+1/2

)
(2) E|g|2 ≤ k

∑k−1
j=0 E

(
σ2+(µ−x)2

) j

x2 j+1

.

Lemma 2.2.7. Given u ∈ Rn such that µ
def
= ∥u∥22 , 0, and positive integers k > 1 and N ≥ 4k + 6, the

following are true for x sampled from X = RandProj (u,N).

(1) Ex = µ

(2) σ2 def
= E

(
x − µ

)2 =
2µ2

N

(3) E

(
σ2+(x−µ)2

)k

min(x,µ)2k+1

 ≤ 1
µ

(
eN/2

2N−17k +
213kk2k

Nk

)
Proof sketches of Lemma 2.2.4 and Lemma 2.2.5. Consider x ∼ Z̃2ii. By Lemma 2.2.7, Ex = Z2

ii. This
satisfies the bias requirement of Lemma 2.2.6, and therefore by applying Lemma 2.2.6, Jensen’s
inequality, and a slight modification of (3) in Lemma 2.2.7, we obtain the following inequalities.∣∣∣∣∣∣∣Eθ̂1i −

1√
1 + (Z2)ii

∣∣∣∣∣∣∣ ≤ E

∣∣∣x − (Z2)ii
∣∣∣Testisq

min(x + 1, (Z2)ii + 1)Testisq+
1
2

≤

√√
E

(x − (Z2)ii)
2Testisq

min (x + 1, (Z2)ii + 1)2Testisq+1

≤

√√√√
1

(Z2)ii + 1

 eTestisq/2

2Testjl−17Testisq
+

213Testisq Testisq
2Testisq

Testjl

Testisq

.

The values of Testisq and Testjl from Algorithm 2.2.2 give the final bias bound. The second moment

bound follows similarly, and the properties of θ̂2 follow from those of the Gaussian distribution. □

2.2.2 Technical Concepts: Domain Expansion and Strong Convexity

In this section we state and sketch the proofs of two key technical concepts: (1) the addition of
the trace constraint as described before the proof of Theorem 2.2.1, and (2) the value of the strong
convexity parameter of our mirror map over this new domain.

Lemma 2.2.8. For any iteration t of Algorithm 2.2.1, X̃(t) satisfies Tr X̃(t) < K for K = 40n(log n)10.

Proof sketch. We assume that for any iteration t, the primal iterate is close to the optimal point and
satisfies |||X̃(t)

− X∗||| ≤ 38n
(
log n

)10. In Algorithm 2.2.1, Y(1) = 0 implies X̃(1) = I. We also know that
the optimal point satisfies Tr X∗ = n. Therefore, in the base case, |||X̃(1)

− X∗||| ≤ 2n ≤ 38n
(
log n

)10.
Suppose that the hypothesis is true for some t = t′. We complete the proof by first proving a weak
bound for |||X̃(t)

− X∗||| using the triangle inequality of norms and then boosting our bound (thereby
obtaining the stronger guarantee of the induction hypothesis) by invoking the strong convexity of
the Bregman divergence. The full proof is presented in Section A.4.6. □

We now sketch the proof of the strong convexity parameter of our mirror map, the generalized
negative entropy function, which has also been used in [AO15] and later in Chapter 8.

Lemma 2.2.9. The function Φ(X) = X • log X − Tr X is 1
4K -strongly convex with respect to the nuclear

norm over the domainD = {X : X ⪰ 0,Tr X ≤ K}.

Proof sketch. We invoke the duality between strong convexity and smoothness by [KST09], the
characterization of matrix smooth functions by [JN08], and the generalization of convexity of a
permutation-invariant function on vectors to a spectral function on matrices by [Lew95]. Our proof
requires the following definition.

Definition 2.2.10. Define the vector functions ψ1(y) =
∑n

i=1 exp yi, ψ2(y) = 2K logψ1(y) − 2K log(2K) +
2K, ψ(y) = ψ1(y) if ψ1(y) ≤ 2K and ψ2(y) otherwise; Ψ(Y) = Ψ1(Y) if Ψ1(Y) ≤ 2K and Ψ2(Y)
otherwise; and ϕ(x) =

∑n
i=1 xi log xi−

∑n
i=1 xi. Define the corresponding matrix functionsΨ1(Y) = Tr exp Y,

Ψ2(Y) = 2K logΨ1(Y) − 2K log(2K) + 2K, and Φ(X) = X • log X − Tr X.

Our first step is to show thatΨ, the matrix version of ψ, satisfies the propertyΨ∗(Y) = Φ(Y) over
{Y : Y ⪰ 0,Tr Y ≤ K}. To prove this, we first prove that ψ and its matrix version, Ψ, are both
continuously differentiable at the boundary of definition of their respective two parts. We then
show that ψ1 and ψ2 are convex; combining this with the claim about continuous differentiability
implies convexity of ψ, which immediately extends to Ψ by a result of [Lew95]. We then show
that ψ and ϕ satisfy ψ∗1(x) = ϕ(x) for x ∈ Rn

+, and given an input x ∈ {x : xi ≥ 0,
∑n

i=1 xi ≤ K}, the
point y attaining the optimum in computing ψ∗1(x) lies in the interior of the set {y : ψ1(y) ≤ 2K}.
Therefore, given an input x ∈ {x : xi ≥ 0,

∑n
i=1 xi ≤ K}, we invoke the preceeding facts to conclude

that the point at which the value of ψ∗(x) is attained must be the same as that for ψ∗1(x). This implies
ψ∗(x) = ψ∗1(x) for x ∈ {x : xi ≥ 0,

∑n
i=1 xi ≤ K}. By a result of [Lew95], this extends to Ψ∗ = Φ on

{X : X ⪰ 0,Tr X ≤ K}.

We then use [JN08] and continuous differentiability at the boundary to show thatΨ is 4K-smooth
in the operator norm which in turn implies, by [KST09], thatΨ∗ is 1/(4K)-strongly convex in the
nuclear norm, finishing the proof. Our full proof is in Section A.4.1. □

Chapter 3

A Faster Interior Point Method for Semidefinite Programs

In Chapter 2, we saw a faster first-order algorithm for a specific SDP (the MaxCUT SDP). In this
chapter, we expand our focus to the general class of SDPs. While the MaxCUT SDP studied in
Chapter 2 is in itself quite important, general SDPs constitute a fundamental class of optimization
problems with important applications running the gamut of approximation algorithms, polynomial
optimization, robust learning, algorithmic rounding, and adversarial deep learning. We present a
faster interior point method to solve generic SDPs with variable size n× n and m constraints in time
Õ(
√

n(mn2+mω+nω)), whereω is the exponent of matrix multiplication and ε is the relative accuracy.
Our algorithm’s runtime can be naturally interpreted as follows: Õ(

√
n log(1/ε)) is our algorithm’s

iteration complexity, mn2 is the input size, and mω+nω is the time to invert the Hessian and slack ma-
trix in each iteration. In contrast to the algorithm in Chapter 2, which was a first-order method (with
a polynomial dependence of the runtime on accuracy), our focus in this chapter is on second-order
methods that yield runtimes with polylogarithmic dependence on the accuracy parameter. Despite
this difference, the algorithms presented in these two chapters share the principle of "robust updates".

3.1 Introduction

Semidefinite programs (SDPs) constitute a class of convex optimization problems that optimize a
linear objective over the intersection of the cone of positive semidefinite matrices with an affine space.
SDPs generalize linear programs and have a plethora of applications in operations research, control
theory, and theoretical computer science [VB96]. Applications include improved approximation
algorithms for fundamental problems (e.g., Max-Cut [GW95], coloring 3-colorable graphs [KMS94],
and sparsest cut [ARV09]), quantum complexity theory [JJUW11], robust learning and estima-
tion [CG18, CDG19, CDGW19], algorithmic discrepancy and rounding [BDG16, BG17, Ban19], and
polynomial optimization [Par00]. We formally define SDPs with n × n variables and m constraints:

Definition 3.1.1 (Semidefinite program). Given symmetric1 matrices C,A1, · · · ,Am ∈ Rn×n and bi ∈ R
for all i ∈ [m], solve the convex optimization problem

maximize C • X subject to X ⪰ 0,Ai • X = bi for all i ∈ [m] (3.1.1)

where A • B :=
∑

i, j Ai, jBi, j is the trace product.

High-Accuracy Algorithms. Our goal is to solve SDPs to high accuracy (i.e., with runtimes
depending logarithmically on the accuracy parameter). We discuss below two prominent methods
that achieve this goal: cutting plane methods and interior point methods.

1We can assume that C,A1, · · · ,Am are symmetric, since given any M ∈ {C,A1, · · · ,Am}, we have
∑

i, j Mi jXi j =∑
i, j Mi jX ji =

∑
i, j(M⊤)i jXi j, and therefore we can replace M with (M +M⊤)/2.

24

The cutting plane method is an iterative algorithm for searching a convex set for the optimal point. It
starts with a large convex set guaranteed to contain this point and, in each iteration, queries a separa-
tion oracle within this set. Based on the output of the separation oracle, the convex set is updated to a
smaller one containing the subset with the optimal point. This process is repeated until the volume of
this set becomes small enough and a point sufficiently close to the optimal is found. Since Khachiyan
proved [Kha80] that the ellipsoid method solves linear programs in polynomial time, cutting plane
methods have played a crucial role in both discrete and continuous optimization [GLS81a, GV02].

In contrast, interior point methods turn the original constrained optimization problem into a
sequence of unconstrained optimization problems parametrized by a scaling factor that ascribes
relative weight to optimizing the objective versus enforcing feasibility. The solutions to these
successive problems form a well-defined central path. Since Karmarkar’s proof [Kar84] that interior
point methods can solve linear programs in polynomial time, these methods have become an active
research area. Their iteration complexity is proportional to the complexity parameter of the barrier
function used, which, for many commonly used barriers is the square root of the dimension, as
opposed to the linear dependence on the dimension in cutting plane methods.

Since cutting plane methods use less structural information than interior point methods, they are
slower at solving almost all problems where interior point methods are known to apply. However,
SDPs remain one of the most fundamental optimization problems where the state of the art is, in
fact, the opposite: the current fastest cutting plane method of [LSW15] solves a general SDP in time
O(m(mn2 +m2 + nω)), while the fastest SDP solvers based on interior point methods in the work
of [NN92] and [Ans00] achieve runtimes of O(

√
n(m2n2 +mnω +mω)) and O((mn)1/4(m4n2 +m3nω)),

respectively, which are slower in the most common regime of m ∈ [n,n2] (see Table 3.2). This
apparent paradox raises the following natural question:

How fast can SDPs be solved using interior point methods?

3.1.1 Our Results

We present a faster interior point method for solving SDPs. Our main result is the following
theorem, the formal version of which is presented in Theorem B.3.1.

Theorem 3.1.2 (Main result, informal). There is an interior point method that solves a general SDP with
variable size n × n and m constraints in time2 O∗(

√
n(mn2 +mω + nω)).

Our runtime can be roughly interpreted as follows:

•
√

n is the iteration complexity of the interior point method with the log barrier function.
• mn2 is the input size.
• mω is the cost of inverting the Hessian of the log barrier.
• nω is the cost of inverting the slack matrix.

Thus, the terms in the runtime of our algorithm arise as a natural barrier to further speeding up
SDP solvers. See Section 3.2.1, Section 3.3, and Section 3.3.1 for more detail.

Table 3.1 compares our result with previous SDP solvers. The first takeaway of this table and
Theorem 3.1.2 is that our interior point method always runs faster than that in [NN92] and faster
than that in [NN94] and [Ans00] when m ≥ n1/13. A second consequence is that whenever m ≥

√
n,

2We use O∗ to hide no(1) and logO(1)(n/ϵ) factors and Õ to hide logO(1)(n/ϵ) factors, where ϵ is the accuracy parameter.

our interior point method is faster than the current fastest cutting plane method [LSW15]. We note
that n ≤ m ≤ n2 is satisfied in most SDP applications known to us, such as classic graph optimization
problems, experiment design in statistics and machine learning, and sum-of-squares problems. An
explicit comparison to previous algorithms for m = n and m = n2 is shown in Table 3.2.

Table 3.1: Summary of key high-accuracy SDP algorithms. CPM stands for cutting plane method, and IPM, interior point method. We
denote by n the size of the variable matrix and by m ≤ n2 the number of constraints. Our runtimes hide no(1), mo(1) and poly log(1/ϵ)
factors, where ϵ is the accuracy parameter. [Ans00] simplifies the proofs in [NN94, Section 5.5]. Neither [Ans00] nor [NN94] explicitly
analyzed their runtimes, and their runtimes shown here are our best estimates.

Year Authors Method Iteration Complexity Cost Per Iteration

1976 [YN76, Sho77, Kha80] CPM m2 mn2 +m2 + nω

1988 [KTE88, NN89] CPM m mn2 +m3.5 + nω

1989 [Vai89a] CPM m mn2 +mω + nω

1992 [NN92] IPM
√

n m2n2 +mnω +mω

1994 [NN94, Ans00] IPM (mn)1/4 m4n2 +m3nω

2003 [KM03] CPM m mn2 +mω + nω

2015 [LSW15, JLSW20] CPM m mn2 +m2 + nω

2020 Our result IPM
√

n mn2 +mω + nω

Table 3.2: Total runtimes for the algorithms in Table 3.1 for SDPs when m = n and m = n2, where n is the size of matrices, and m is the
number of constraints. The runtimes shown in the table hide no(1), mo(1) and poly log(1/ϵ) factors, where ϵ is the accuracy parameter and
assume ω to equal its currently best known upper bound of 2.373.

Year References Method
Runtime

m = n m = n2

1979 [Sho77, YN76, Kha80] CPM n5 n8

1988 [KTE88, NN89] CPM n4.5 n9

1989 [Vai89a] CPM n4 n6.746

1992 [NN92] IPM n4.5 n6.5

1994 [NN94, Ans00] IPM n6.5 n10.75

2003 [KM03] CPM n4 n6.746

2015 [LSW15, JLSW20] CPM n4 n6

2020 Our result IPM n3.5 n5.246

In the more general case where the SDP might not be dense, where nnz(A) is the input size (i.e., the
total number of non-zeroes in all matrices Ai for i ∈ [m] and C), our interior point method runs faster
than the current fastest cutting plane method[LSW15], which runs in time Õ(m · (nnz(A)+m2+nω)).

Theorem 3.1.3 (Comparison with Cutting Plane Method). When m ≥ n, there is an interior point
method that solves an SDP with n×n matrices, m constraints, and nnz(A) input size, faster than the current
best cutting plane method [LSW15], over all regimes of nnz(A).

3.1.2 Related Work

Linear Programming. Linear Programming is a class of fundamental problems in convex op-
timization. There is a long list of work focused on fast algorithms for linear programming
[Dan47, Kha80, Kar84, Vai87, Vai89b, LS14, LS15, Sid15, Lee16, CLS19, Bra20, BLSS20].

Cutting Plane Method. Cutting plane method is a class of optimization methods that iteratively
refine a convex set that contains the optimal solution by querying a separation oracle. Since its
introduction in the 1950s, there has been a long line of work on obtaining fast cutting plane methods
[Sho77, YN76, Kha80, KTE88, NN89, Vai89a, AV95, BV02, LSW15].

First-Order SDP Algorithms. As the focus of this chapter, cutting plane methods and interior
point methods solve SDPs in time that depends logarithmically on 1/ϵ, where ϵ is the accuracy
parameter. A third class of algorithms, the first-order methods, solve SDPs at runtimes that
depend polynomially on 1/ϵ. While having worse dependence on 1/ϵ compared to IPM and CPM,
these first-order algorithms usually have better dependence on the dimension. There is a long
list of work on first-order methods for general SDP or special classes of SDP (e.g. Max-Cut SDP
[AK07, GH16b, AZL17b, CDST19b, LP20, YTF+19b], positive SDPs [JY11, PT12, ALO16b, JLL+20b].)

3.2 An Overview of Our Techniques

By removing redundant constraints, we can, without loss of generality, assume m ≤ n2 in the primal
formulation of the SDP (3.1.1). Thereafter, instead of solving the primal SDP, which has variable
size n × n, we solve its dual formulation, which has dimension m ≤ n2:

minimize b⊤y subject to S =
m∑

i=1

yiAi − C, and S ⪰ 0. (3.2.1)

Interior point methods solve (3.2.1) by minimizing the penalized objective function:

minimizey∈Rm fη(y), where fη(y) := η · b⊤y + ϕ(y), (3.2.2)

where η > 0 is a parameter and ϕ : Rm
→ R is a barrier function that approaches infinity as y

approaches the boundary of the feasible set {y ∈ Rm :
∑m

i=1 yiAi ⪰ C}. These methods first obtain an
approximate minimizer of fη for some small η > 0, which they then use as an initial point to minimize
f(1+c)η, for some constant c > 0, via the Newton method. This process repeats until the parameter
η in (3.2.2) becomes sufficiently large, at which point the minimizer of fη is provably close to the
optimal solution of (3.2.1). The iterates y generated by this method follow a central path. Different
choices of the barrier function ϕ yield different run times in solving (3.2.2), as we next describe.

The log barrier. Nesterov and Nemirovski [NN92] used the log barrier function,

g(y) := − log det

 m∑
i=1

yiAi − C

 , (3.2.3)

in (3.2.2) and, in O(
√

n log(n/ϵ)) iterations, obtain a feasible dual solution y that satisfies b⊤y ≤
b⊤y∗ + ϵ, where y∗ ∈ Rm is the optimal solution for (3.2.1). Within each iteration, the costliest step is
to compute the inverse of the Hessian of the log barrier function for the Newton step. For each
(j, k) ∈ [m] × [m], the (j, k)-th entry of H is given by

H j,k = tr
[
S−1A jS−1Ak

]
. (3.2.4)

The analysis of [NN92] first computes S−1/2A jS−1/2 for all j ∈ [m], which takes time O∗(mnω), and
then calculates the m2 trace products tr

[
S−1A jS−1Ak

]
for all (j, k) ∈ [m]×[m], each of which takes O(n2)

time. Inverting the Hessian costs O∗(mω), which results in a total runtime of O∗(
√

n(m2n2+mnω+mω)).

The volumetric barrier. Vaidya [Vai89a] introduced the volumetric barrier for a polytope {x ∈
Rn : Ax ≥ c}, where A ∈ Rm×n and c ∈ Rm. Nesterov and Nemirovski [NN94] studied
V(y) = 1

2 log det
(
∇

2g(y)
)
, where g(y) is the log barrier from Equation (3.2.3). This is the ex-

tension of the volumetric barrier to the positive semidefinite cone {y ∈ Rm :
∑m

i=1 yiAi ⪰ C}. It
was shown in [NN94] that choosing ϕ(y) =

√
n · V(y) in (3.2.2) makes the interior point method

converge in Õ(
√

mn1/4) iterations, which is smaller than the Õ(
√

n) iteration complexity of [NN92]
when m ≤

√
n. They also studied the combined volumetric-logarithmic barrier Vρ(y) = V(y) + ρ · g(y)

and showed that taking ϕ(y) =
√

n/m ·Vρ(y) for ρ = (m− 1)/(n− 1) yields an iteration complexity of
Õ((mn)1/4). When m ≤ n, this iteration complexity is lower than Õ(

√
n) of [NN92]. We refer readers

to the much simpler proofs in [Ans00] for these results.

However, the volumetric barrier (and thus the combined volumetric-logarithmic barrier) leads to
complicated expressions for the gradient and Hessian that make each iteration costly. For instance,
the Hessian of the volumetric barrier is

∇
2V(y) = 2Q(y) + R(y) − 2T(y),

where Q(y), R(y), and T(y) are m ×m matrices such that for each (j, k) ∈ [m] × [m],

Q(y) j,k = tr
[
AH−1

A
⊤
((

S−1A jS−1AkS−1
)
⊗̂S−1

)]
,

R(y) j,k = tr
[
AH−1

A
⊤
((

S−1A jS−1
)
⊗̂

(
S−1AkS−1

))]
, (3.2.5)

T(y) j,k = tr
[
AH−1

A
⊤
((

S−1A jS−1
)
⊗̂S−1

)
AH−1

A
⊤
((

S−1AkS−1
)
⊗̂S−1

)]
.

Here,A ∈ Rn2
×m is the n2

×m matrix whose ith column is obtained by flattening Ai into a vector
of length n2, and ⊗̂ is the symmetric Kronecker product

A⊗̂B :=
1
2

(A ⊗ B + B ⊗ A),

where ⊗ is the Kronecker product (see Section B.1 for a formal definition). Due to the complicated
formulas in Equation (3.2.5), efficient computation of Newton step in each iteration of the interior
point method is difficult; in fact, each iteration runs slower than the Nesterov-Nemirovski interior
point method by a factor of m2. Since most applications of SDPs known to us have the number
of constraints m be at least linear in n, the total runtime of interior point methods based on the
volumetric barrier and the combined volumetric-logarithmic barrier is inevitably slow.

3.2.1 Our Techniques

Given the inefficiency of implementing the volumetric and volumetric-logarithmic barriers discussed
above, this chapter uses the log barrier in Equation (3.2.3). We now describe some of our key
techniques that improve the runtime of the Nesterov-Nemirovski interior point method [NN92].

Hessian computation via fast rectangular matrix multiplication. As noted earlier, the runtime
bottleneck in [NN92] is in computing Equation (3.2.4), the Hessian of the log barrier. In [NN92],
each of these m2 entries is computed separately, resulting in a per iteration cost of O(m2n2).

We show below how to speed up this computation using fast rectangular matrix multiplication.

The expression from Equation (3.2.4) can be re-written as

H j,k = tr
[
S−1/2A jS−1/2

· S−1/2AkS−1/2
]
. (3.2.6)

We first compute the key quantity S−1/2A jS−1/2
∈ Rn×n for all j ∈ [m] by stacking all matrices

A j ∈ R
n×n into a tall matrix of size mn × n, and then compute the product of S−1/2

∈ Rn×n with this
tall matrix. This matrix product can be computed in time Tmat(n,mn,n)3 using fast rectangular
matrix multiplication. We then flatten each S−1/2A jS−1/2 into a row vector of length n2, so that the
j-th row B j = vec(S−1/2A jS−1/2), and stack all m vectors to form a matrix B of size m× n2. It follows
that the Hessian can be computed as

H = BB⊤, (3.2.7)

which costs Tmat(m,n2,m) by applying fast rectangular matrix multiplication. Leveraging recent
developments in this area [GU18], this approach improves upon the runtime in [NN92].

So far, we have reduced the per iteration cost of O∗(m2n2 +mnω) for Hessian computation down to

Tmat(n,mn,n) + Tmat(m,n2,m).

Low rank update on the slack matrix The fast rectangular matrix multiplication approach noted
above, however, is still not very efficient, because the Hessian must be computed from scratch in
each iteration of the interior point method. If there are T iterations in total, it then takes time

T · (Tmat(n,mn,n) + Tmat(m,n2,m)).

To further improve the runtime, we need to efficiently update the Hessian for the current iteration
from the Hessian computed in the previous one. Generally, this is not possible, as the slack matrix S ∈
Rn×n in Equation (3.2.6) might change arbitrarily in the Nesterov-Nemirovski interior point method.

To overcome this problem, we propose a new interior point method, Algorithm 3.2.1, that maintains,
via Algorithm 3.2.2, an approximate slack matrix S̃ ∈ Rn×n, which is a spectral approximation of the
true slack matrix S ∈ Rn×n such that S̃ admits a low-rank update in each iteration. Where needed, we
will now use the subscript t to denote a matrix in the t-th iteration.

Our algorithm updates only the directions in which S̃t deviates too much from St+1; the changes
to St for the remaining directions are not propagated to S̃t+1. Such a selective update ensures a
low-rank change in S̃t even when St suffers from a full-rank update; it also guarantees the proximity
of the algorithm’s iterates to the central path. Specifically, for each iteration t ∈ [T], we define the
difference matrix

Zt = S−1/2
t S̃tS

−1/2
t − I ∈ Rn×n,

which captures how far the approximate slack matrix S̃t is from the true slack matrix St. We maintain
the invariant ∥Zt∥op ≤ c for some sufficiently small constant c > 0. In the (t + 1)-th iteration when
St gets updated to St+1, our construction of S̃t+1 involves a novel approach of zeroing out some
of the largest eigenvalues of |Zt| to bound the rank of the update on the approximate slack matrix.

We prove that with this approach, the updates on S̃ ∈ Rn×n over all T = Õ(
√

n) iterations satisfy the

3See Section B.2 for the definition.

Algorithm 3.2.1 Main Algorithm (n,m, δ, ϵN,C,A, b)

1: Modify the SDP and obtain an initial dual solution y according to Lemma B.8.1
2: Initialize the step size η ← 1/(n + 2), total iteration count T ← 40

ϵN

√
n log

(
n
δ

)
, and true and

approximate slack matrices S̃← S←
∑

i∈[m] yiAi − C.
3: for iter = 1→ T do
4: Update the central path parameter η as follows: ηnew ← η

(
1 + ϵN

20
√

n

)
5: Compute the gradient: gηnew(y) j ← ηnew · b j − tr

[
S−1
· A j

]
6: Compute the Hessian: H̃ j,k(y)← tr

[
S̃−1
· A j · S̃−1

· Ak

]
7: Update the dual variable y as follows: δy ← −H̃(y)−1gηnew(y) , ynew ← y + δy
8: Compute the true slack matrix: Snew ←

∑
i∈[m](ynew)iAi − C

9: Compute the approximate slack matrix: S̃new ← ApproxSlackUpdate(Snew, S̃)
10: y← ynew, S← Snew, S̃← S̃new
11: end for
12: Return an approximate solution to the original SDP according to Lemma B.8.1

Algorithm 3.2.2 Approximate Slack Update(Snew, S̃)

1: Initialize ϵS ← 0.01, construct Zmid ← S−1/2
new ·S̃·S

−1/2
new −I, and express Zmid = U·Λ·U⊤ =

∑n
i=1 λiuiu⊤i

2: Let π : [n]→ [n] be a sorting permutation such that |λπ(i)| ≥ |λπ(i+1)|

3: if |λπ(1)| ≤ ϵS then ▷ S̃ and Snew are spectrally close
4: S̃new ← S̃
5: else
6: r← 1
7: while |λπ(2r)| > ϵS or |λπ(2r)| > (1 − 1/ log n)|λπ(r)| do
8: r← r + 1
9: end while

10: (λnew)π(i) ←

0 if i = 1, 2, · · · , 2r;
λπ(i) otherwise.

11: S̃new ← S̃ + S1/2
new ·U · diag(λnew − λ) ·U⊤ · S1/2

new
12: end if
13: return S̃new

following rank inequality (see Theorem B.5.1 for the formal statement).

Theorem 3.2.1 (Rank inequality, informal version). Let S̃1, S̃2, · · · , S̃T ∈ Rn×n denote the sequence
of approximate slack matrices generated in our interior point method. For each t ∈ [T − 1], denote by
rt = rank(S̃t+1 − S̃t) the rank of the update on S̃t. Then, the sequence r1, r2, · · · , rT satisfies

T∑
t=1

√
rt ≤ Õ(T).

The key component to proving Theorem 3.2.1 is our novel potential function Φ : Rn×n
→ R≥0

Φ(Z) :=
n∑
ℓ=1

|λ(Z)|[ℓ]
√
ℓ

,

where |λ(Z)|[ℓ] is the ℓ-th in the list of eigenvalues of Z ∈ Rn×n sorted in decreasing order of their
absolute values. We show an upper bound on the increase in this potential when S is updated, a
lower bound on its decrease when S̃ is updated, and combine the two with non-negativity of the
potential to obtain Theorem 3.2.1.

Specifically, first we prove that whenever S is updated in an iteration, the potential function
increases by at most Õ(1) (see Lemma B.5.2). The proof of this statement crucially uses the structural
property of interior point method that slack matrices in consecutive steps are sufficiently close to
each other. Formally, for any iteration t ∈ [T], we show in Theorem B.4.1 that the consecutive slack
matrices St and St+1 satisfy

∥S−1/2
t St+1S−1/2

t − I∥F = O(1). (3.2.8)

We then combine this bound with Fact B.1.2, which relates the ℓ2 distance between the spectrum
of two matrices with the Frobenius norm of their difference. Next, when S̃ is updated, we prove
that our method of zeroing out the rt largest eigenvalues of |Zt|, thereby incurring a rank-rt update
to S̃t, decreases the potential by at least Õ(

√
rt) (see Lemma B.5.3).

Maintaining rectangular matrix multiplication for Hessian computation. Given the low-rank
update on S̃ described above, we show how to efficiently update the approximate Hessian H̃ defined as

H̃ j,k = tr
[
S̃−1A jS̃−1Ak

]
(3.2.9)

for each entry (j, k) ∈ [m] × [m]. The approximate slack matrix S̃ being a spectral approximation
of the true slack matrix S implies that the approximate Hessian H̃ is also a spectral approximation
of the true Hessian H (see Lemma B.4.3). This approximate Hessian therefore suffices for our
algorithm to approximately follow the central path.

To efficiently update the approximate Hessian H̃ in Equation (3.2.9), we notice that a rank-r update
on S̃ implies a rank-r update on S̃−1 via the Woodbury matrix identity (see Fact B.1.4). The change
in S̃−1 can be expressed as

∆(S̃−1) = V+V⊤+ − V−V⊤− , (3.2.10)

where V+,V− ∈ Rn×r. Plugging Equation (3.2.10) into Equation (3.2.9), we can express ∆H̃ j,k as
the sum of multiple terms, among the costliest of which are those of the form tr

[
S̃−1A jVV⊤Ak

]
,

where V ∈ Rn×r is either V+ or V−. We compute tr
[
S̃−1A jVV⊤Ak

]
for all (j, k) ∈ [m] × [m] in time

Tmat(r,n,mn) by first computing V⊤Ak for all k ∈ [m] by horizontally concatenating all Ak’s into a
wide matrix of size n×mn. We then compute the product of S̃−1/2 with A jV for all j ∈ [m], which can
be done in time Tmat(n,n,mr), which equals Tmat(n,mr,n) (see Lemma B.2.3). Finally, by flattening
each S̃−1/2A jV into a vector of length nr and stacking all these vectors to form a matrix B̃ ∈ Rm×nr

with j-th row B̃ j = vec(S̃−1/2A jV), the task of computing tr
[
S̃−1A jVV⊤Ak

]
for all (j, k) ∈ [m] × [m]

reduces to computing B̃B̃⊤, which costs Tmat(m,nr,m).

Putting it all together. In this way, we reduce the runtime of T · (Tmat(n,mn,n) + Tmat(m,n2,m))
for computing the Hessian using fast rectangular matrix multiplication down to

T∑
t=1

(Tmat(rt,n,mn) + Tmat(n,mrt,n) + Tmat(m,nrt,m)) , (3.2.11)

where rt is the rank of the update on S̃t. Applying Theorem 3.2.1 with several properties of fast
rectangular matrix multiplication that we prove in Section B.2 , we upper bound the runtime in
(3.2.11) by

O∗(
√

n(mn2 +mω + nω)),

which implies Theorem 3.1.2. In Section 3.3, we discuss bottlenecks to further improving our
runtime.

3.3 Bottlenecks to Improving Our Result

In most cases, the costliest term in our runtime is the per iteration cost of mn2, which corresponds
to reading the entire input in each iteration. Our subsequent discussions therefore focus on the
steps in our algorithm that require at least mn2 time per iteration.

Slack matrix computation. When y is updated in each iteration of our interior point method, we
need to compute the true slack matrix S =

∑
i∈[m] yiAi − C. Computing S is needed to update the

approximate slack matrix S̃ so that S̃ remains a spectral approximation to S. As S might suffer from
full-rank changes, it naturally requires mn2 time to compute in each iteration.

Gradient computation. Recall from (3.2.2) that our interior point method follows the central path
defined via the penalized objective function minimizey∈Rm fη(y) where fη(y) := ηb⊤y + ϕ(y) for a
parameter η > 0 and ϕ(y) = − log det S. In each iteration, to perform the Newton step, the gradient
of the penalized objective is computed, for each coordinate j ∈ [m], as

gη(y) j = η · b j − tr
[
S−1A j

]
. (3.3.1)

Even if we are given S−1, it still requires mn2 time to compute Equation (3.3.1) for all j ∈ [m].

Approximate Hessian computation. Recall from Section 3.2.1 that updating the approximate
slack matrix S by rank r means the time needed to update the approximate Hessian is dominated
by computing the term ∆ j,k = tr

[
S̃−1/2A jV · V⊤AkS̃−1/2

]
, where V ∈ Rn×r is a tall, skinny matrix that

comes from the spectral decomposition of ∆S̃−1. Computing ∆ j,k for all (j, k) ∈ [m] × [m] requires
reading at least A j for all j ∈ [m], which takes time mn2.

3.3.1 LP Techniques Unlikely to Improve the SDP Runtime

The preceding discussion suggests that reading the entire input in each iteration, which costs mn2,
stands as a natural barrier to further improving the runtime of SDP solvers based on interior point
methods. Recent results [CLS19, BLSS20] from the context of linear programs (LPs) suggest two
potential techniques to bypass this cost: (1) showing that the Hessian (projection matrix) admits
low-rank updates, and (2) speeding computation of the Hessian via sampling. We now argue that

these techniques are unlikely to improve our runtimes for SDPs and, therefore, believe that any
improvements in the runtimes of general-purpose SDPs must require completely new ideas.

Showing that the Hessian admits low-rank updates. We saw in Section 3.2.1 that constructing
an approximate slack matrix S̃ that admits low-rank updates in each iterations leveraged the fact
that the true slack matrix S changes slowly throughout our interior point method as described in
Equation (3.2.8). One natural question that follows is whether a similar upper bound can be obtained
for the Hessian. If such a result could be proved, one could maintain an approximate Hessian that
admitted low-rank updates, which would speed up the approximate Hessian computation. Indeed,
in the context of LPs, such a bound for the Hessian can be proved (e.g., [BLSS20, Lemma 47]).

Unfortunately, it is impossible to prove such a statement for the Hessian in the context of SDPs. To
show this, it is convenient to express the Hessian using the Kronecker product (Section B.1) as

H = A⊤ · (S−1
⊗ S−1) · A,

whereA ∈ Rn2
×m is the n2

×m matrix whose ith column is obtained by flattening Ai into a vector of
length n2. By proper scaling, we can assume without loss of generality that the current slack matrix
is S = I, and the slack matrix in the next iteration is Snew = I + ∆S, which satisfies ∥∆S∥F = c for
some tiny constant c > 0. For the simple example ofA = I (we are assuming here that m = n2 so
thatA is a square matrix), the change in the Hessian can be approximately computed as

∥H−1/2∆HH−1/2
∥

2
F ≈ tr

[
((I − ∆S) ⊗ (I − ∆S) − I ⊗ I)2

]
≈ tr

[
(I ⊗ ∆S + ∆S ⊗ I)2

]
≥ 2 · tr

[
I2
]
· tr

[
(∆S)2

]
= 2n∥∆S∥2F ≫ 1.

This large change indicates that we are unlikely to obtain an approximation to the Hessian that
admits low-rank updates, which is a key difference between LPs and SDPs.

Sampling for faster Hessian computation. Recall from Equation (3.2.7) that the Hessian can be
computed as H = B · B⊤, where the jth row of B ∈ Rm×n2

is B j = vec(S−1/2A jS−1/2) for all j ∈ [m].
We might attempt to approximately compute H faster by sampling a subset of columns ofB indexed
by L ⊆ [n2] and compute the product for only the sampled columns. Indeed, sampling techniques
have been successfully used to obtain faster LP solvers [CLS19, BLSS20].

For SDPs, however, sampling is unlikely to speed up the Hessian computation. In general, we must
sample at least m columns (i.e. |L| ≥ m) of B to spectrally approximate H or the computed matrix
will not be full rank. However, this requires computing the entries of S−1/2A jS−1/2 that correspond
to L ⊆ [n2] for all j ∈ [m], which requires reading all A j’s and thus still takes O(mn2) time.

Chapter 4

Decomposable Non-Smooth Convex Optimization with Nearly-
Linear Gradient Oracle Complexity

Many fundamental problems in machine learning can be formulated by the convex program

min
θ∈Rd

n∑
i=1

fi(θ),

where each fi is a convex, Lipschitz function supported on a subset of di coordinates of θ. One
common approach to this problem, exemplified by stochastic gradient descent, involves sampling
one fi at every iteration. This approach crucially relies on a notion of uniformity across the
fi’s, formally captured by their condition number. In this chapter, we present an algorithm that
minimizes the above convex formulation to ϵ-accuracy in Õ(

∑n
i=1 di log(1/ϵ)) gradient computations,

with no assumptions on the condition number. The previous best algorithm independent of the
condition number is the standard cutting plane method, which requires O(nd log(1/ϵ)) gradient
computations. As a corollary, we improve upon the evaluation oracle complexity for decomposable
submodular minimization by Axiotis, Karczmarz, Mukherjee, Sankowski and Vladu (ICML 2021).
Our main technical contribution is an adaptive procedure to select an fi term at every iteration via
a novel combination of cutting-plane and interior-point methods.

4.1 Introduction

Many fundamental problems in machine learning are abstractly captured by the convex optimization
formulation

minimizeθ∈Rd
∑n

i=1 fi(θ), (4.1.1)

where each fi is a convex, Lipschitz function. For example, in empirical risk minimization, each fi
measures the loss incurred by the i-th data point from the training set. In generalized linear models,
each fi represents a link function applied to a linear predictor evaluated at the i-th data point.

The ubiquity of (4.1.1) in the setting with smooth fi’s has spurred the development of well-known
variants of stochastic gradient methods [RM51, BC03, Zha04, Bot12] such as [RSB12, SSZ13b, JZ13a,
MZJ13, DBLJ14b, Mai15, AZY16, HL16a, SLRB17a]; almost universally, these algorithms leverage
the “sum structure” of (4.1.1) by sampling, in each iteration, one fi with which to make progress.
These theoretical developments have in turn powered tremendous empirical success in machine
learning through widely used software packages such as libSVM [CL11a].

In many practical applications, (4.1.1) appears with non-smooth fi’s, as well as the additional
structure that each fi depends only on a subset of the problem parameters θ. One notable example

34

is decomposable submodular function minimization1 (SFM), which has proven to be expressive
in diverse contexts such as determinantal point processes [KT10], MAP inference in computer
vision [KLT09, VKR09, FJPZ13], hypergraph cuts [VBK20], and covering functions [SK10]. Another
application is found in generalized linear models when the data is high dimensional and sparse. In
this setting, fi depends on a restricted subset of the parameters θ that correspond to the features of
the data point with non-zero value. Last but not least, the case with each fi depending on a small
subset of the parameters is also called sparse separable optimization and has applications in sparse
SVM and matrix completion [RRWN11].

In this work, we initiate a systematic study of algorithms for (4.1.1) without the smoothness
assumption2. Motivated by the aforementioned applications, we introduce the additional structure
that each fi depends on a subset of the coordinates of θ. As is standard in the black-box model for
studying first-order convex optimization methods, we allow sub-gradient oracle access to each fi.

Problem 1. Let f1, f2, . . . , fn : Rd
7→ R be convex, L-Lipschitz, and possibly non-smooth functions,

where each fi depends on di coordinates of θ, and is accessible via a (sub-)gradient oracle. Define

m def
=

∑n
i=1 di to be the “total effective dimension” of the problem. Let θ⋆ def

= arg minθ∈Rd
∑n

i=1 fi(θ)
be a minimizer of (4.1.1), and let θ(0) be an initial point such that ∥θ(0)

− θ⋆∥2 ≤ R. We want to
compute a vector θ ∈ Rd satisfying

n∑
i=1

fi(θ) ≤ ϵLR +
n∑

i=1

fi(θ⋆). (4.1.2)

Prior works. To motivate a new algorithm to solve Problem 1, we first study how some well-known
algorithms (presented in Table 4.1) for the related problem (4.1.1) perform on Problem 1, with de-
tailed explanations in Section 4.1.2. We focus on the weakly-polynomial regime and therefore restrict
ourselves to algorithms with polylog(1/ϵ) gradient oracle complexities. Table 4.1 summarizes the
performance of all well-known algorithms applied to Problem 1. Note that the variants of gradient
descent each require bounded condition number. The results of [Nes83b, AZ17] and cutting plane
methods are all complemented by matching lower bounds [WS16, Nes04]. Additionally, the work
on non-smooth ERM crucially requires the objective function to be a sum of a smooth ERM part
and a non-smooth regularizer. There are many important problems for which the objective function
cannot be split in this way, so for these problems, the techniques developed for non-smooth ERM
do not apply. In comparison, our work can be understood as dealing with a more general ERM
problem with fewer structural assumptions.

Even with smooth fi’s, first-order methods perform poorly when the condition number is large, or
when there is a long chain of variable dependencies. These instances commonly arise in applications;
an example from signal processing is

minimizex

(x1 − 1)2 +

n−1∑
i=2

(xi − xi+1)2 + x2
n

 , (4.1.3)

whose variables form an O(n)-length chain of dependencies, and has condition number κ = Θ(n2)
and κ̄ = Θ(n3). Gradient descent algorithms such as [Nes83b] and [AZ17] therefore require Ω(n2)

1In decomposable submodular minimization, each fi corresponds to the Lovász extension of the individual submodular
function and is therefore generally non-smooth.

2A function f is said to be β-smooth if f (y) ≤ f (x) + ⟨∇ f (x), y − x⟩ + β/2∥y − x∥22 for all x, y and α-strongly-convex if
f (y) ≥ f (x) + ⟨∇ f (x), y − x⟩ + α/2∥y − x∥22 for all x, y. The condition number of f is defined to be κ = β/α.

Table 4.1: Gradient oracle complexities for solving (4.1.1) to ϵ-additive accuracy. κ denotes the condition number of
∑

i fi, and κ is a
variant of the condition number defined to be the sum of smoothness of the fi’s divided by the strong convexity of

∑
i fi.

Authors Algorithm Type Gradient Queries Non-smooth OK?

[C+47] Gradient Descent (GD) O(nκ log(1/ϵ))
[Nes83b] Accelerated (Acc.) GD O(n

√
κ log(1/ϵ))

[RSB12, SSZ13b, JZ13a] Stochastic (Stoch.) Variance-Reduced GD O((n + κ) log(1/ϵ))
[SSZ13a, LMH15, FGKS15, ZL15, AB15] Acc. Stoch. Variance-Reduced GD O((n +

√

nκ) log(κ) log(1/ϵ))
[AZ17] Acc. Stoch. Variance-Reduced GD O((n +

√

nκ) log(1/ϵ))
[KTE88, NN89, Vai89a, BV02, LSW15] Cutting-Plane Method (CPM) O(nd log(1/ϵ)) ✓
[LV21, DLY21] Robust Interior-Point Method (IPM) O(

∑n
i=1 d3.5

i log(1/ϵ)) ✓

gradient queries, despite the problem’s total effective dimension being only O(n).

On the other hand, cutting-plane methods (CPM) and robust interior-point methods (IPM) both
trade off the dependency on condition number for worse dependencies on the problem dimension.

These significant gaps in the existing body of work motivate the following question:

Can we solve Problem 1 using a nearly-linear (in total effective dimension) number of
sub-gradient oracle queries?

In this chapter, we give an affirmative answer to this question.

4.1.1 Our Results

We present an algorithm to solve Problem 1 with gradient oracle complexity nearly-linear in the
total effective dimension. Our main result is the following theorem.

Theorem 4.1.1 (Main Result). Consider Problem 1 and θ(0) such that ∥θ⋆ − θ(0)
∥2 ≤ R. Assuming all

the fi’s are L-Lipschitz, then there is an algorithm that outputs a vector θ ∈ Rd such that
∑n

i=1 fi(θ) ≤∑n
i=1 fi(θ⋆) + ϵ · LR, using O(m log(m/ϵ)) gradient oracle calls, in time poly(m log(1/ϵ)).

Intuitively, the number of gradient queries for each fi should be thought of as Õ(di) in our algorithm,
which nearly matches that of the standard cutting-plane method for minimizing the individual
function fi. The nearly-linear dependence on m overall is obtained by leveraging the additional
structure on the fi’s and stands in stark contrast to the O(nd) query complexity of CPM, which is
significantly worse in the case where each di ≪ d. Furthermore, we improve over the current best
gradient descent algorithms in the case where the fi’s have a large condition number.

Based on the query complexity of the standard cutting-plane method, we have the following lower
bound matching our algorithm’s query complexity up to a log m-factor:

Theorem 4.1.2. There exist functions f1, . . . , fn : Rd
7→ R for which a total of Ω(m log(1/ϵ)) gradient

queries are required to solve Problem 1.

An immediate application of Theorem 4.1.1 is to decomposable submodular function minimization:

Theorem 4.1.3 (Decomposable SFM). Let V = {1, 2, . . . ,n}, and F : 2V
7→ [−1, 1] be given by

F(S) =
∑n

i=1 Fi(S ∩ Vi), where each Fi : 2Vi 7→ R is a submodular function on Vi ⊆ V with |Vi| ≤ k. We can
find an ϵ-additive approximate minimizer of F in O(nk2 log(nk/ϵ)) evaluation oracle calls.

Theorem 4.1.3 improves upon the evaluation oracle complexity of Õ(nk6 log(1/ϵ)) given in [AKM+21]
when the dimension k of each function Fi is large. For non-decomposable SFM, i.e. n = 1 and |V1| = k,

the current best weakly-polynomial time SFM algorithm3 finds an ϵ-approximate minimizer in time
O(k2 log(k/ϵ)) [LSW15]. Therefore, our result in Theorem 4.1.3 can be viewed as a generalization
of the evaluation oracle complexity for non-decomposable SFM in [LSW15], and the dependence
on k in Theorem 4.1.3 might be the best possible. We defer the details of decomposable SFM to
Section C.1.

Limitations

Some limitations of our algorithm are as follows: When each fi depends on the entire d-dimensional
vector θ, as opposed to a subset of the coordinates of size di ≪ d, our gradient complexity simply
matches that of CPM. We would like to highlight, though, that our focus is in fact the regime di ≪ d.
When the fi’s are strongly-convex and smooth, our gradient complexity improves over Table 4.1 only
when κ is large compared to di. Finally, note that we consider only the gradient oracle complexity in
our work; our algorithm’s implementation requires sampling a Hessian matrix and a gradient vector
at every iteration, which incur an additional poly(m, log(1/ϵ)) factor in the overall running time.

4.1.2 Technical Challenges in Prior Works

We now describe the key technical challenges that barred existing algorithms from solving Problem 1
in the desired nearly-linear gradient complexity.

Gradient descent and variants. As mentioned in Section 4.1, the family of gradient descent
algorithms presented in Table 4.1 are not applicable to Problem 1 without the smoothness assumption.
When the objective in Problem 1 is smooth but has a large condition number, even the optimal
deterministic algorithm, Accelerated Gradient Descent (AGD) [Nes83b] can perform poorly. For
example, when applied to (4.1.3), AGD updates only one coordinate in each step (thereby requiring
n steps), with each step performing n gradient queries (one on each term in the problem objective),
yielding a total gradient complexity ofΩ(n2) [Nes83b]. For a similar reason, the fastest randomized
algorithm, Katyusha [AZ17] also incurs a gradient complexity of Ω(n2) [WS16].

Cutting-plane methods (CPM). Given a convex function f with its set S of minimizers, CPM
minimizes f by maintaining a convex search set E(k)

⊇ S in the kth iteration, and iteratively shrinking
E

(k) using the sub-gradients of f . Specifically, this is achieved by noting that for any x(k) chosen from
E

(k), if the gradient oracle indicates ∇ f (x(k)) , 0, (i.e. x(k) < S), then the convexity of f guarantees

S ⊆ H
(k) def
=

{
y : ⟨∇ f (x(k)),y − x(k)

⟩ ≤ 0
}
, and hence S ⊆ H (k)

∩ E
(k). The algorithm continues by

choosing E(k+1)
⊇ E

(k)
∩H

(k), and different choices of x(k) and E(k) yield different rates of shrinkage
of E(k) until a point in S is found.

Solving Problem 1 via the current fastest CPM [LSW15] takes Õ(d) iterations, each invoking the
gradient oracle on every fi to compute ∇ f (x(k)) =

∑n
i=1 ∇ fi(x(k)). This results in Õ(nd) gradient

queries overall, which can be quadratic in n when d = Θ(n) even if each fi depends on only di = O(1)
coordinates. Similar to gradient descent and its variants, the poor performance of CPM on Problem 1
may therefore be attributed to their inability to query the right fi required to make progress.

Interior-point methods (IPM). IPM solves the convex program minu∈S⟨c,u⟩ by solving a sequence

of unconstrained problems minuΨt(u) def
=

{
t · ⟨c,u⟩ + ψS(u)

}
parametrized by increasing t, whereψS

is a self-concordant barrier function that enforces feasibility by becoming unbounded as it approaches
the boundary of the feasible set S. The algorithm starts at t = 0, for which an approximate

3Here, we focus on the weakly-polynomial regime, where the runtime dependence on ϵ is log(1/ϵ).

minimizer x⋆0 of ψS is known, and alternates between increasing t and updating to an approximate
minimizer x⋆t of the newΨt via Newton’s method. For a sufficiently large t, the minimizer x⋆t also
approximately optimizes the original problem minu∈S⟨c,u⟩ with sub-optimality gap O(ν/t), where
ν is the self-concordance parameter of the barrier function used.

To apply IPM to Problem 1, we may first transform (4.1.1) to min(u,z)∈K
∑

i zi, where K = {(u, z) :
(ui, zi) ∈ Ki,∀i ∈ [n]} andKi = {(ui, zi) : fi(ui) ≤ zi} is the feasible set. Using the universal barrier ψi

for eachKi [NN94], the number of iterations of IPM is Õ(
√∑n

i=1 di), each requiring the computation

of the Hessian and gradient of ψi for all i ∈ [n], leading to a total of Õ(n1.5) sub-gradient queries to
fi’s even when all di = O(1). Even when leveraging the recent framework of robust IPM for linear
programs [LV21], the computation of each Hessian (by sampling the corresponding Ki [JLLV21])
yields a total sub-gradient oracle complexity of Õ(

∑n
i=1 d3.5

i), far from the complexity we seek.

4.1.3 Our Algorithmic Framework

We now give an overview of the techniques developed in this work to overcome the above barriers.
First, by making identical copies of coordinates shared by different fi and using the convex setsKi
to make the objective function linear, we transform (4.1.1) into a convex program over structured
convex sets:

minimize ⟨c, x⟩,
subject to xi ∈ Ki ⊆ R

di+1
∀i ∈ [n]

Ax = b.
(4.1.4)

where x is the concatenation of the vectors x1, . . . , xn, the objective vector c is 1 for the last coordinate
of each xi and 0 otherwise, and Ax = b enforces that different copies of the same coordinates should
be the same. Note that the sub-gradient oracle for fi can be transformed equivalently to a separation

oracleKi. We defineK def
= K1 ×K2 × . . . ×Kn.

Main idea: combining CPM and IPM. Recall that CPM maintains a convex set which initially
contains the feasible region and gradually shrinks around the minimizer, while IPM maintains a
point inside the feasible region that moves toward the minimizer. Our novel idea is to combine
both methods and maintain an inner convex setKin,i as well as an outer convex setKout,i for each i ∈ [n],
such thatKin,i ⊆ Ki ⊆ Kout,i. We defineKin andKout analogously toK . When Inequality 4.3.4 and
Inequality 4.3.3 are satisfied for all i ∈ [n], we make IPM-style updates without needing to make
any oracle calls. When Inequality 4.3.3 is violated for some i ∈ [n], we query the separation oracle at
the point x⋆out,i defined as the centroid ofKout,i (c.f. Proposition 9). Based on the oracle’s response,
we iteratively either growKin,i (and, thus,Kin) outward or shrinkKout,i (and, thus,Kout) inward,
until ultimately they approximateK around the optimum point.

First benefit: large change in volume. If the point x⋆out,i violates Inequality 4.3.3 for some i ∈ [n],
we query the separation oracle to see if x⋆out,i ∈ Ki or not. If x⋆out,i ∈ Ki, then it is used to expand
Kin,i, yielding in a large volume increase forKin,i. On the other hand, if x⋆out,i < Ki, the fact that it
is the centroid of Kout,i results in a large volume decrease for Kout,i when it is intersected with a
halfspace through x⋆out,i. Thus, our algorithm witnesses a large change in volume of one ofKin,i and
Kout,i, regardless of the answer from the oracle. Just like in standard CPM, this rapid change in
volume is crucial to achieving the algorithm’s oracle complexity.

Second benefit: making a smart choice about querying fi. Since the algorithm maintains
both an inner and outer set approximating K , by checking if Kin,i and Kout,i differ significantly

(Inequality 4.3.3 essentially performs this function), we can determine ifKi is poorly approximated,
and if so, improve the inner and outer approximations of the true feasible set. Choosing the right
Ki translates to choosing the right fi to make progress with at an iteration; thus, we address the
central weakness of the gradient descent variants in solving (4.1.1).

4.2 Notation and Preliminaries

We lay out the notation used in this chapter as well as the definitions and prior known results that we
rely on. We use lowercase boldface letters to denote (column) vectors and uppercase boldface letters
to denote matrices. We use xi to denote the ith block of coordinates in the vector x (the ordering of these
blocks is not important in our setup). We use ⪰ and ⪯ to denote the Loewner ordering of matrices.

We use ⟨x, y⟩ to mean the Euclidean inner product x⊤y. A subscript x in the inner product notation
means it is induced by the Hessian of some function (which is clear from context) at x; for example,
⟨u,v⟩x = u⊤∇2

iiψ(x)v with ψ inferred from context. We define the local norm of v at x analogously:

∥v∥x =
√
⟨v,∇2ψ(x) · v⟩. We also define the norm ∥v∥x,1

def
=

∑n
i=1 ∥v∥xi .

We use ψ to represent barrier functions and Φ to represent potential functions, with appropriate
subscripts and superscripts to qualify them as needed.

4.2.1 Facts from Convex Analysis

In this section, we present some definitions and properties from convex analysis that are useful in
our chapter. These results are standard and may be found in, for example, [Roc70, BBV04].

Definition 2. Let f : Rn
→ R. Then the function f ∗ : Rn

→ R defined as

f ∗(y) = sup
x∈dom(f)

[
⟨x,y⟩ − f (x)

]
is called the Fenchel conjugate of the function f . An immediate consequence of the definition (and
by applying the appropriate convexity-preserving property) is that f ∗ is convex, regardless of the
convexity of f . We use the superscript ∗ on functions to denote their conjugates.

Lemma 4.2.1 (Biconjugacy [Roc70]). For a closed, convex function f , we have f = f ∗∗.

Lemma 4.2.2 ([Roc70]). For a closed, convex differentiable function f ,we have y = ∇ f (x) ⇐⇒ x = ∇ f ∗(y).

Proof. This is a fact proved in standard texts in convex analysis mentioned at the start of this section;
however, we present a brief proof for completeness. By definition of the gradient and Definition 2,
we have the following equation (Fenchel-Young equality)

f (x) + f ∗(y) = ⟨x,y⟩

if and only if y = ∇ f (x). Since f is a closed, convex function, we have, by Lemma 4.2.1, that f = f ∗∗.
Applying this fact to the preceding equation then gives

f ∗(y) + f ∗∗(x) = ⟨x,y⟩,

which implies x = ∇ f ∗(y). □

Lemma 4.2.3 ([Roc70]). For a strictly convex, twice-differentiable function f , we have ∇2 f ∗(∇ f (x)) =
(∇2 f (x))−1.

Proof. From Lemma 4.2.2, we have ∇ f ∗(∇ f (x)) = x. Differentiating both sides and using the chain
rule of calculus, we obtain

∇
2 f ∗(∇ f (x)) · ∇2 f (x) = I.

Since ∇2 f (x) ≻ 0,we may then infer the claimed equation. □

Definition 3 (Polar of a Set [RW09]). Given a set S ⊆ Rn, its polar is defined as

S
◦ def
=

{
y ∈ Rn : ⟨y, x⟩ ≤ 1, ∀x ∈ S

}
.

Lemma 4.2.4 ([Roc70]). Let S ⊆ Rn be a closed, compact, convex set, and let y be a point. Then
(conv

{
S,y

}
)◦ ⊆ S◦ ∩H , whereH is the halfspace defined byH =

{
z ∈ Rn : ⟨z,y⟩ ≤ 1

}
.

4.2.2 Background on Interior-Point Methods

Our work draws heavily upon geometric properties of self-concordant functions, which underpin
the rich theory of interior-point methods. We list below the formal results needed for our analysis,
and refer the reader to [NN94, Ren01a] for a detailed exposition of this function class. We begin
with the definitions of self-concordant functions and self-concordant barriers:

Definition 4 (Self-concordance [NN94]). A function F : Q 7→ R is a self-concordant function on a
convex set Q if for any x ∈ Q and any h,

|D3F(x)[h,h,h]| ≤ 2(D2F(x)[h,h])3/2,

where DkF(x)[h1, . . . ,hk] denotes the k-th derivative of F at x along the directions h1, . . . ,hk. We say
F is a ν-self-concordant barrier if F further satisfies ∇F(x)⊤(∇2F(x))−1

∇F(x) ≤ ν for any x ∈ Q.

Theorem 4.2.5 (Theorem 2.3.3 from [Ren01a]). If f is a self-concordant barrier, then for all x and
y ∈ dom(f), we have ⟨∇ f (x),y − x⟩ ≤ ν, where ν is the self-concordance of f .

Theorem 4.2.6 (Theorem 2.3.4 from [Ren01a]). If f is a ν-self-concordant barrier such that x, y ∈ dom(f)
satisfy ⟨∇ f (x),y − x⟩ ≥ 0, then y ∈ Bx(x, 4ν + 1).

We now state the following result from self-concordance calculus.

Theorem 4.2.7 (Theorem 3.3.1 of [Ren01a]). If f is a (strongly nondegenerate) self-concordant function,
then so is its Fenchel conjugate f ∗.

The following result gives a bound on the quadratic approximation of a function, with the distance
between two points measured in the local norm. The convergence of Newton’s method can be
essentially explained by this result.

Theorem 4.2.8 (Theorem 2.2.2 of [Ren01a]). If f is a self-concordant function, x ∈ dom(f), and
y ∈ Bx(x, 1), then

f (y) ≤ f (x) + ⟨∇ f (x),y − x⟩ +
1
2
∥y − x∥2x +

∥y − x∥3x
3(1 − ∥y − x∥x)

,

where ∥y − x∥2x
def
= ⟨y − x,∇2 f (x) · (y − x)⟩.

Finally, we need the following definitions of entropic barrier and universal barrier.

Definition 5 ([BE15, Che21]). Given a convex body K ⊆ Rn and some fixed θ ∈ Rn, define
the function f (θ) = log

[∫
x∈K exp⟨x, θ⟩dx

]
. Then the Fenchel conjugate f ∗ : int(K) → R is a

self-concordant barrier termed the entropic barrier. The entropic barrier is n-self-concordant.

Definition 6 ([NN94, LY21]). Given a convex bodyK ⊆ Rn, the universal barrier ofK is defined as
ψ : int(K)→ R by

ψ(x) = log vol((K − x)◦)

where (K − x)◦ = {y ∈ Rn : y⊤(z − x) ≤ 1,∀z ∈ K} is the polar set of K with respect to x. The
universal barrier is n-self-concordant.

4.2.3 Facts from Convex Geometry

Since our analysis is contingent on the change in the volume of convex bodies when points are
added to them or when they are intersected with halfspaces, we invoke the classical result by
Grünbaum several times. We, therefore, state its relevant variants next: Theorem 4.2.9 applies
to log-concave distributions, and Corollary 8 is its specific case, since the indicator function of a
convex set is a log-concave function [BBV04].

Theorem 4.2.9 ([Grü60, BKL+20]). Let f be a log-concave distribution on Rd with centroid c f . Let
H =

{
u ∈ Rd : ⟨u,v⟩ ≥ q

}
be a halfspace defined by a normal vector v ∈ Rd. Then,

∫
H

f (z)dz ≥ 1
e − t+,

where t =
q−⟨c f ,v⟩

√
Ey∼ f ⟨v,y−c f ⟩

2
is the distance of the centroid to the halfspace scaled by the standard deviation along

the normal vector v and t+
def
= max{0, t}.

Remark 7. A crucial special case of Theorem 4.2.9 is that cutting a convex set through its centroid
yields two parts, the smaller of which has volume at least 1/e times the original volume and the
larger of which is at most 1 − 1/e times the original total volume.

Corollary 8 ([Grü60]). LetK be a convex set with centroid µ and covariance matrix Σ. Then, for any point
x satisfying ∥x − µ∥Σ−1 ≤ η and a halfspaceH such that x ∈ H , we have vol(K ∩H) ≥ vol(K) · (1/e − η).

Finally, we need the following facts.

Fact 4.2.10 (Volumes of standard objects). The volume of a q-dimensional Euclidean ball is given by
vol(Bq(0, R̄)) = πq/2

Γ(1+q/2) R̄
q, and the volume of a q-dimensional cone = 1

q+1 · volume of base · height.

4.3 Our Algorithm

We begin by reducing Problem 1 to the following slightly stronger formulation (see Theorem 4.1.1
for the detailed reduction):

minimize ⟨c, x⟩,
subject to xi ∈ Ki ⊆ R

di+1
∀i ∈ [n]

Ax = b.
(4.3.1)

where x is a concatenation of vectors xi’s, and theKi’s are disjoint convex sets. This formulation
decouples the overlapping support of the original fi’s by introducing additional variables tied

together through the linear system Ax = b. EachKi is constructed by applying a standard epigraph
trick to the function fi.

Note that we do not have a closed-form expression for Ki. Instead, the subgradient oracle for fi
translates to a separation oracle forKi: on a point zi queried by the oracle, the oracle either asserts
zi ∈ Ki, or returns a separating hyperplane that separates zi fromKi.

At the start of our algorithm, we have the following guarantee:

Lemma 4.3.1. At the start of our algorithm, we are guaranteed the existence of the following.

1. Explicit convex setsKin
def
= Kin,1 ×Kin,2 × · · · ×Kin,n andKout

def
= Kout,1 ×Kout,2 × · · · ×Kout,n such that

Kin ⊆ K
def
= K1 × · · · × Kn ⊆ Kout,

2. An initial xinitial ∈ Kin such that Axinitial = b.

We show how to construct such a setKin in Section 4.5.1 and how to find such aKout and xinitial in
Section 4.5.2.

4.3.1 Details of Our Algorithm

In this section, we explain our main algorithm (Algorithm 4.3.1).

Algorithm 4.3.1 Minimizing Decomposable Convex Function ▷ Solving Problem 4.3.1

1: Input. ϵ, A, b, c, R, r, m , n, x,Kin,Kout, and Oi for each i ∈ [n].
2: Initialization. t = m log m

√
n∥c∥2R

and tend =
8m

ϵ∥c∥2R , η = 1
100 , and x⋆out (via Equation (4.3.2))

3: while true do
4: if ⟨c, x⟩ ≤ ⟨c, x⋆out⟩ +

4m
t then ▷ Either update t or end the algorithm

5: if t ≥ tend then
6: return arg minx:x∈Kin,Ax=b

{
t⟨c, x⟩ +

∑n
i=1 ψin,i(xi)

}
. ▷ End the algorithm

7: end if
8: t← t ·

[
1 + η

4m

]
▷ Update t

9: Update x⋆out and jump to Line 3 ▷ x⋆out computed as as per Equation (4.3.2)
10: end if
11: for all i ∈ [n] do
12: if ⟨∇ψin,i(xi), x⋆out,i − xi⟩ + η∥x⋆out,i − xi∥xi ≥ 4di then
13: if x⋆out,i ∈ Ki then ▷ Query Oi

14: Kin,i = conv(Kin,i, x⋆out,i) ▷ UpdateKin,i
15: else
16: Kout,i = Kout,i ∩Hi, whereHi = Oi(x⋆out,i) ▷ UpdateKout,i
17: end if
18: Update x⋆out and jump to Line 3 ▷ x⋆out computed as per Equation (4.3.2)
19: end if
20: end for
21: Set δx

def
=

η
2 ·

x⋆out−x
∥x⋆out−x∥x,1

,where ∥u∥x,1
def
=

∑n
i=1 ∥u∥xi .

22: x← x + δx ▷ Move x towards x⋆out
23: end while

The inputs to Algorithm 4.3.1 are: initial sets Kin and Kout satisfying Kin ⊆ K ⊆ Kout, an initial

point x ∈ Kin satisfying Ax = b, a separation oracle Oi for eachKi, the objective vector c, and scalar
parameters m, n, R, r, and ϵ. All the parameters are set in the proof of Theorem 4.4.10.

Throughout the algorithm, we maintain a central path parameter t for IPM-inspired updates, the
current solution x, and convex setsKin,i andKout,i satisfyingKin,i ⊆ Ki ⊆ Kout,i for each i ∈ [n]. To
run IPM-style updates, we choose the entropic barrier onKout and the universal barrier onKin.

Given the current set Kout, the current t, and the entropic barrier ψout defined on K̂out
def
=

Kout ∩ {u : Au = b}, we define the point

x⋆out
def
= arg min

x∈K̂out

{
t⟨c, x⟩ + ψout(x)

}
. (4.3.2)

Per the IPM paradigm, for the current value of t, this point serves as a target to “chase” when
optimizing ⟨c, x⟩ over the set K̂out. Although our overall goal in Problem 4.3.1 is to optimize over
K ∩ {u : Au = b}, we do not have an explicit closed-form expression forK and therefore must use
its known proxies,Kin orKout, which we maintain throughout the algorithm; between these two
sets, we chooseKout becauseKout ⊇ K ensures we do not miss a potential optimal point.

Having computed the current target x⋆out, we move the current solution x towards it by taking a
Newton step, provided certain conditions of feasibility and minimum progress are satisfied. If
either one of these conditions is violated, we update eitherKin,Kout, or the parameter t.

Updating x. In order to move x towards x⋆out, we require two conditions to hold: x⋆out ∈ Kin and
⟨c, x⟩ ≥ ⟨c, x⋆out⟩ +O(1/t).

The first condition implies x⋆out ∈ K , which would in turn ensure feasibility of the resulting x after
a Newton step. To formally check this condition, we check if the following inequality is satisfied
for all i ∈ [n] and for a fixed constant η:

⟨∇ψin,i(xi), x⋆out,i − xi⟩ + η · ∥x⋆out,i − xi∥xi ≤ 4di. (4.3.3)

The intuition is that since any point within the domain of a self-concordant barrier satisfies the
inequalities in Theorem 4.2.5 and Theorem 4.2.6, violating Inequality 4.3.3 implies that x⋆out,i is far
fromKin,i, and as a result, x⋆out is not a good candidate to move x towards.

The second condition we impose, one of “sufficient suboptimality”, ensures significant progress in
the objective value can be made when updating x. Formally, we check if

⟨c, x⋆out⟩ +
4m
t
≤ ⟨c, x⟩. (4.3.4)

If the inequality holds, then there is still “room for progress” to lower the value of ⟨c, x⟩ by updating
x; if the inequality is violated, it means we’ve “maxed out” on progress attainable with the current
set of parameters and we update t instead. This inequality comes from the standard theory of
interior point methods (e.g., Section .2.4.1 of [Ren01a]), wherein iterates z(η) along the central path
parametrized by η satisfy ⟨c, z⟩ ≤ OPT+ν/η, where ν is the self-concordance parameter of the barrier
function. In our case, the barrier function ψout has a total self-concordance parameter of

∑n
i=1 di = m.

Once the two conditions hold, we move x towards x⋆out in Line 22. The update step is normalized by
the distance between x and x⋆out measured in the local norm, which enforces x ∈ K (since by the def-
inition of self-concordance, the unit radius Dikin ball lies inside the domain of the self-concordance
barrier), and also helps bound certain first-order error terms (Inequality 4.4.14 in Section 4.4.3). Our

update step (Line 22) thus plays a crucial role in both the algorithm and the analysis.

The rest of this section details the procedure for when either of these conditions is violated.

Updating the inner and outer convex sets. Suppose Inequality 4.3.3 is violated for some i ∈ [n].
Then x⋆out,i < Kin,i, which in turn means x⋆out might not be in the feasible set K . To reestablish
Inequality 4.3.3 for i, we can update one ofKin,i orKout,i and recompute x⋆out,i by Equation (4.3.2).

To decide which option to take, we query Oi at the point x⋆out,i: if the oracle indicates that x⋆out,i ∈ Ki,
then we incorporate x⋆out,i intoKin,i by redefiningKin,i = conv(Kin,i, x⋆out,i) to be the convex hull of
the current Kin,i and x⋆out,i (Line 14). If, on the other hand, x⋆out,i < Ki, the oracle Oi will return a
halfspaceHi satisfyingHi ⊇ Ki. Then we redefineKout,i = Kout,i ∩Hi (Line 16). After processing
this update of the sets, the algorithm recomputes x⋆out and returns to the main loop since updating
the sets does not necessarily imply that the new x⋆out satisfies x⋆out ∈ Kin.

This update rule for the sets is exactly where our novelty lies: we do not arbitrarily update sets, rather,
we update one only after checking the very specific condition x⋆out,i < Kin,i. Since the separation oracle is
called only in this part of the algorithm, performing this check enables us to dramatically reduce
the number of calls we make to the separation oracle, thereby improving our oracle complexity.

Further, this update rule shows that even when we cannot update the current x, we make progress
by using all the information from the oracles. Over the course of the algorithm, we gradually
expandKin and shrinkKout, until they well-approximateK . To formally quantify the change in
volume due to the above operations, we consider the following alternative view of x⋆out.

Proposition 9 (Section 3 in [BE15]; Section 3 of [Kla06]). Let θ ∈ Rn, and let pθ be defined as

pθ(x)
def
= exp

(
⟨θ, x⟩ − f (θ)

)
, where f (θ)

def
= log

[∫
K

exp(⟨θ,u⟩)du
]
. Then,

Ex∼pθ[x] = arg min
x∈int(K)

{
f ∗(x) − ⟨θ, x⟩

}
.

By this proposition, x⋆out defined in Equation (4.3.2) satisfies

x⋆out
def
= Ex∼D[x], whereD ∝ exp

{
−t⟨c, x⟩ − log

[∫
K̂out

exp(−t⟨c,u⟩)du
]}
, (4.3.5)

that is, x⋆out is the centroid of some exponential distribution over K̂out. As a result, if x⋆out,i < Ki, the

hyperplane cutting K̂out through x⋆out will yield a large decrease in volume of K̂out, per Remark 7.
Therefore, the query result in a large change in volume in either Kin or Kout, allowing us to
approximateK with a bounded number of iterations.

Updating t. If Inequality 4.3.4 is violated, then the current x is “as optimal as one can get” for the
current parameter t. This could mean one of two things:

The first possibility is that we have already reached an approximate optimum, which we verify
by checking whether t ≥ O(1/ϵ) in Line 5: If true, this indicates that we have attained our desired
suboptimality, and the algorithm terminates by returning

xret = arg min
x:x∈Kin,Ax=b

t · ⟨c, x⟩ +
n∑

i=1

ψin,i(xi)

 .

The point xret is feasible because it is inKin by definition, and the suboptimality of O(1/tend) = O(ϵ)
ensures it is an approximate optimum for the original problem.

The second possibility is that we need to increase t to set the next “target suboptimality”. The value
of t is increased by a scaling factor of 1 +O(1/m) in Line 8. This scaling factor ensures, like in the
standard IPM framework, that the next optimum is not too far from the current one. In particular,
our choice of O(1/m) comes from having to choose t = O(1/ν), and in our case, the self-concordance
parameter is ν =

∑n
i=1 di = m. Following the update to t, we recompute x⋆out by Equation (4.3.2).

Since ⟨c, x⟩ > ⟨c, x⋆out⟩ +O(1/t) is not guaranteed with the new t and x⋆out, the algorithm jumps back
to the start of the main loop.

4.4 Our Analysis

To analyze Algorithm 4.3.1, we define the following potential function that captures the changes in
Kin,i,Kout,i, t, and x in each iteration:

Φ
def
= t⟨c, x⟩ + log

[∫
K̂out

exp(−t⟨c,u⟩)du
]

︸ ︷︷ ︸
entropic terms

+
∑
i∈[n]

ψin,i(xi)︸ ︷︷ ︸
universal terms

, (4.4.1)

where log
[∫
K̂out

exp(−t⟨c,u⟩)du
]

is related to the entropic barrier on K̂out (see Section 4.4.1) and ψin,i

is the universal barrier on Ki. In the subsequent sections, we study the changes in each of these
potential functions along with obtaining bounds on the initial and final potentials and combine
them to bound the algorithm’s separation oracle complexity.

4.4.1 Potential Change due to the Entropic Barrier

In this section, we study the changes in the entropic terms of Equation (4.4.1) upon updating the
outer convex set K̂out as well as t. These two changes are lumped together in this section because
both updates affect the term log

[∫
K̂out

exp(−t · ⟨c, x⟩) dx
]
, albeit in different ways: the update in K̂out

affects it via Grünbaum’s Theorem; the update in t affects it via the fact that, by duality with respect
to the entropic barrier (Definition 5), log

[∫
x∈K̂out

exp(⟨x, θ⟩)dx
]

is also self-concordant. We detail
these two potential changes below.

Lemma 4.4.1 (Potential analysis for outer set). Let K̂out
def
=

{
x : xi ∈ Kout,i ∩

{
y : Ay = b

}}
, and let

Φ = t⟨c, x⟩ + log
[∫
K̂out

exp(−t⟨c,u⟩)du
]
+

∑
i∈[n] ψin,i(xi). Let Hi be the halfspace generated by the

separation oracle Oi queried at x⋆out,i as shown in Line 16 of Algorithm 4.3.1. Then the new potential

Φ(new) = t⟨c, x⟩ + log
[∫
K̂out∩Hi

exp(−t⟨c,u⟩)du
]
+

∑
i∈[n] ψin,i(xi) is bounded from above as follows.

Φ(new)
≤ Φ + log(1 − 1/e).

Proof. The change in potential is given by

Φ(new)
−Φ = log

∫
K̂out∩Hi

exp(−t · ⟨c, x⟩) dx∫
K̂out

exp(−t · ⟨c, x⟩) dx

 .
We now apply Theorem 4.2.9 to the right hand side, with the function f (x) = exp(−t · ⟨c, x⟩ − A(tc)),

where A(θ) = log
[∫
K̂out

exp(−⟨θ, x⟩)dx
]
. Noting that each halfspaceHi passes directly through x⋆out,i,

where x⋆out is the centroid of K̂out with respect to f (by the definition of x⋆out in Equation (4.3.5)),
Remark 7 applies and gives the claimed volume change. □

To capture the change in potential due to the update in t, we recall the alternative perspective to the
function log

[∫
K̂out

exp(−t⟨c, x⟩)dx
]

given by Definition 5 and derive the following technical result.

Lemma 4.4.2. Consider a ν-self-concordant barrier ψ : int(K) → R over the interior of a convex set
K ⊆ Rd. Define

ζ
ψ
t

def
= min

x

[
t · ⟨c, x⟩ + ψ(x)

]
and xt

def
= arg min

x

[
t · ⟨c, x⟩ + ψ(x)

]
. (4.4.2)

Then for 0 ≤ h ≤ 1
3
√
ν
, we have

ζ
ψ
t + th · ⟨xt, c⟩ ≥ ζ

ψ
t(1+h) ≥ ζ

ψ
t + ht · ⟨c, xt⟩ − h2ν.

Proof. The first inequality holds for any function ψ by invoking the definitions of ζψt(1+h), ζ
ψ
t , and xt

from Equation (4.4.2):

ζ
ψ
t(1+h) = min

x

[
t(1 + h) · ⟨x, c⟩ + ψ(x)

]
≤ t(1 + h) · ⟨xt, c⟩ + ψ(xt) = ζ

ψ
t + th · ⟨xt, c⟩.

We now prove the second inequality of the lemma. This one specifically uses the self-concordance
of ψ. Observe first, by definition,

ζ
ψ
t = −ψ

∗(−tc). (4.4.3)

Since ψ is a self-concordant barrier (and hence, a self-concordant function), Theorem 4.2.7 implies
that ψ∗ is a self-concordant function as well. Then, by applying Theorem 4.2.8 to ψ∗ under the
assumption ∥ − thc∥−tc ≤ 1 yields

ψ∗(−tc − thc) ≤ ψ∗(−tc) + ⟨∇ψ∗(−tc),−thc⟩ +

1
2
∥ − thc∥2

−tc +
∥ − thc∥3

−tc

3(1 − ∥ − thc∥−tc)

 . (4.4.4)

By applying the first-order optimality condition to the definition of xt in Equation (4.4.2), we see
that

∇ψ(xt) = −tc. (4.4.5)

Next, evaluating a def
= ∥ − thc∥−tc to check the assumption ∥ − thc∥−tc ≤ 1, we get

a2 = h2
⟨−tc,∇2ψ∗(−tc) · (−tc)⟩ = h2

⟨∇ψ(xt),∇2ψ∗(∇ψ(xt)) · ∇ψ(xt)⟩

= h2
⟨∇ψ(xt), (∇2ψ(xt))−1

· ∇ψ(xt)⟩

≤ h2ν

where we used Equation (4.4.5) and Lemma 4.2.3, in the first two equations and Definition 4 and
the complexity value of ψ in the last step. Our range of h proves that a ≤ 1, which is what we need

for Inequality 4.4.4 to hold. We continue our computation to get1
2
∥ − thc∥2

−tc +
∥ − thc∥3

−tc

3(1 − ∥ − thc∥−tc)

 ≤ 1
2

h2ν +
1
3

h3ν3/2
≤

1
2

h2ν +
1
3

h2ν ≤ h2ν. (4.4.6)

Applying Lemma 4.2.2 to Equation (4.4.5) gives

∇ψ∗(−tc) = xt. (4.4.7)

Plugging Equation (4.4.7) and Inequality 4.4.6 into the first and second-order terms, respectively, of
Inequality 4.4.4 gives

ψ∗(−tc − thc) ≤ ψ∗(−tc) + ⟨xt,−thc⟩ + h2ν.

Plugging in Equation (4.4.3) gives the desired inequality and completes the proof. □

To finally compute the potential change due to t, we need the following result about the self-
concordance parameter of the entropic barrier. While [BE15] prove that this barrier on a set inRd is (1+
ϵd)d-self-concordant, the recent work of [Che21] remarkably improves this complexity to exactly d.

Theorem 4.4.3 ([Che21]). The entropic barrier on any convex bodyK ⊆ Rd is a d-self-concordant barrier.

We may now compute the potential change due to change in t in Line 8.

Lemma 4.4.4. When t is updated to t ·
[
1 + η

4m

]
in Line 8 of Algorithm 4.3.1, the potentialΦ Equation (4.4.1)

increases to Φ(new) as follows:
Φ(new)

≤ Φ + η + η2.

Proof. Recall that the barrier function we use for the set K̂out is the entropic barrier ψout. By
Equation (4.4.2) and the definition of conjugate, we have

−ζ
ψout
t = max

v

[
⟨−tc,v⟩ − ψout(v)

]
= ψ∗out(−tc).

Applying Definition 5, taking the conjugate on both sides of the preceding equation, and using
Lemma 4.2.1 then gives

−ζ
ψout
t = log

[∫
K̂out

exp(−t · ⟨c,u⟩) du
]
. (4.4.8)

From Equation (4.4.1), the change in potential by changing t to t · (1 + h) for some h > 0 may be
expressed as

Φ(new)
−Φ = log

[∫
K̂out

exp⟨−t(1 + h)c,v⟩dv
]
− log

[∫
K̂out

exp⟨−tc,v⟩dv
]
+ ⟨th · c, x⟩.

By applying h = η
4m and ν = m (via a direct application of Theorem 4.4.3), we have h = η

4m ≤
1
√

m
= 1
√
ν
,

and so we may now apply Equation (4.4.8) and Lemma 4.4.2 in the preceding equation to obtain
the following bound.

Φ(new)
−Φ ≤ th⟨c, x⟩ − th⟨c, xt⟩ + h2ν.

From Equation (4.3.2) and Equation (4.4.2), we see that xt for the entropic barrier satisfies the

equation xt = x⋆out, and applying the guarantee ⟨c, x⟩ ≤ ⟨c, x⋆out⟩ +
4m
t to this inequality, we obtain

Φ(new)
−Φ ≤ th ·

4m
t
+ h2ν = η +

(η
4m

)2
ν ≤ η + η2.

□

4.4.2 Potential Change due to the Universal Barrier

We now study the change in volume on growing the inner convex setKin,i in Line 14. As mentioned
in Section 4.3, our barrier of choice on this set is the universal barrier introduced in [NN94] (see
also [Gül97]). This barrier was constructed to demonstrate that any convex body in Rn admits an
O(n)-self-concordant barrier, and its complexity parameter was improved to exactly n in [LY21].

Conceptually, we choose the universal barrier for the inner set because the operation we perform
on the inner set (i.e., generating its convex hull with an external point x⋆out) is dual to the operation
of intersecting the outer set with the separating halfspace containing x⋆out (see Lemma 4.2.4), which
suggests the use of a barrier dual to the entropic barrier used on the outer set. As explained in
[BE15], for the special case of convex cones, the universal barrier is precisely one such barrier.

We now state a technical property of the universal barrier, which we use in the potential argument.

Lemma 4.4.5 ([LY21, Lemma 1], [NN94, Gül97]). Given a convex setK ∈ Rd and x ∈ K , let ψK (x)
def
=

log vol(K−x)◦ be the universal barrier defined onK with respect to x. Let µ ∈ Rd be the center of gravity and
Σ ∈ Rd×d be the covariance matrix of the body (K − x)◦, where (K − x)◦ = {y ∈ Rn : y⊤(z− x) ≤ 1,∀z ∈ K}
is the polar set ofK with respect to x. Then, we have that4

∇ψK (x) = (d + 1)µ, ∇2ψK (x) = (d + 1)(d + 2)Σ + (d + 1)µµ⊤.

Lemma 4.4.6. Given a convex setK ⊆ Rd and a point x ∈ K . Let ψK
def
= log vol(K − x)◦ be the universal

barrier defined onK with respect to x. Let η ≤ 1/4 and y < K be a point satisfying the following condition

⟨∇ψK (x),y − x⟩ + η∥y − x∥x ≥ 4d, (4.4.9)

where the local norm is with respect to ψK (x). Construct the new set conv
{
K ,y

}
. Then, the value of the

universal barrier defined on this new set with respect to x satisfies the following inequality.

ψK ,new(x)
def
= ψconv{K ,y}(x) = log vol(conv

{
K ,y

}
− x)◦ ≤ ψK (x) + log

(
1 − 1/e + η

)
.

Proof. Denote y − x = v. By Lemma 4.2.4, we have that(
conv

{
K ,y

}
− x

)◦
⊆ (K − x)◦ ∩H ,

whereH = {z ∈ Rn : ⟨z,v⟩ ≤ 1}. Therefore, our strategy to computing the deviation ofψconv{K ,y}(x) =
log vol(conv

{
K ,y

}
− x)◦ from ψK (x) is to instead compute the change in vol [(K − x)◦ ∩H] from

vol(K − x)◦, for which it is immediate that one may apply an appropriate form of Grünbaum’s
Theorem.

4The expression for ∇ψK (x) in [NN94] has a typo in the sign.

Let µ be the center of gravity of the body (K − x)◦. If µ ∈ ∂H , then Corollary 8 (with η = 0) gives

vol [(K − x)◦ ∩H] ≤ vol(K − x)◦ · (1 − 1/e),

and taking the logarithm on both sides gives the claimed bound. We now consider the case in
which µ ∈ H , and the variance matrix of the body (K − x)◦ is Σ. Consider the point

z = µ +
1 − ⟨v, µ⟩

4∥v∥2
Σ

· Σv.

Since we are assuming µ ∈ H , it means ⟨v, µ⟩ ≤ 1; using this, we can check that the point z defined
above satisfies ⟨v, z⟩ ≤ 1, which implies z ∈ H . We show that z is sufficiently close to µ, so that
even though µ ∈ H , the subset of (K − x)◦ cut out by the halfspace H is sufficiently large. By
applying Lemma 4.4.5 to express ∥v∥2x as ∥v∥2x = (d + 1)(d + 2)∥v∥2

Σ
+ (d + 1)⟨v, µ⟩2, we may compute

the following quantity.

∥z − µ∥Σ−1 =
√

(d + 1)(d + 2) ·
1 − ⟨v, µ⟩

4
√

1
2∥v∥

2
x +

1
2∥v∥

2
x − (d + 1)⟨v, µ⟩2

. (4.4.10)

Applying the expression for gradient from Lemma 4.4.5 in Equation (4.4.9), we have

η∥v∥x ≥ 4d − (d + 1)⟨v, µ⟩. (4.4.11)

We observe that 4d ≥ (d + 1)⟨v, µ⟩ (trivially true if ⟨v, µ⟩ ≤ 0 and otherwise, true because d ≥ 1 and
⟨v, µ⟩ ≤ 1). Therefore, we can square both sides to see η2

∥v∥2x ≥ 16d2
− 8d(d+ 1)⟨v, µ⟩+ (d+ 1)(⟨v, µ⟩)2.

Using the facts that η ≤ 1/4 and that µ ∈ H implies ⟨v, µ⟩ ≤ 1, we can conclude from this inequality
that 1

2∥v∥
2
x ≥ (d + 1)⟨v, µ⟩2. Plugging this in Equation (4.4.10) gives

∥z − µ∥Σ−1 ≤

√
(d + 1)(d + 2) ·

1 − ⟨v, µ⟩

4
√

1
2∥v∥

2
x

≤ d
1 − ⟨v, µ⟩
∥v∥x

≤ d ·
1 − ⟨v, µ⟩

d(1 − ⟨v, µ⟩)/η
≤ η,

where the final step is by Equation (4.4.11). At this point, Corollary 8 applies, giving us the claimed
potential change. □

4.4.3 Potential Change for the Update of x

In this section, we quantify the amount of progress made in Line 21 of Algorithm 4.3.1 by computing
the change in the potential Φ as defined in Equation (4.4.1).

Lemma 4.4.7. Consider the potential Φ Equation (4.4.1) and the update step δx =
η
2 ·

x⋆out−x
∥x⋆out−x∥x,1

as in Line 21.
Assume the guarantees in Inequality 4.3.3 and Inequality 4.3.4. Then the potential Φ incurs the following
minimum decrease.

Φ(new)
≤ Φ −

η2

4
.

Proof. Taking the gradient of Φwith respect to x and rearranging the terms gives

tc = ∇xΦ −

n∑
i=1

∇ψin,i(xi), (4.4.12)

where we are overloading notation in ∇ψin,i(xi) to mean the d-dimensional vector equalling the
appropriate entries at the di coordinates corresponding to xi and zero elsewhere. By applying the
expression for tc from the preceding equation, we get

Φ(new)
−Φ = t⟨c, x + δx⟩ +

n∑
i=1

ψin,i(xi + δx,i) − t⟨c, x⟩ −
n∑

i=1

ψin,i(xi)

= ⟨∇xΦ, δx⟩ +

n∑
i=1

[
ψin,i(xi + δx,i) − ψin,i(xi) − ⟨∇ψin,i(xi), δx,i⟩

]
︸ ︷︷ ︸

qψin,i (xi)

. (4.4.13)

Note that in substituting Equation (4.4.12) above, we crucially use that xi are all disjoint vectors
whose coordinates completely cover those of x. The term qψin,i(xi) in Equation (4.4.13) the error
due to first-order approximation of ψin,i around xi. Since each of the ψin,i(xi) is a self-concordant
function and ∥δx,i∥xi ≤ ∥δx∥x,1 ≤ η ≤ 1/4, Theorem 4.2.8 applies and gives

ψin,i(xi + δx,i) − ψin,i(xi) − ⟨∇ψin,i(xi), δx,i⟩ ≤ ∥δx,i∥
2
xi
. (4.4.14)

Plugging in Inequality 4.4.14 into Equation (4.4.13), we get

Φ(new)
−Φ ≤ ⟨∇xΦ, δx⟩ +

n∑
i=1

∥δx,i∥
2
xi
. (4.4.15)

We now bound the two terms on the right hand side one at a time. Using the definition of δx (as
given in the statement of the lemma) and of ∇xΦ from Equation (4.4.12) gives

⟨∇xΦ, δx⟩ =
η

2
1

∥x⋆out − x∥x,1
⟨∇xΦ, x⋆out − x⟩

=
η

2
1

∥x⋆out − x∥x,1

⟨tc, x⋆out − x⟩ +
n∑

i=1

⟨∇ψin,i(xi), x⋆out,i − xi⟩

≤
η

2
1

∥x⋆out − x∥x,1

⟨tc, x⋆out − x⟩ +
n∑

i=1

(
4di − η∥x⋆out,i − xi∥xi

)
=
η

2
1

∥x⋆out − x∥x,1

[
⟨tc, x⋆out − x⟩ + 4m − η∥x⋆out − x∥x,1

]
≤
η

2
1

∥x⋆out − x∥x,1
·

(
−η∥x⋆out − x∥x,1

)
= −η2/2. (4.4.16)

where the third step follows from Inequality 4.3.3, the fourth step follows from
∑n

i=1 di = m, and
the fifth step follows from Inequality 4.3.4. To bound the second term, we note from Line 21 that

δx,i =
η
2 ·

x⋆out,i−xi

∥x⋆out−x∥x,1
, which implies

n∑
i=1

∥δx,i∥
2
xi
≤ η2/4. (4.4.17)

Plugging in Inequality 4.4.16 and Equation (4.4.17) into Inequality 4.4.15 finishes the proof. □

4.4.4 Total Oracle Complexity

Before we bound the total oracle complexity of the algorithm, we first bound the total potential
change throughout the algorithm.

Lemma 4.4.8. Consider the potential function Φ = t⟨c, x⟩ + log
[∫
K̂out

exp(−t⟨c,u⟩)du
]
+

∑
i∈[n] ψin,i(xi)

as defined in Equation (4.4.1) associated with Algorithm 4.3.1. Let Φinit be the potential at t = tinit of
this algorithm, and let Φend be the potential at t = tend. Suppose at t = tinit in Algorithm 4.3.1, we have
Bm(x, r̄) ⊆ Kin with r̄ = r/poly(m) and Kout ⊆ Bm(0, R̄) with R̄ = O(

√
nR). Then we have, under the

assumptions of Theorem 4.4.10, that

Φinit −Φend ≤ O
(
m log

(mR
ϵr

))
.

Proof. For this proof, we introduce the following notation: let volA(·) denote the volume restricted
to the subspace {x : Ax = b}. We also invoke Fact 4.2.10. We now bound the change in the potential
term by term, starting with the entropic terms

t⟨c, x⟩ + log
[∫
K̂out

exp(−t⟨c,u⟩)du
]

(4.4.18)

at t = tinit and a lower bound on it at t = tend. We start with bounding Equation (4.4.18) evaluated
at t = tend =

8m
ϵ∥c∥2R .

Let x̄ = arg minx∈K̂out
⟨c, x⟩ and α = ⟨c, x̄⟩. By optimality of x̄, we know that x̄ ∈ ∂K̂out. Denote

BA(z, r̄) to be B(z, r̄) restricted to the subspace {x : Ax = b}. Note that K̂out ⊇ BA(z, r̄). Consider the
cone C and halfspaceH defined by

C = x̄ +
{
λy : λ > 0,y ∈ BA(z − x̄, r̄)

}
andH def

=

{
x : ⟨c, x⟩ ≤ α +

1
tend

}
.

Then, by a similarity argument, we note that C ∩H contains a cone with height 1
tend∥c∥2

and base
radius r̄

R̄tend∥c∥2
, which means

volA(C ∩H) ≥
1

m − rank(A)
·

1
tend∥c∥2

·

(
r̄

R̄tend∥c∥2

)m−rank(A)−1

· vol(Bm−rank(A)−1(0, 1)).

Then, we have

log
[∫
K̂out

exp(−tend⟨c,u⟩)du
]
+ tend⟨c, x⟩ ≥ log

[∫
K̂out

exp(−tend⟨c,u⟩)du
]
+ tend min

x∈K̂out

⟨c, x⟩

≥ log
[∫
C∩H

exp(−tend⟨c,u⟩)du
]
+ tendα

≥ log
[∫
C∩H

exp(−tendα − 1)du
]
+ tendα

= log
[1

e
· volA(C ∩H) exp(−tendα)

]
+ tendα

= log
[
volA(C ∩H) ·

1
e

]
≥ −(m − rank(A) − 1) · log

(
R̄tend∥c∥2/r̄

)
)

+ log
(
vol(Bm−rank(A)−1(0, 1))

)
− log(m − rank(A)) − log(tend∥c∥2) − 1. (4.4.19)

Next, to bound Equation (4.4.18) at t = tinit, we may express these terms as follows.

log
[∫
K̂out

exp(−tinit · ⟨c,u⟩)du
]
+ tinit · ⟨c, x⟩ ≤ log

[
volA(K̂out)

]
+ tinit · max

u∈K̂out

⟨c, x − u⟩

≤ log
(
vol(Bm−rank(A)(0, R̄))

)
+ tinit · 2R̄∥c∥2

≤ log
(
vol(Bm−rank(A)(0, 1))

)
+ (m − rank(A)) log R̄ +O(m log m), (4.4.20)

where the second step is by K̂out ⊆ Kout ⊆ B
∑

i∈[n] di(0, R̄) (here, the second inclusion is by assumption),

and the third step is by vol(Bq(0, R̄)) = πq/2

Γ(1+q/2) R̄
q and our choice of tinit

def
=

m log m
√

n∥c∥2R
.

We now compute the change in the entropic barrier
∑

i∈[n] ψin,i(xi), where

ψin,i(xi) = log vol(K◦in,i(xi)).

DefineBd(0, r) to be the d-dimensional Euclidean ball centred at the origin and with radius r. We note
by the radius assumption of Theorem 4.4.10 thatKin,i ⊆ Ki ⊆ Bdi(0, R̄) throughout the algorithm.
By the assumption made in this lemma’s statement, we have that at the start of Algorithm 4.3.1,
Kin,i ⊇ Bdi(x, r̄). These give us the following bounds.

ψend
in,i (xi) ≥ log

(
vol(B◦di

(0, R̄))
)

and ψinit
in,i (xi) ≤ log

(
vol(B◦di

(xi, r̄))
)
.

Applying the fact that vol(Bd(0, r)) ∝ rd and summing over all i ∈ [n] gives∑
i∈[n]

[
ψinit

in,i (xi) − ψend
in,i (xi)

]
≤

∑
i∈[n]

log
(

vol(Bdi(xi, 1/r̄))
vol(Bdi(0, 1/R̄))

)
=

∑
i∈[n]

di log
(
R̄/r̄

)
= m log

(
R̄/r̄

)
. (4.4.21)

Combining Inequality 4.4.20, Inequality 4.4.19, and Inequality 4.4.21, we have

Φinit −Φend ≤ m log(mR/r) +
[
log

(
vol(Bm−rank(A)(0, 1))

)
+ (m − rank(A)) log R̄ +O(m log m)

]
+ (m − rank(A) − 1) · log

(
R̄tend∥c∥2/r̄

)
− log

(
vol(Bm−rank(A)−1(0, 1))

)
+ log(m − rank(A)) + log(tend∥c∥2) + 1
≤ m log(mR/ϵr) +O(m log m) +O((m − rank(A)) log(mR/ϵr))
≤ O(m log(mR/ϵr)).

□

Lemma 4.4.9. [Total oracle complexity] Suppose the inputs Kin and Kout to Algorithm 4.3.1 satisfy
Kout ⊆ Bm(0, R̄) with R̄ = O(

√
nR) and Kin ⊇ B(z, r̄) with r̄ = r/poly(m). Then, when Algorithm 4.3.1

terminates at t ≥ tend, it outputs a solution x that satisfies

c⊤x ≤ min
x∈K ,Ax=b

c⊤x + ϵ · ∥c∥2R

using at mostNsep = O
(
m log

(
mR
ϵr

))
separation oracle calls.

Proof. LetNt be the number of times t is updated;Nin the number of timesKin is updated;Nout the
number of timesKout is updated;Nx the number of times x is updated, andNtotal the total number
of iterations of the while loop before termination of Algorithm 4.3.1. Then, combining Lemma 4.4.1,
Lemma 4.4.4, Lemma 4.4.6, and Lemma 4.4.7 gives

Φend ≤ Φinit +Nout · log(1 − 1/e) +Nt · (η + η2) +Nin · log
(
1 − 1/e + η

)
+Nx ·

(
−
η2

4

)
. (4.4.22)

The initialization step of Algorithm 4.3.1 chooses η = 1/100, tend =
8m

ϵ∥c∥2R , and tinit =
m log(m)
√

n∥c∥2R
, and we

always update t by a multiplicative factor of 1 + η
4m (see Line 8); therefore, we have

Nt = O(m log(mR/(ϵr)).

From Algorithm 4.3.1, the only times the separation oracle is invoked is when updating Kin or
Kout in Line 14 and Line 16, respectively. Therefore, the total separation oracle complexity is
Nsep = Nin +Nout. Therefore, we have

Nsep = Nin +Nout ≤ O(1) · [Φinit −Φend +Nt] = O(m log(mR/(ϵr))

This gives the claimed separation oracle complexity.

We now prove the guarantee on approximation. Let xoutput be the output of Algorithm 4.3.1 and x be
the point which entered Line 4 right before termination. Note that the termination of Algorithm 4.3.1
implies, by Line 4, that

c⊤xoutput ≤ c⊤x +
ν

tend
≤ c⊤x⋆out +

4(n +m)
tend

≤ min
x∈K ,Ax=b

c⊤x + ϵ · ∥c∥2 · R

where the first step is by the second inequality in Lemma 4.5.7 (using the universal barrier) and the
last step follows by our choice of tend and the definition of x⋆out andKout ⊇ K . □

Theorem 4.4.10 (Main theorem of Problem 4.3.1). Given the convex program

minimize ⟨c, x⟩,
subject to xi ∈ Ki ⊆ R

di+1
∀i ∈ [n],

Ax = b.

DenoteK = K1 ×K2 × . . . ×Kn. Assuming we have

• outer radius R: For any xi ∈ Ki, we have ∥xi∥2 ≤ R, and

• inner radius r: There exists a z ∈ Rd such that Az = b and B(z, r) ⊂ K ,

then, for any 0 < ϵ < 1
2 , we can find a point x ∈ K satisfying Ax = b and

⟨c, x⟩ ≤ min
xi∈Ki⊆R

di+1
∀i∈[n],

Ax=b

⟨c, x⟩ + ϵ · ∥c∥2 · R,

in O(poly(m log(mR/ϵr))) time and using O(m log(mR/(ϵr)) gradient oracle calls, where m =
∑n

i=1 di.

Proof. We apply Theorem 4.5.1 for eachKi separately to find a solution zi. Then z = (z1, . . . , zn) ∈
Rm+n satisfies Bm+n(z, r̄) ⊂ K with r̄ = r

6m3.5 . Then, we modified convex problem as in Definition 10

with s = 216 m2.5R
rϵ and obtaining the following:

minimize ⟨c̄, x̄⟩
subject to Āx̄ = b̄,

x̄ ∈ K̄ def
= K ×Rm+n

≥0 ×R
m+n
≥0

(4.4.23)

with
Ā = [A | A | −A], b̄ = b, c̄ = (c,

∥c∥2s
√

m + n
· 1,

∥c∥2s
√

m + n
· 1)⊤

We solve the linear system Ay = b −Az for y. Then, we construct the initial x by set x(1) = z,

x(2)
i =

yi if yi ≥ 0,
0 otherwise.

and x(3)
i =

−yi if yi < 0,
0 otherwise.

Then, we run Algorithm 4.3.1 on the Problem 4.4.23, with initial x set above, m̄ = 3(m + n), n̄ =
n + 2, ϵ̄ = ϵ

6
√

ns
,K in = {x(1)

∈ B(z, r̄), (x(2), x(3)) ∈ R2n
≥0} and K̂out = Bm̄(0,

√
nR).

By our choice of tend, we have

t̄end =
8m̄

ϵ̄∥c̄∥2R̄
≤

48m
ϵ∥c∥2R

.

First, we check the condition that s ≥ 48ν̄t̄end
√

m + n R2

r ∥c∥2, we note that

48ν̄t̄end
√

m + n
R2

r
∥c∥2 ≤ 27648

m2.5R
ϵr
≤ 216 m2.5R

rϵ
= s.

Let x̄output = (x(1)
output, x

(2)
output, x

(3)
output) be the output of Algorithm 4.3.1. Then, let xoutput = x(1)

output +

x(2)
output − x(3)

output as defined in Theorem 4.5.5. By Lemma 4.4.9, we have

min
x∈Pin

c̄⊤x ≤ min
x∈P

c⊤x + γ

where γ = ϵ̄ · ∥c̄∥2 · R̄. Applying (3) of Theorem 4.5.5, we have

c⊤xoutput ≤
ν̄ + 1
t̄end

+ γ + min
x∈K ,Ax=b

c⊤x ≤ min
x∈K ,Ax=b

c⊤x + ϵ · ∥c∥2 · R.

The last inequality follows by our choice of ϵ̄ and t̄end, we have γ ≤ ϵ
2∥c∥2R and ν̄+1

t̄end
≤

ϵ
2∥c∥2R. Plug

this ϵ̄ in Lemma 4.4.9, it gives the claimed oracle complexity.

□

Theorem 4.1.1 (Main Result). Consider Problem 1 and θ(0) such that ∥θ⋆ − θ(0)
∥2 ≤ R. Assuming all

the fi’s are L-Lipschitz, then there is an algorithm that outputs a vector θ ∈ Rd such that
∑n

i=1 fi(θ) ≤∑n
i=1 fi(θ⋆) + ϵ · LR, using O(m log(m/ϵ)) gradient oracle calls, in time poly(m log(1/ϵ)).

Proof. First, we reformulate (4.1.1) using a change of variables and the epigraph trick. Suppose
each fi depends on di coordinates of θ given by {i1, . . . , idi} ⊆ [d]. Then, symbolically define
xi = [x(i)

i1
; x(i)

i2
; . . . ; x(i)

idi
] ∈ Rdi for each i ∈ [n]. Since each fi is convex and supported on di variables, its

epigraph is convex and di + 1 dimensional. So we may define the convex set

K
unbounded
i =

{
(xi, zi) ∈ Rdi+1 : fi(xi) ≤ Lzi

}
.

Finally, we add linear constraints of the form x(i)
k = x(j)

k for all i, j, k where fi and f j both depend on
θk. We denote these by the matrix constraint Ax = b. Then, Problem 1 is equivalent to

minimize
∑n

i=1 Lzi
subject to Ax = b

(xi, zi) ∈ Kunbounded
i for each i ∈ [n].

(4.4.24)

Since we are given θ(0) satisfying ∥θ(0)
−θ∗∥2 ≤ R, we define x(0)

i = [θ(0)
i1

; . . . , θ(0)
idi

] and z(0)
i = fi(θ(0))/L.

Then, we can restrict the search spaceKunbounded
i to

Ki = K
unbounded
i ∩ {(xi, zi) ∈ Rdi+1 : ∥xi − x(0)

i ∥2 ≤ R and z(0)
i − 2R ≤ zi ≤ z(0)

i + 2R}.

It’s easy to check that Ki is contained in a ball of radius 5R centered at (x(0)
i , z

(0)
i), and contains a

ball of radius R centered at (x(0)
i , z

(0)
i). The subgradient oracle for fi translates to a separation oracle

forKi. Then, we apply Theorem 4.4.10 to (4.4.24) withKunbounded
i replaced byKi to get the error

guarantee and oracle complexity directly. □

Finally, we have the matching lower bound.

Theorem 4.1.2. There exist functions f1, . . . , fn : Rd
7→ R for which a total of Ω(m log(1/ϵ)) gradient

queries are required to solve Problem 1.

Proof. [Nes04] shows that for any di, there exists fi : Rdi 7→ R for whichΩ(di log(1/ϵ)) total gradient
queries are required. We define f1, . . . , fn to be such functions on disjoint coordinates of θ. It follows
that Ω(

∑n
i=1 di log(1/ϵ)) = Ω(m log(1/ϵ)) gradient queries are required in total. □

4.5 Initialization

4.5.1 Constructing an initialKin,i

In this section, we discuss how to construct an initial setKin,i to serve as an input to Algorithm 4.3.1.
In particular, we will prove the following theorem.

Theorem 4.5.1. Suppose we are given separation oracle access to a convex set K that satisfies B(z, r) ⊆
K ⊆ B(0,R) for some z ∈ Rd. Then, Algorithm 4.5.1, in O(d log(R/r)) separation oracle calls toK , outputs
a point x such that B

(
x, r

6d3.5

)
⊆ K .

Algorithm 4.5.1 Inner Ball Finding

1: Kout ← B(0,R)
2: while true do
3: Let v be the center of gravity ofKout
4: Sample u from B(v, r/(6d)) uniformly
5: if u ∈ K then
6: Let S = {v ± r

6d3 ei : i ∈ [d]}
7: if S ⊂ K then
8: return the inscribed ball of conv(S)
9: end if

10: end if
11: LetKout ← Kout ∩H whereH = O(u)
12: end while

Before we prove the preceding theorem, we need the following facts about the self-concordant
barrier and convex sets.

Theorem 4.5.2 ([Nes04, Theorem 4.2.6]). Let ψ : int(K) → R be a ν-self-concordant barrier with the
minimizer x⋆ψ. Then, for any x ∈ int(K) we have:

∥x⋆ψ − x∥x⋆ψ ≤ ν + 2
√
ν.

On the other hand, for any x ∈ Rd such that ∥x − x⋆ψ∥x⋆ψ ≤ 1, we have x ∈ int(K).

Theorem 4.5.3 ([KLS95b, Theorem 4.1]). Let K ⊆ Rd be a convex set with center of gravity µ and
covariance matrix Σ. Then,

{x : ∥x − µ∥Σ−1 ≤

√
(d + 2)/d} ⊆ K ⊆ {x : ∥x − µ∥Σ−1 ≤

√
d(d + 2)}.

Theorem 4.5.4 ([BGVV14, Section 1.4.2]). Let K be a convex set with K ⊂ B(u,R) for some R. Let
K−δ = {x : B(x, δ) ⊂ K}. Then, we have

volK−δ ≥ volK − (1 − (1 −
δ
R

)d) · volB(u,R)

Proof of Theorem 4.5.1. We note that by the description of the Algorithm 4.5.1, the returned ball is
the inscribed ball of conv(S) and we have v ∈ K for each v ∈ S. Then, we must have conv(S) ⊆ K .
We note that conv(S) is a ℓ1 ball with ℓ1 radius r

6d3 , then the inscribed ball has ℓ2 radius r
6d3.5 .

First, we prove the sample complexity of the algorithm above. We use Kt to denote the Kout at
the t-th iteration. We first observe that throughout the algorithm,Kt is obtained by intersection of
halfspaces and B(0,R). This implies

B(z, r) ⊆ K ⊆ Kt ∀t.

SinceKt contains a ball of radius r, let At be the covariance matrix ofKt. By Theorem 5.3.7, we have

At ⪰
r2

d(d + 2)
I.

LetHt be the halfspace returned by the oracle at iteration t. We note that u is sampled uniform
from B(v, r/(6d)), so we have

∥v − u∥A−1 ≤

√
d(d + 2)

r
·

r
6d
≤

1
3
.

Apply the inequality above to Corollary 8, we have

vol(Kt) ≤ (1 − 1/e + 1/3)tvol(K0) ≤ (1 − 1/30)tvol(B(0,R)).

Then, since B(z, r) ⊆ Kt for all the t, this implies the algorithm at most takes O(d log(R/r)) many
iterations.

Now, we consider the number of oracle calls within each iterations. There are three possible cases
to consider:

1. u ∈ K−δ with δ = r
6d3 (see the definition ofK−δ in Theorem 4.5.4). In this case, we have S ⊂ K

and this is the last iteration. We can pay this O(d) oracle calls for the last iteration.

2. u ∈ K\K−δ.

Since u is uniformly sampled from B(v, r/(6d)), Theorem 4.5.4 shows that u ∈ K\K−δ with
probability at most

1 − (1 −
δ

r/(6d)
)d
≤

1
d
.

Hence, this case only happens with probability only at most 1/d. Since the cost of checking
S ⊂ K takes O(d) oracle calls. The expected calls for this case is only O(1).

3. u < K. The cost is just 1 call.

Combining all the cases, the expected calls is O(1) per iteration.

□

4.5.2 Initial point reduction

In this section, we will show how to obtain an initial feasible point for the algorithm.

Definition 10. Given a convex program minAx=b,x∈K⊆Rd c⊤x and some s > 0, we define c1 = c, c2 =

c3 =
s∥c∥2
√

d
· 1 and P = {x(1)

∈ K , (x(2), x(3)) ∈ R2d
≥0 : A(x(1) + x(2)

− x(3)) = b}. We then define the modified
convex program by

min
(x(1),x(2),x(3))∈P

c⊤1 x(1) + c⊤2 x(2) + c⊤3 x(3).

We denote (c1, c2, c3) by c.

Theorem 4.5.5. Given a convex program minAx=b,x∈K⊆Rd c⊤x with outer radius R and some convex
set Kin with Kin ⊆ K and inner radius r. For any modified convex program as in Definition 10 with
s ≥ 48νt

√
d · R

r · ∥c∥2R. For an arbitrary t ∈ R≥0, we define the function

ft(x(1), x(2), x(3)) = t(c⊤1 x(1) + c⊤2 x(2) + c⊤3 x(3)) + ψPin(x(1), x(2), x(3))

where ψPin is some ν self-concordant barrier for the set

Pin = {x(1)
∈ Kin, (x(2), x(3)) ∈ R2d

≥0 : A(x(1) + x(2)
− x(3)) = b}.

Given xt
def
= (x(1)

t , x
(2)
t , x

(3)
t) = arg min(x(1),x(2),x(3))∈Pin

ft(x(1), x(2), x(3)), we denote xin = x(1)
t + x(2)

t − x(3)
t .

Suppose minx∈Pin c̄⊤x ≤ minx∈P c̄⊤x + γ, we have the following

1. Axin = b,

2. xin ∈ Kin,

3. c⊤xin ≤ minx∈K ,Ax=b c⊤x + ν+1
t + γ.

First, we show that x(1)
t is not too close to the boundary. Before we proceed, we need the following

lemmas.

Lemma 4.5.6 (Theorem 4.2.5 [Nes04]). Let ψ be a ν-self-concordant barrier. Then, for any x ∈ dom(ψ)
and y ∈ dom(ψ) such that

⟨ψ′(x),y − x⟩ ≥ 0,

we have
∥y − x∥x ≤ ν + 2

√
ν.

Lemma 4.5.7 (Theorem 2 of [ZLY22]). Given a convex set 5 Ω with a ν-self-concordant barrier ψΩ and
inner radius r. Let xt = arg minx t · c⊤x + ψΩ(x). Then, for any t > 0,

min
{

1
2t
,

r∥c∥2
4ν + 4

√
ν

}
≤ c⊤xt − c⊤x∞ ≤

ν
t
.

Consider the optimization problem restricted in the subspace {(x(1), x(2), x(3)) : A(x(1)+x(2)
−x(3)) = b},

as a direct corollary of theorem above we have the following:

Corollary 11. Let x̄t be as the same as defined in Theorem 4.5.5. For t ≥ 4ν
r∥c∥2

, we have dist(x(1)
t , x

(1)
∞) ≥ 1

2t∥c∥2
.

Now, we are ready to show dist(x(1)
t , ∂Kin) is not too small.

5The original theorem is stated only for polytopes, but their proof works for general convex sets.

Theorem 4.5.8. Let x̄t be the same as defined in Theorem 4.5.5. For t ≥ 4ν
r∥c∥2

, we have dist(x(1)
t , ∂Kin) ≥

r
12νt∥c∥2R .

Proof. We consider the domain restricted in the subspace {(x(1), x(2), x(3)) : A(x(1) + x(2)
− x(3)) = b}.

By the optimality of x̄t and Lemma 4.5.6, we have

KH ⊆ {x : ∥x − x(1)
t ∥x(1)

t
≤ ν + 2

√
ν},

whereH = {x : c⊤(x(1)
t − x) ≥ 0} andKH

def
= H ∩Kin.

Recall that Kin contains a ball of radius r, we denote it by B. We note that conv(x(1)
∞ ,B) is a union

of a ball and a convex cone Cwith diameter at most 2R. We observe that the set conv(x(1)
∞ ,B) ∩H

contains a ball of radius at least r
4t∥c∥2R since dist(x(1)

∞ , ∂H) ≥ 1
2t∥c∥2

.

We note that
conv(x(1)

∞ ,B) ∩H ⊆ Kin ⊆ {x : ∥x − x(1)
t ∥x(1)

t
≤ ν + 2

√
ν},

this implies {x : ∥x − x(1)
t ∥x(1)

t
≤ ν + 2

√
ν} contains a ball of radius at least r

4t∥c∥2R , and then by

Theorem 4.5.2, we have B(x(1)
t ,

r
4(ν+2

√
ν)t∥c∥2R

) ⊆ Kin. □

Lemma 4.5.9. Let (x(1)
t , x

(2)
t , x

(3)
t) ∈ R3d be the same as defined in Theorem 4.5.5. If t > ν

∥c∥2R , then we have

∥x(2)
t − x(3)

t ∥2 ≤
4
√

d
s R.

Proof. Let x⋆in = arg minx∈Kin,Ax=b c⊤x and x⋆in = arg minx∈Pin c⊤x. Since x⋆ ∈ B(0,R), we have
c⊤x⋆in ≤ ∥c∥2R. Note that (x⋆in, 0, 0) ∈ Pin, this means we have c⊤x⋆in ≤ c⊤x⋆in ≤ ∥c∥2R. Combining this
with the second inequality in Lemma 4.5.7, we get

c⊤xt ≤ c⊤x⋆in +
ν
t
≤ ∥c∥2R +

ν
t
≤ 2∥c∥2R.

We further note that
c⊤2 x(2)

t ≤ c⊤xt ≤ 2∥c∥R.

This shows

max{∥x(2)
t ∥2, ∥x

(3)
t ∥2} ≤

2
√

d∥c∥2R
∥c∥2s

≤
2
√

dR
s

.

Hence, we have the claimed bound. □

Now, we are ready to prove Theorem 4.5.5.

Proof of Theorem 4.5.5. We note that xin satisfies (1), directly follows by definition of P. By assump-
tion, we have s ≥ 48νt

√
d · R

r · ∥c∥2R; using this in Lemma 4.5.9, we have ∥x(2)
t − x(3)

t ∥2 ≤
r

12νt∥c∥2R . This

means xin = x(1)
t + x(2)

t − x(3)
t ∈ Kin since dist(x(1)

t , ∂Kin) ≥ r
12νt∥c∥2R . Now, we show c⊤xin is close to

c⊤x⋆.

Let x⋆ = arg minx∈K ,Ax=b c⊤x and x⋆ = arg minx∈P c⊤x. By Lemma 4.5.7, we have

c⊤xt −
ν
t
≤ c⊤x⋆in ≤ c⊤x⋆ + γ ≤ c⊤x⋆ + γ.

This implies
c⊤x(1)

t ≤ c⊤xt ≤ c⊤x⋆ +
ν
t
+ γ.

We have
c⊤xin = c⊤(x(1)

t + x(2)
t − x(3)

t) ≤ c⊤x⋆ +
ν
t
+

4
s
∥c∥2R ≤ c⊤x⋆ +

ν + 1
t
+ γ.

□

Chapter 5

A Gradient Sampling Algorithm for Lipschitz Functions in
High and Low Dimensions

Zhang et al. introduced a novel modification of Goldstein’s classical subgradient method, with
an efficiency guarantee of O(ε−4) for minimizing Lipschitz functions. Their work, however, makes
use of a nonstandard subgradient oracle model and requires the function to be directionally
differentiable. In this chapter, we show that both of these assumptions can be dropped by simply
adding a small random perturbation in each step of their algorithm. The resulting method works on
any Lipschitz function whose value and gradient can be evaluated at points of differentiability. We
additionally present a new cutting plane algorithm that achieves better efficiency in low dimensions:
O(dε−3) for Lipschitz functions and O(dε−2) for those that are weakly convex.

5.1 Introduction

The subgradient method [SKR85] is a classical procedure for minimizing a nonsmooth Lipschitz
function f on Rd. Starting from an initial iterate x0, the method computes

xt+1 = xt − αtvt where vt ∈ ∂ f (xt). (5.1.1)

Here, the positive sequence {αt}t≥0 is user-specified, and the set ∂ f is the Clarke subdifferential [Cla90,
RW09],

∂ f (x) = conv
{

lim
i→∞
∇ f (xi) : xi → x, xi ∈ dom(∇ f)

}
.

In classical circumstances, the subdifferential reduces to familiar objects: for example, when f is
C1-smooth at x, the subdifferential ∂ f (x) comprises of only the gradient ∇ f (x), while for convex
functions, it reduces to the subdifferential in the sense of convex analysis.

The limit points x̄ of the subgradient method are known to be first-order critical, meaning 0 ∈ ∂ f (x̄),
for functions f that are weakly convex — a broad class of functions first introduced in English
in [Nur73]: a function f is ρ-weakly convex if the quadratically perturbed function x 7→ f (x)+ ρ

2 ∥x∥
2

is convex. In particular, convex and smooth functions are weakly convex [DD19]. Going beyond
asymptotic guarantees, finite-time complexity estimates are known for smooth, convex, or weakly
convex problems [GL13, RHS+16, JGN+17, AZ18, CDHS18, DDMP18, FLLZ18, ZXG18].

Modern machine learning, however, has witnessed the emergence of problems far beyond the
weakly convex problem class. Indeed, tremendous empirical success has been recently powered by
industry-backed solvers, such as Google’s TensorFlow and Facebook’s PyTorch, which routinely
train nonsmooth nonconvex deep networks via (stochastic) subgradient methods. Despite a vast
body of work on the asymptotic convergence of subgradient methods for nonsmooth nonconvex

61

problems [BHS05, Kiw07, MMM18, DDKL20, BP21], no finite-time nonasymptotic convergence
rates were known outside the weakly convex setting until recently, with Zhang, Lin, Jegelka, Sra,
and Jadbabaie [ZLSJ20] making a big leap forward towards this goal.

In particular, restricting themselves to the class of Lipschitz and directionally differentiable functions,
[ZLSJ20] developed an efficient algorithm motivated by Goldstein’s conceptual subgradient method
[Gol77]. Moreover, this was recently complemented by [KS21] with lower bounds for finding
near-approximate-stationary points for nonconvex nonsmooth functions.

While a significant breakthrough in both result and technique, one limitation of [ZLSJ20] is that
their complexity guarantees and algorithm use a nonstandard first-order oracle whose validity
is unclear in examples. To elaborate, their algorithm requires the following oracle access: given
x,u ∈ Rd solve the auxiliary convex feasibility problem:

find g ∈ ∂ f (x) subject to ⟨g,u⟩ = f ′(x,u). (5.1.2)

The first issue with this oracle is that no general recipe exists for representing the full subdifferential
∂ f (x) analytically, and evaluating even an arbitrary element of the subdifferential can be highly
non-trivial [BLO02, KB13]. Moreover, ∂ f (x) could be a very complicated set, e.g., for a deep ReLU
neural network, the subdifferential is a polyhedron with a potentially huge number of facets,
making the complexity of (5.1.2) unclear.

Further, [ZLSJ20] claim that for a composition of directionally differentiable functions with a
closed-form directional derivative for each function, we can find the desired g by the chain rule.
While the chain rule does compute the directional derivative f ′(x,u), to the best of our knowledge,
this does not translate to solving (5.1.2). This is owing to the crucial fact that the chain rule (and
sum rule) can easily fail for the computation of the subdifferential1 (although these are indeed valid
for the directional derivative of a composition of directionally differentiable functions). We believe
that this could potentially render the oracle of [ZLSJ20] computationally intractable.

Finally, we are unaware of other optimization algorithms imposing this oracle model. Therefore, at
face value, the convergence guarantees of [ZLSJ20] are not comparable to those of others.

5.1.1 Our Results

Weakly convex optimization via a standard oracle. Our first contribution is to recover the
complexity result of [ZLSJ20] under a much weaker assumption: specifically, we replace the non-
standard assumption in (5.1.2) with a standard first-order oracle model. We show (Section 5.2) that a simple,
yet critical, modification of the algorithm of [ZLSJ20], wherein one simply adds a small random
perturbation in each iteration, works for any Lipschitz function assuming only an oracle that can
compute gradients and function values at almost every point ofRd in the sense of Lebesgue measure.
In particular, such oracles arise from automatic differentiation schemes routinely used in deep
learning [BP20, BP21]. Our end result is a randomized algorithm for minimizing any L-Lipschitz
function that outputs a (δ, ϵ)-stationary point (Definition 5.2.1) after using at most Õ

(
∆L2

ϵ3δ
log

(
1/γ

)) 2

gradient and function evaluations. Here ∆ is the initial function gap and γ is the failure probability.

1We provide a simple example to demonstrate this claim: Consider the function f (x, y) = f1(x, y) + f2(x, y) with
f1(x, y) = |x| and f2(x, y) = −|x|. Choose the direction u = (0, 1), and let z = (0, 0). Then, f ′1(z,u) = f ′2(z,u) = 0, and
∂ f1(z) = ∂ f2(z) = [−1, 1]× 0. Therefore, to satisfy the oracle (5.1.2), for f1, we may choose the subgradient v1 = (−1, 0), and
for f2, we may choose the subgradient v2 = (−1, 0) since ⟨v1,u⟩ = 0 = ⟨v2,u⟩. However, v1 + v2 = (−2, 0), which is not a
subgradient of f = 0 at z.

2Throughout the chapter, we use Õ(·) to hide poly-logarithmic factors in L, δ,∆, and ϵ.

In light of the above modifications, our algorithm is implementable in the many important settings
like deep neural networks that [ZLSJ20] is not. Along the way, we also simplify their proof
techniques by providing a geometric viewpoint of the algorithm.

We would like to highlight the concurrent work of Tian, Zhou, and So [TZS22], which obtains this
part of our result with a very similar technique. Additionally, we mention that such perturbation
techniques have been widely used in the convex optimization literature, e.g., [Ber73, FKM04,
DBW12].

Improved complexity in low dimensions. Having obtained the result of [ZLSJ20] within the
standard first-order oracle model, we then proceed to investigate the following question.

Can we improve the efficiency of the algorithm in low dimensions?

In addition to being natural from the viewpoint of complexity theory, this question is well-grounded
in applications. For instance, numerous problems in control theory involve minimization of highly
irregular functions of a small number of variables. We refer the reader to the survey [BCL+20, Section
6] for an extensive list of examples, including Chebyshev approximation by exponential sums,
spectral and pseudospectral abscissa minimization, maximization of the “distance to instability”,
and fixed-order controller design by static output feedback. We note that for many of these problems,
the gradient sampling method of [BCL+20] is often used. Despite its ubiquity in applications, the
gradient sampling method does not have finite-time efficiency guarantees. The algorithms we
present here offer an alternative approach with a complete complexity theory.

The second contribution of this chapter is an affirmative answer to the highlighted question. We present
a novel algorithm that uses Õ

(
∆Ld
ϵ2δ

log
(
1/γ

))
calls to our (weaker) oracle. Thus we are able to trade

off the factor Lϵ−1 with d. Further, if the function is ρ-weakly convex, the complexity improves to
Õ

(
∆d
ϵδ log

(
ρ
))

, which matches the complexity in δ = ϵ of gradient descent for smooth minimization.
Strikingly, the dependence on the weak convexity constant ρ is only logarithmic.

To put this contribution in perspective, assume for now δ = ϵ: then, our algorithm’s dependence
on ϵ in the case of Lipschitz, weakly convex functions is likely optimal in low dimensions,
following a conjecture by Bubeck and Mikulincer [BM20] on the optimality of gradient descent for
smooth optimization in dimension d = log

(
1
ϵ

)
(thus matching the lower bound by Carmon, Duchi,

Hinder, and Sidford [CDHS20]). Aside from possible optimality, the logarithmic dependence on
smoothness/weak convexity exhibited by our iteration complexity is a significant improvement
over the prior result of either O(1/ϵ4) by [ZLSJ20] or Nemirovski and Yudin’s rate of O(1/ϵ2) with
a polynomial dependence on smoothness. In the process, we also show that the minimal-norm
element of the Goldstein-subdifferential in low dimensions can be found in time O(log(1/ϵ)), thus
settling a question open since the 70s.

Techniques. The main idea for our improved dependence on ϵ in low dimensions is outlined next.
The algorithm of [ZLSJ20] comprises of an outer loop withO

(
∆
ϵδ

)
iterations, each performing either a

decrease in the function value or an ingenious random sampling step to update the descent direction.
Our observation, central to improving the ε dependence, is that the violation of the descent condition
can be transformed into a gradient oracle for the problem of finding a minimal norm element of
the Goldstein subdifferential. This gradient oracle may then be used within a cutting plane method,
which achieves better ε dependence at the price of a dimension factor (Section 5.3).

Limitations. One limitation of our work is that our second contribution does not immediately
extend to the stochastic setting. We consider this to be an interesting open problem to resolve.

Notation. Throughout, we let Rd denote a d-dimensional Euclidean space equipped with a dot
product ⟨·, ·⟩ and the Euclidean norm ∥x∥2 =

√
⟨x, x⟩. The symbol Br(x) denotes an open Euclidean

ball of radius r > 0 around a point x. Throughout, we fix a function f : Rd
→ R that is L-Lipschitz,

and let dom(∇ f) denote the set of points where f is differentiable—a full Lebesgue measure set by

Rademacher’s theorem. The symbol f ′(x,u) def
= limτ↓0 τ−1(f (x + τu) − f (x)) denotes the directional

derivative of f at x in direction u, whenever the limit exists.

5.2 Interpolated Normalized Gradient Descent (INGD)

In this section, we describe the results in [ZLSJ20] and our modified subgradient method that
achieves finite-time guarantees in obtaining (δ, ϵ)-stationarity for an L-Lipschitz function f : Rd

→ R.
The main construction we use is the Goldstein subdifferential [Gol77].

Definition 5.2.1 (Goldstein subdifferential). Consider a locally Lipschitz function f : Rd
→ R, a point

x ∈ Rd, and a parameter δ > 0. The Goldstein subdifferential of f at x is the set

∂δ f (x)
def
= conv

(⋃
y∈Bδ(x)

∂ f (y)
)
.

A point x is called (δ, ϵ)-stationary if dist(0, ∂δ f (x)) ≤ ϵ.

Thus, the Goldstein subdifferential of f at x is the convex hull of all Clarke subgradients at points in
a δ-ball around x. Famously, [Gol77] showed that one can significantly decrease the value of f by
taking a step in the direction of the minimal norm element of ∂δ f (x). Throughout the rest of the
section, we fix δ ∈ (0, 1) and use the notation

ĝ def
= g/∥g∥2 for any nonzero vector g ∈ Rd. (5.2.1)

Theorem 5.2.2 ([Gol77]). Fix a point x, and let g be a minimal norm element of ∂δ f (x). Then as long as
g , 0, we have f

(
x − δĝ

)
≤ f (x) − δ∥g∥2.

Theorem 5.2.2 immediately motivates the following conceptual descent algorithm:

xt+1 = xt − δĝt, where gt ∈ argming∈∂δ f (x)∥g∥2. (5.2.2)

In particular, Theorem 5.2.2 guarantees that, defining ∆ def
= f (x0)−min f , the approximate stationarity

condition
min

t=1,...,T
∥gt∥2 ≤ ϵ holds after T = O

(
∆

δϵ

)
iterations of (5.2.2).

We display this algorithmic framework in Algorithm 5.2.1.

Algorithm 5.2.1 Interpolated Normalized Gradient Descent (INGD(x0,T))

Initial x0, counter T
for t = 0, . . . ,T − 1 do

g = MinNorm(xt) ▷ Computational complexity Õ(L2/ϵ2)
Set xt+1 = xt − δĝ ▷ We define ĝ in (5.2.1)

end for
Return xT

The difficulty one encounters in trying to analyze Algorithm 5.2.1 is in the step MinNorm(xt):
Evaluating the minimal norm element of ∂δ f (x) is impossible in general, and therefore the descent
method described in (5.2.2) cannot be applied directly. Nonetheless it serves as a guiding principle
for implementable algorithms. Notably, the gradient sampling algorithm [BLO05] in each iteration
forms polyhedral approximations Kt of ∂δ f (xt) by sampling gradients in the ballBδ(x) and computes
search directions gt ∈ argming∈Kt

∥g∥2. These gradient sampling algorithms, however, have only
asymptotic convergence guarantees [BCL+20].

The recent paper [ZLSJ20], operating in the framework of the conceptual Goldstein descent
algorithm (Algorithm 5.2.1), remarkably shows that for any x ∈ Rd one can find an approximate
minimal norm element of ∂δ f (x) using a number of subgradient computations that is independent
of the dimension. We display [ZLSJ20]’s algorithm to find a minimal norm element of the Goldstein
subdifferential in Algorithm 5.2.2.

Algorithm 5.2.2 MinNorm(x, δ, ϵ) of [ZLSJ20]

1: Input. x, δ > 0, ϵ > 0, and access to the oracle O(x, d) defined in Assumption 1 of [ZLSJ20].
2: Let k = 0, g0 = O(x, 0).
3: while ∥gk∥2 > ϵ and δ

4∥gk∥2 ≥ f (x) − f
(
x − δĝk

)
do

4: Choose yk uniformly at random from the segment [x, x − δĝk].
5: uk = O(yk,−gk).
6: gk+1 = argminz∈[gk,uk)]∥z∥2.
7: k = k + 1.
8: end while
9: Return gk.

The key idea underlying Algorithm 5.2.2 is as follows. Suppose that we have a trial vector g ∈ ∂δ f (x)
(not necessarily a minimal norm element) satisfying

f
(
x − δĝ

)
≥ f (x) −

δ
2
∥g∥2. (5.2.3)

That is, the decrease in function value is not as large as guaranteed by Theorem 5.2.2 for the true
minimal norm subgradient. One would like to now find a vector u ∈ ∂δ f (x) so that the norm of
some convex combination (1 − λ)g + λu is smaller than that of g. A short computation shows that
this is sure to be the case for all small λ > 0 as long as ⟨u, g⟩ ≤ ∥g∥22. The task therefore reduces to:

find some u ∈ ∂δ f (x) satisfying ⟨u, g⟩ ≤ ∥g∥22.

The ingenious idea of [ZLSJ20] is a randomized procedure for establishing exactly that in expectation.
Namely, suppose for the moment that f happens to be differentiable along the segment [x, x − δĝ];
we will revisit this assumption shortly. Then the fundamental theorem of calculus, in conjunction
with (5.2.3), yields

1
2
∥g∥2 ≥

f (x) − f
(
x − δĝ

)
δ

=
1
δ

∫ δ

0
⟨∇ f (x − τĝ), ĝ⟩ dτ. (5.2.4)

Consequently, a point y chosen uniformly at random in the segment [x, x − δĝ] satisfies

E⟨∇ f (y), g⟩ ≤
1
2
∥g∥22. (5.2.5)

Therefore the vector u = ∇ f (y) can act as the subgradient we seek. Indeed, the following lemma
shows that, in expectation, the minimal norm element of [g,u] is significantly shorter than g. The
proof is extracted from that of [ZLSJ20, Theorem 8].

Lemma 5.2.3 ([ZLSJ20]). Fix a vector g ∈ Rd, and let u ∈ Rd be a random vector satisfyingE⟨u, g⟩ < 1
2∥g∥

2
2.

Suppose moreover that the inequality ∥g∥2, ∥u∥2 ≤ L holds for some L < ∞. Then the minimal-norm vector z
in the segment [g,u] satisfies:

E∥z∥22 ≤ ∥g∥
2
2 −
∥g∥42
16L2 .

Proof. Applying E⟨u, g⟩ ≤ 1
2∥g∥

2
2 and ∥g∥2, ∥u∥2 ≤ L, we have, for any λ ∈ (0, 1),

E∥z∥22 ≤ E∥g + λ(u − g)∥22 = ∥g∥
2
2 + 2λE⟨g,u − g⟩ + λ2E∥u − g∥22

≤ ∥g∥22 − λ∥g∥
2
2 + 4λ2L2.

Plugging in the value λ =
∥g∥22
8L2 ∈ (0, 1) minimizes the right hand side and completes the proof. □

The last technical difficulty to overcome is the requirement that f be differentiable along the line
segment [g,u]. This assumption is crucially used to obtain (5.2.4) and (5.2.5). To cope with this
problem, [ZLSJ20] introduce extra assumptions on the function f to be minimized and assume a
nonstandard oracle access to subgradients.

5.2.1 Our Algorithm for Computing the Minimal Norm Element.

Our first contribution is to show, using Lemma 5.2.4, that no extra assumptions are needed if one
slightly perturbs g.

Lemma 5.2.4. Let f : Rd
→ R be a Lipschitz function, and fix a point x ∈ Rd. Then there exists a set

D ⊂ Rd of full Lebesgue measure such that for every y ∈ D, the line spanned by x and y intersects dom(∇ f)
in a full Lebesgue measure set in R. Then, for every y ∈ D and all τ ∈ R, we have

f (x + τ(y − x)) − f (x) =
∫ τ

0
⟨∇ f (x + s(y − x)), y − x⟩ ds.

Proof. Without loss of generality, we may assume x = 0 and f (x) = 0. Rademacher’s theorem
guarantees that dom(∇ f) has full Lebesgue measure in Rd. Fubini’s theorem then directly implies
that there exists a set Q ⊂ Sd−1 of full Lebesgue measure within the sphere Sd−1 such that for every
y ∈ Q, the intersection R+{y} ∩ (dom(∇ f))c is Lebesgue null in R. It follows immediately that the
setD = {τy : τ > 0, y ∈ Q} has full Lebesgue measure in Rd. Fix now a point y ∈ D and any τ ∈ R+.
Since f is Lipschitz, it is absolutely continuous on any line segment and therefore

f (x + τ(y − x)) − f (x) =
∫ τ

0
f ′(x + s(y − x), y − x) ds =

∫ τ

0
⟨∇ f (x + s(y − x)), y − x⟩ ds.

□

We now have all the ingredients to present a modification of the algorithm from [ZLSJ20], which,
under a standard first-order oracle model, either significantly decreases the objective value or finds
an approximate minimal norm element of ∂δ f . As one can see comparing with Algorithm 5.2.2, the
difference is in how we compute yk and the associated assumptions [ZLSJ20] needs to impose.

Algorithm 5.2.3 MinNorm(x, δ, ϵ)

1: Input. x, δ > 0, and ϵ > 0.
2: Let k = 0, g0 = ∇ f (ζ0) where ζ0 ∼ Bδ(x).
3: while ∥gk∥2 > ϵ and δ

4∥gk∥2 ≥ f (x) − f
(
x − δĝk

)
do

4: Choose any r satisfying 0 < r < ∥gk∥2 ·

√
1 − (1 −

∥gk∥
2
2

128L2)2.
5: Sample ζk uniformly from Br(gk).
6: Choose yk uniformly at random from the segment [x, x − δζ̂k].
7: Set uk = ∇ f (yk).
8: gk+1 = argminz∈[gk,uk]∥z∥2.
9: k = k + 1.

10: end while
11: Return gk.

The following theorem establishes the efficiency of Algorithm 5.2.3, and its proof is similar to that
of [ZLSJ20, Lemma 13]. For completeness, we include the full proof in Section D.1.

Theorem 5.2.5. Let {gk} be generated by MinNorm(x, δ, ϵ). Fix an index k ≥ 0, and define the stopping time

τ
def
= inf

{
k : f (x − δĝk) < f (x) − δ∥gk∥2/4 or ∥gk∥2 ≤ ϵ

}
. Then, we have

E
[
∥gk∥

2
21τ>k

]
≤

16L2

16 + k
.

An immediate consequence of Theorem 5.2.5 is that MinNorm(x, δ, ϵ) terminates with high-probability.

Corollary 12. MinNorm(x, δ, ϵ) terminates in at most
⌈

64L2

ϵ2

⌉
·
⌈
2 log

(
1/γ

)⌉
iterations with probability at

least 1 − γ, where we define the stopping time τ
def
= inf

{
k : f (x − δĝk) < f (x) − δ∥gk∥2/4 or ∥gk∥2 ≤ ϵ

}
.

Incorporating Algorithm 5.2.3 in Algorithm 5.2.1 yields convergence guarantees summarized in
Theorem 5.2.6, whose proof is identical to that of [ZLSJ20, Theorem 8].

Theorem 5.2.6. Fix an initial point x0 ∈ Rd, and define ∆ = f (x0) − infx f (x). Set the number of iterations
T = 4∆

δϵ . Then, with probability 1 − γ, the point xT = INGD(x0,T) satisfies dist(0, ∂δ f (xT)) ≤ ϵ in a total of
at most ⌈4∆

δϵ

⌉
·

⌈
64L2

ϵ2

⌉
·

⌈
2 log

(
4∆
γδϵ

)⌉
function-value and gradient evaluations.

Discussion. In summary, the complexity of finding a point x satisfying dist(0, ∂δ f (x)) ≤ ϵ is at
most O

(
∆L2

δϵ3 log
(

4∆
γδϵ

))
with probability 1 − γ. Using the identity ∂ f (x) = lim supδ→0 ∂δ f (x), this

result also provides a strategy for finding a Clarke stationary point, albeit with no complexity
guarantee. It is thus natural to ask whether one may efficiently find some point x for which there
exists y ∈ Bδ(x) satisfying dist(0, ∂ f (y)) ≤ ϵ. This is exactly the guarantee of subgradient methods
on weakly convex functions in [DD19]. [Sha20] shows that for general Lipschitz functions, the
number of subgradient computations required to achieve this goal by any algorithm scales with
the dimension of the ambient space. The perturbation technique of this section similarly applies to
the stochastic algorithm of [ZLSJ20, Algorithm 2], yielding a method that matches their complexity
estimate. This stochastic setting recently saw tremendous progress in the work of [CMO23], who

obtained the optimal rate of O(∆L2/δϵ2) via a clever reduction to online learning. We also remark
that a simple, but clever, modification of Algorithm 5.2.3 combined with Algorithm D.2.1 was done

in [KS22] to obtain a matching complexity (O
(
∆L2 log(Hδ/ϵ)

δϵ3

)
) for finding a (δ, ϵ)-stationary point of

an L-Lipschitz, H-smooth function via a deterministic algorithm (among several other results).

5.3 Faster INGD in Low Dimensions

In this section, we describe our modification of Algorithm 5.2.3 (“INGD”) for obtaining improved
runtimes in the low-dimensional setting. Our modified algorithm hinges on computations similar
to (5.2.3), (5.2.4), and (5.2.5) except for the constants involved, and hence we explicitly state this
setup. Given a vector g ∈ ∂δ f (x), we say it satisfies the descent condition at x if

f (x − δĝ) ≤ f (x) −
δϵ
3
. (5.3.1)

Recall that Lemma 5.2.4 shows that for almost all g, we have

f (x) − f (x − δĝ) =
∫ 1

0
⟨∇ f (x − tδĝ), ĝ) dt = δ · Ez∼Unif[x−δĝ,x]⟨∇ f (z), ĝ⟩.

Hence, when g does not satisfy the descent condition (5.3.1), we can output a random vector
u ∈ ∂δ f (x) such that

E⟨u, g⟩ ≤
ϵ
3
∥g∥2. (5.3.2)

Then, an arbitrary vector g either satisfies (5.3.1) or can be used to output a random vector u
satisfying (5.3.2). As described in Corollary 12, Algorithm 5.2.3 achieves this goal in Õ(L2/ϵ2)
iterations.

In this section, we improve upon this oracle complexity by applying cutting plane methods (which
we review shortly) to design Algorithm 5.3.1, which finds a better descent direction in Õ(Ld/ϵ)
oracle calls for L-Lipschitz functions and O(d log(L/ϵ) log

(
δρ/ϵ

)
) oracle calls for ρ-weakly convex

functions.

Brief overview of cutting-plane methods. We first provide a brief relevant overview of cutting-
plane methods here and refer the reader to standard textbooks in optimization for a more in-depth
exposition. Given a convex function f with its set S of minimizers, a cutting-plane method (CPM)
minimizes f by maintaining a convex search set E(k)

⊇ S in the kth iteration and iteratively shrinking
E

(k) guided by the subgradients of f that act as “separation oracles” for the set S. Specifically, this
is achieved by noting that for any x(k) chosen from E(k), if the gradient oracle indicates ∇ f (x(k)) , 0,
(i.e. x(k) < S), then the convexity of f guarantees S ⊆ H (k) :

{
y : ⟨∇ f (x(k)), y − x(k)

⟩ ≤ 0
}
, and hence

S ⊆ H
(k)
∩ E

(k). The algorithm continues by choosing E(k+1)
⊇ E

(k)
∩H

(k), and different choices of
x(k) and E(k) yield different rates of shrinkage of E(k) until a point in S is found.

In light of this description, the minimization of a convex function over a constrained convex set
via this cutting-plane method requires, at each iteration, merely a subgradient of the function. Our
novel insight is that a lack of function decrease implies we have roughly such a subgradient, which
we may then use in a cutting-plane method for computing the minimum norm element of the
subdifferential faster in low dimensions (with improved complexity for weakly convex functions).

Setting the stage for our algorithm. In Section D.2, we demonstrate how to remove the expectation
in (5.3.2) and turn the inequality into a high probability statement. For now, we assume the existence

of an oracle O as in Definition 5.3.1.

Definition 5.3.1 (Inner Product Oracle). Given a vector g ∈ ∂δ f (x) that does not satisfy the descent
condition (5.3.1), the inner product oracle O(g) outputs a vector u ∈ ∂δ f (x) such that

⟨u, g⟩ ≤
ϵ
2
∥g∥2.

We defer the proof of the lemma below to Section D.2.

Lemma 5.3.2. Fix x ∈ Rd and a unit vector ĝ ∈ Rd such that f is differentiable almost everywhere on

the line segment [x, y], where y
def
= x − δĝ. Suppose that z ∈ Rd sampled uniformly from [x, y] satisfies

Ez⟨∇ f (z), ĝ⟩ ≤ ϵ
3 . Then we can find z̄ ∈ Rd using at most O(L

ϵ log
(
1/γ

)
) gradient evaluations of f , such

that with probability at least 1 − γ the estimate ⟨∇ f (z̄), ĝ⟩ ≤ ϵ
2 holds. Moreover, if f is ρ-weakly convex, we

can find z̄ ∈ Rd such that ⟨∇ f (z̄), ĝ⟩ ≤ ϵ
2 using only O(log

(
δρ/ϵ

)
) function evaluations of f .

Our key insight is that this oracle is almost identical to the gradient oracle of the minimal norm
element problem

min
g∈∂δ f (x)

∥g∥2.

Therefore, we can use it in the cutting plane method to find an approximate minimal norm element
of ∂δ f . When there is no element of ∂δ f with norm less than ϵ, our algorithm will instead find a
vector that satisfies the descent condition. The main result of this section is the following theorem.

Theorem 5.3.3. Let f : Rd
→ R be an L-Lipschitz function. Fix an initial point x0 ∈ Rd, and

let ∆
def
= f (x0) − infx f (x). Then, there exists an algorithm that outputs a point x ∈ Rd satisfying

dist(0, ∂δ f (x)) ≤ ϵ and, with probability at least 1 − γ, uses at most

O

(
∆Ld
δϵ2 · log(L/ϵ) · log

(
1/γ

))
function value/gradient evaluations.

If f is ρ-weakly convex, the analogous statement holds with probability one and with the improved efficiency
estimate O

(
∆d
δϵ log(L/ϵ) · log

(
δρ/ϵ

))
of function value/gradient evaluations.

5.3.1 Finding a Minimal Norm Element

In this section, we show, via Algorithm 5.3.1, how to find an approximate minimal norm element
of ∂δ f (x). Instead of directly working with the minimal norm problem, we note that, by Cauchy-
Schwarz inequality and the Minimax Theorem, for any closed convex set Q, we have

min
g∈Q
∥g∥2 = min

g∈Q

[
max
∥v∥2≤1

⟨g, v⟩
]
= max
∥v∥2≤1

[
min
g∈Q
⟨g, v⟩

]
= max
∥v∥2≤1

ϕQ(v), (5.3.3)

whereϕQ(v) def
= ming∈Q⟨g, v⟩, and Lemma 5.3.4 formally connects the problem of finding the minimal

norm element with that of maximizing ϕQ. The key observation in this section (Lemma 5.3.5) is
that the inner product oracle O is a separation oracle for the (dual) problem max∥v∥2≤1 ϕQ(v) with
Q = ∂δ f (x) and hence can be used in cutting plane methods.

Lemma 5.3.4. Let Q ⊂ Rd be a closed convex set that does not contain the origin. Let g∗Q be a minimizer of

ming∈Q ∥g∥2. Then, the vector v∗Q = g∗Q/∥g
∗

Q∥2 satisfies

⟨v∗Q, g⟩ ≥ ∥g
∗

Q∥2 for all g ∈ Q.

and v∗Q = arg max∥v∥2≤1 ϕQ(v).

Proof. We omit the subscript Q to simplify notation. Since, by definition, g∗ minimizes ∥g∥2 over all
g ∈ Q, we have

⟨g∗, g⟩ ≥ ∥g∗∥22 for all g ∈ Q,

and the inequality is tight for g = g∗. Using this fact and ϕ(v∗) = ming∈Q⟨g,
g∗

∥g∗∥2
⟩ gives

ϕ(v∗) = ∥g∗∥2 = min
g∈Q
∥g∥2 = min

g∈Q
max

v:∥v∥2≤1
⟨g, v⟩ = max

∥v∥2≤1
min
g∈Q
⟨g, v⟩ = max

v:∥v∥2≤1
ϕ(v),

where we used Sion’s minimax theorem in the second to last step. This completes the proof. □

Using this lemma, we can show that O is a separation oracle.

Lemma 5.3.5. Consider a vector g ∈ ∂ fδ(x) that does not satisfy the descent condition (5.3.1), and let the
output of querying the oracle at g be u ∈ O(g). Suppose that dist(0, ∂δ f (x)) ≥ ϵ

2 . Let g∗ be the minimal-norm

element of ∂δ f (x). Then the normalized vector v∗
def
= g∗/∥g∗∥2 satisfies the inclusion:

v∗ ∈
{
w ∈ Rd : ⟨u, ĝ − w⟩ ≤ 0

}
.

Proof. Set Q = ∂δ f (x). By using ⟨u, ĝ⟩ ≤ ϵ
2 (the guarantee of O per Definition 5.3.1) and ⟨u, v∗⟩ ≥ ∥g∗∥2

(from Lemma 5.3.4), we have ⟨u, ĝ − v∗⟩ = ⟨u, ĝ⟩ − ⟨u, v∗⟩ ≤ ϵ
2 − ∥g

∗
∥2 ≤ 0. □

Thus Lemma 5.3.5 states that if x is not a (δ, ϵ2)-stationary point of f , then the oracle O produces a
halfspaceHv that separates ĝ from v∗. Since O is a separation oracle, we can combine it with any
cutting plane method to find v∗. For concreteness, we use the center of gravity method and display
our algorithm in Algorithm 5.3.1. We note that Ωk is an intersection of a ball and some half spaces,
hence we can compute its center of gravity in polynomial time by taking an average of the empirical
samples from this convex set. While we use a simple cutting-plane method, any algorithm in this
class may be used; our focus is merely on minimizing the oracle complexity. Further note that in
our algorithm, we use a point ζk close to the true center of gravity of Ωk, and therefore, we invoke a
result about the perturbed center of gravity method.

Theorem 5.3.6 (Theorem 3 of [BV04a]; see also [Grü60]). Let K be a convex set with center of gravity µ
and covariance matrix A. For any halfspace H that contains some point x with ∥x − µ∥A−1 ≤ t, we have

vol(K ∩H) ≤ (1 − 1/e + t)vol(K).

Theorem 5.3.7 (Theorem 4.1 of [KLS95a]). Let K be a convex set in Rd with center of gravity µ and
covariance matrix A. Then,

K ⊂
{
x : ∥x − µ∥A−1 ≤

√
d(d + 2)

}
.

We now have all the tools to show correctness and iteration complexity of Algorithm 5.3.1.

Algorithm 5.3.1 MinNormCG(x)

1: Initialize center point x.
2: Set k = 0, the search region Ω0 = B2(0), the set of gradients Q0 = {∇ f (x)}, and r satisfying

0 < r < ϵ/(32dL)
3: while ming∈Qk ∥g∥2 > ϵ do
4: Let vk be the center of gravity of Ωk.
5: if vk satisfies the descent condition (5.3.1) at x then
6: Return vk
7: end if
8: Sample ζk uniformly from Br(vk)
9: uk ← O(ζk)

10: Ωk+1 = Ωk ∩ {w : ⟨uk, ζk − w⟩ ≤ 0}.
11: Qk+1 = conv(Qk ∪ {uk})
12: k = k + 1
13: end while
14: Return arg ming∈Qk ∥g∥2.

Theorem 5.3.8. Let f : Rd
→ R be an L-Lipschitz function. Then Algorithm 5.3.1 returns a vector

v ∈ ∂δ f (x) that either satisfies the descent condition (5.3.1) at x or satisfies ∥v∥2 ≤ ϵ in

⌈8d log(8L/ϵ))⌉ calls to O .

Proof. By the description of Algorithm 5.3.1, it returns either a vector v satisfying the descent
condition or g ∈ ∂δ f (x) with ∥g∥2 ≤ ϵ. We now obtain the algorithm’s claimed iteration complexity.

Consider an iteration k such thatΩk does contain a ball of radius ϵ
4L . Let Ak be the covariance matrix

of convex set Ωk. By Theorem 5.3.7, we have

Ak ⪰

(
ϵ

8dL

)2
I.

Applying this result to the observation that in Algorithm 5.3.1 ζk is sampled uniformly from Br(vk)
gives

∥vk − ζk∥A−1
k
≤ r ·

8dL
ϵ
≤

1
4
. (5.3.4)

Recall from Algorithm 5.3.1 and the preceding notation thatΩk has center of gravity vk and covariance
matrix Ak. Further, the halfspace {w : ⟨uk, ζk − w⟩ ≤ 0} in Algorithm 5.3.1 contains the point ζk
satisfying (5.3.4). Given these statements, since Algorithm 5.3.1 sets Ωk+1 = Ωk ∩ {w : ⟨uk, ζk − w⟩},
we may invoke Theorem 5.3.6 to obtain

vol(Ωk) ≤ (1 − 1/e + 1/4)kvol(B2(0)) ≤ (1 − 1/10)kvol(B2(0)). (5.3.5)

We claim that Algorithm 5.3.1 takes at most T + 1 steps where T = d log(1− 1
10)(ϵ/(8L)). For the sake

of contradiction, suppose that this statement is false. Then, applying (5.3.5) with k = T + 1 gives

vol(ΩT+1) ≤
(
ϵ

4L

)d
vol(B1(0)). (5.3.6)

On the other hand, Algorithm 5.3.1 generates points ui = O(ζi) in the i-th call to O and the

set Qi = conv {u1,u2, · · · ,ui}. Since we assume that the algorithm takes more than T + 1 steps,
we have ming∈QT+1 ∥g∥2 ≥ ϵ. Using this and ui ∈ QT+1, Lemma 5.3.5 lets us conclude that
v∗QT+1

∈

{
w ∈ Rd : ⟨ui, ζi − w⟩ ≤ 0

}
for all i ∈ [T+ 1]. SinceΩT+1 is the intersection of the unit ball and

these halfspaces, we have
v∗QT+1

∈ ΩT+1.

Per (5.3.6), ΩT+1 does not contain a ball of radius ϵ
4L , and therefore we may conclude that

there exists a point ṽ ∈ B ϵ
2L

(v∗QT+1
) such that ṽ < ΩT+1.

Since ṽ ∈ B2(0), the fact ṽ < ΩT+1 must be true due to one of the halfspaces generated in
Algorithm 5.3.1. In other words, there must exist some i ∈ [T + 1] with

⟨ui, ζi − ṽ⟩ > 0.

By the guarantee of O , we have ⟨ui, ζi⟩ ≤
ϵ
2 , and hence

⟨ui, ṽ⟩ = ⟨ui, vi⟩ − ⟨u, vi − ṽ⟩ <
ϵ
2
. (5.3.7)

By applying ṽ ∈ B ϵ
2L

(v∗QT+1
), ui ∈ ∂δ f (x), L-Lipschitzness of f , and Lemma 5.3.4, we have

⟨ui, ṽ⟩ ≥ ⟨ui, v∗QT+1
⟩ −

ϵ
2L
∥ui∥2 ≥ ⟨ui, v∗QT+1

⟩ −
ϵ
2
≥ ∥g∗QT+1

∥2 −
ϵ
2
. (5.3.8)

Combining (5.3.7) and (5.3.8) yields that ming∈QT+1 ∥g∥2 = ∥g
∗

QT+1
∥2 < ϵ. This contradicts the

assumption that the algorithm takes more than T + 1 steps and concludes the proof. □

Now, we are ready to prove the main theorem.

Proof of Theorem 5.3.3. We note that the outer loop in Algorithm 5.2.1 runs at most O(∆δϵ) times
because we decrease the objective by Ω(δϵ) every step. Combining this with Theorem 5.3.8
and Lemma 5.3.2, we have that with probability 1−γ, the oracle complexity for L-Lipschitz function
is ⌈4∆

δϵ

⌉
·
⌈
8d log(8L/ϵ))

⌉
·

⌈36L
ϵ

⌉
·

⌈
2 log

(
4∆
γδϵ

)⌉
= O

(
∆Ld
δϵ2 · log(L/ϵ) · log

(
1/γ

))
and for L-Lipschitz and ρ-weakly convex function is O

(
∆d
δϵ log(L/ϵ) · log

(
δρ/ϵ

))
. □

Chapter 6

A Fast Scale-Invariant Algorithm for Non-negative Least
Squares with Non-negative Data

Nonnegative (linear) least square problems are a fundamental class of problems that is well-studied
in statistical learning and for which solvers have been implemented in many of the standard
programming languages used within the machine learning community. The existing off-the-shelf
solvers view the non-negativity constraint in these problems as an obstacle and, compared to
unconstrained least squares, perform additional effort to address it. However, in many of the
typical applications, the data itself is nonnegative as well, and we show that the nonnegativity in
this case makes the problem easier. In particular, while the worst-case dimension-independent
oracle complexity for unconstrained least squares problems necessarily scales with one of the data
matrix constants (typically the spectral norm) and these problems are solved to additive error, we
show that nonnegative least squares problems with nonnegative data are solvable to multiplicative
error and with complexity independent of any matrix constants. The algorithm we introduce is
accelerated and based on a primal-dual perspective. We further show how to provably obtain linear
convergence using adaptive restart coupled with our method and demonstrate its effectiveness
on large-scale data via numerical experiments.

6.1 Introduction

Nonnegative least squares (NNLS) problems, defined by minx≥0
1
2∥Ax − b∥22, where A ∈ Rm×n

and b ∈ Rm, are fundamental problems and have been studied for decades in optimization and
statistical learning [LH95, BJ97, KSD13], with various off-the-shelf solvers available in standard
packages of Python (as optimize.nnls in the SciPy package), Julia (as nnls.jl), and MATLAB
(as lsqnonneg). Within machine learning, NNLS problems arise whenever having negative
labels is not meaningful, for example, when representing prices, age, pixel intensities, chemical
concentrations, or frequency counts. NNLS is also widely used as a subroutine in nonnegative
matrix factorization [CZPA09, Gil14, KSK13] to extract sparse features in applications like clustering,
collaborative filtering, and community detection.

From a statistical perspective, NNLS problems can be shown to possess a regularization property
that enforces sparsity similar to LASSO [Tib96], while being comparatively simpler, without the
need to tune a regularization parameter or perform cross-validation [SH14, BEZ08, FK14, KJ18,
WXT11, SJC19]. From an algorithmic standpoint, the nonnegativity constraint in NNLS problems
is typically viewed as an obstacle: most NNLS algorithms perform additional work to handle it,
and the problem is considered harder than unconstrained least squares.

However, in many important applications of NNLS, such as text mining [BBL+07], functional
MRI [AR04, JHD18], EEG data analysis [MMSBVS08], pulse oximetry [JP87, WPTP88], observa-

73

tional astronomy [IFAB90], and those traditionally addressed using nonnegative matrix factoriza-
tion [CZPA09], the data is also nonnegative. We argue in this chapter that when the data for NNLS
is nonnegative, it is in fact possible to obtain stronger guarantees than for traditional least squares.

Our Contributions. We study NNLS problems with (element-wise) nonnegative data matrix A,
to which we refer as the NNLS+ problems, through the lens of the (equivalent) quadratic problems:

min
x≥0

{
f̄ (x) def

=
1
2
∥Ax∥22 − c⊤x

}
, (P)

where c = A⊤b may be assumed element-wise positive. This assumption is without loss of generality
since if c j < 0 for some j, then ∇ j f̄ (x) ≥ 0, implying that the jth coordinate of the optimal solution is
zero1. Hence, we could fix x j = 0 and optimize over only the remaining coordinates.

We further assume that the matrix A is non-degenerate: none of its rows or columns has all of its
elements equal to zero. This assumption is without loss of generality because (1) if such a row exists,
we could remove it without affecting the objective, and (2) if the jth column had all elements equal
to zero, the optimal value of (P) would be −∞, obtained for x with x j →∞. Having established our
assumptions and setup, we now proceed to state our contributions, which are three-fold.

(1) A scale-invariant, ϵ-multiplicative algorithm. We design an algorithm based on coordinate
descent that, in total cost O(nnz(A)

√
ε

), constructs an ε-multiplicative approximate solution to (P). Our
algorithm capitalizes on structural properties of (P) that arise as a result of the nonnegativity of A.

Theorem 6.1.1 (Informal; see Theorem 6.3.5). Given a matrix A ∈ Rm×n
+ and ϵ > 0, define f (x) = 1

2∥Ax∥22−
c⊤x and x⋆ ∈ argminx≥0 f (x). Then, there exists an algorithm that in K = O(n log n + n

√
ϵ
) iterations and

O
(
nnz(A)

(
log n + 1

√
ϵ

))
arithmetic operations returns x̃K ∈ Rn

+ such that E
[
⟨∇ f (̃xK), x̃K − x⋆⟩

]
≤ ϵ| f (x⋆)|.

The application of our structural observations on (P) to Theorem 4.6 of [DO19] enables the recovery
of our guarantee on the optimality gap; however, we provide a guarantee on the primal-dual gap,
and this is stronger than the one on the optimality gap stated in Theorem 6.1.1. What is significant
about Theorem 6.1.1 is the invariance of the computational complexity to the scale of A—it does not
depend on any matrix constants. This cost stands in stark contrast to that of traditional least squares,
where the dependence of (oracle) complexity on matrix constants (specifically, the spectral norm of
A in the Euclidean case) is unavoidable [Nem92, NY83a], and multiplicative approximation is not
possible in general.2 In general, scale-invariance is a crucial feature in problems with data matrices,
since a dependence on the width implies that the algorithm is technically not polynomial-time.
This feature has, in fact, been an object of extensive study in the long line of works on packing
and covering linear programs [Wan17, AZO19] and its variants such as a fair packing [DFO20a].
Conceptually, our algorithm is a new acceleration technique inspired by VRPDA2 [SWD21].

(2) Linear convergence with restart. By incorporating adaptive restart in (P), we improve the
guarantee of Theorem 6.1.1 to one with linear convergence (with log(1/ϵ) complexity). Thus, we
establish the first theoretical guarantee for NNLS+ that simultaneously satisfies the properties of
being scale-invariant, accelerated, and linearly-convergent.

1To see this, note that by first-order optimality condition ∇ f̄ (x⋆)⊤(x − x⋆) ≥ 0 for all x ≥ 0. Choosing x with xi = x⋆i for
all i , j and x j = 0 in the first-order optimality condition gives x⋆j = 0.

2To see why, consider a case in which the optimal objective value equals zero. Then any problem with a multiplicative
guarantee of the form in Theorem 6.1.1 would necessarily return an optimal solution.

Theorem 6.1.2 (Informal; see Theorem 6.4.1). Consider the setup of Theorem 6.1.1. Then, there is an
algorithm that in expected O(nnz(A)(log n +

√
n
µ) log

(
1
ε

)
) arithmetic operations returns x̃K ∈ Rn

+ with
f (̃xK) − f (x⋆) ≤ ϵ| f (x⋆)|, where µ is the constant in a local error bound for (P).

Proving this bound requires bounding the expected number of iterations between restarts in
conjunction with careful technical work in identifying an appropriate local error bound for NNLS+.

(3) Numerical experiments. We consolidate our theoretical contributions with a demonstration of
the empirical advantage of our restarted method over state-of-the-art solvers via numerical experi-
ments on datasets from LibSVM with sizes up to 19996× 1355191. Figure 6.1 shows that, when com-
bined with the restart strategy, our algorithm significantly outperforms the compared algorithms.

Related work. NNLS has seen a large body of work on the empirical front. The first method
that was widely adopted in practice (including in the lsqnonneg implementation of MATLAB)
is due to the seminal work of [LH95] (originally published in 1974). This method, based on
active sets, solves NNLS via a sequence of (unconstrained) least squares problems and has been
followed up by [BJ97, VBK04, MFLS17, DDM21] with improved empirical performance. While
these variants are generally effective on small to mid-scale problem instances, they are not suitable
for extreme-scale problems ubiquitous in machine learning. For example, in the experiments
reported in [MFLS17], Fast NNLS [BJ97] took 6.63 days to solve a problem of size 45000 × 45000,
while the TNT-NN algorithm [MFLS17] took 2.45 hours. However, the latter requires computing
the Cholesky decomposition of A⊤A at initialization, which can be prohibitively expensive both in
computation and in memory. Another prominent work on the empirical front is that of [KSD13],
which performs projected gradient descent with modified Barzilai-Borwein steps [BB88] and step
sizes a carefully designed sequence of diminishing scalars.

Another, separate, line of work concerns optimization algorithms with multiplicative error guaran-
tees. Of interest to us are standard first-order algorithms that run in time that is near-linear in the
input size and are thus applicable to large-scale setting (for multiplicative-error algorithms applica-
ble to broad classes of problems but that run in time that is superlinear in the input size, see [N+18,
Chapter 7]). Most of the existing literature in this domain concerns positive (packing and covering)
linear programs (e.g., [LN93, You01, AZO19, MRWZ16]). Results also exist for positive semidefinite
programs [AZQRY16], (nonlinear) fair packing and covering problems [MSZ16, DFO20a], and fair
packing problems under Schatten norms for matrices [JLT20]. With the exception of [DFO20a]
(discussed below), none of these results are directly applicable to (P).

To the best of our knowledge, theoretical guarantees explicitly for (P) have been scarce. For
instance, [KSD13] mentioned in the preceding paragraph provides only asymptotic guarantees.
Orthogonally, the result on 1-fair covering by [DFO20a] solves the dual of NNLS+, which also gives
a multiplicative guarantee for NNLS+, but with overall complexity Õ(nnz(A)

ε).

Since our algorithm is based on the coordinate descent algorithm, we highlight some results of other
coordinate descent algorithms when specialized to the closely related problem of unconstrained
linear regression. The pioneering work of [Nes12] proposed a coordinate descent method called

RCDM, which in our setting has an iteration cost O
(∑n

j=1 ∥A: j∥
2
2∥x0−x⋆∥2

ϵ

)
, where ∥A: j∥2 is the Euclidean

norm of the jth column of A. This was improved by [LS13], in an algorithm termed ACDM,
by combining Nesterov’s estimation technique [Nes83a] and coordinate sampling, giving an

iteration complexity of O
(√

n
∑n

j=1 ∥A: j∥
2
2∥x0−x⋆∥

√
ϵ

)
for solving (P). The latest results in this line of work

by [AZQRY16, QR16, NS17] perform non-uniform sampling atop a framework of [Nes12] and

achieve iteration complexity of O
(√∑n

j=1 ∥A: j∥
2
2∥x0−x⋆∥

√
ϵ

)
, with [DO18] dropping the dependence on

max1≤ j≤n ∥A: j∥2. Additionally, the work of [LLX14] develops an accelerated randomized proximal
coordinate gradient (APCG) method to minimize composite convex functions.

As remarked earlier, [DO18], coupled with insights on NNLS+ problems provided in this work,
can recover our guarantee for the optimality gap from Theorem 6.3.5. However, our work is the
first to bring to the fore the properties of NNLS+ required to get such a guarantee, and our choice
of primal-dual perspective allows for a stronger guarantee in terms of an upper bound on the
primal-dual gap. Further, our algorithm is a novel type of acceleration, with our primal-dual
perspective transparently illustrating our use of the aforementioned properties. We believe that
these technical contributions, along with our techniques to obtain vastly improved theoretical
guarantees with the restart strategy applied to this problem, are valuable to the broader optimization
and machine learning communities.

6.2 Notation and Preliminaries

Throughout this chapter, we use bold lowercase letters to denote vectors and bold uppercase letters
for matrices. For vectors and matrices, the operator ′ ≥′ is applied element-wise, and R+ is the
non-negative part of the real line. We use ⟨a,b⟩ to denote the inner product of vectors a and b and
∇ for gradient. Given a matrix A, we use A: j for its jth column vector, and for a vector x, x j denotes
its jth coordinate. We use nnz(A) for the number of non-zero entries of A. We use xk for the vector
in the kth iteration and, to disambiguate indexing, use [xk] j to mean the jth coordinate of xk. The ith

standard basis vector is denoted by ei. For an n-dimensional vector x and A ∈ Rm×n, we define

Λ = diag([∥A:1∥
2
2, . . . , ∥A:n∥

2
2]) and ∥x∥2

Λ
=

∑n
i=1 x2

i ∥A:i∥
2
2. Finally, [n] def

= {1, 2, . . . ,n}.

A differentiable function f : Rn
→ R is convex if for any x, x̂ ∈ Rn,we have f (̂x) ≥ f (x)+⟨∇ f (x), x̂−x⟩.

A differentiable function f : Rn
→ R is said to be µ-strongly convex w.r.t. the ℓ2-norm if for any

x, x̂ ∈ Rn, we have that f (̂x) ≥ f (x) + ⟨∇ f (x), x̂ − x⟩ + µ
2 ∥x − x̂∥22. We have analogous definitions for

concave and strongly concave functions, which flip the inequalities noted.

Given a convex program minx∈X f (x), where f : Rn
→ R is differentiable and convex and X ⊆ Rn

closed and convex, the first-order optimality condition of a solution x⋆ ∈ argminx∈X f (x) is

(∀x ∈ X) : ⟨∇ f (x⋆), x − x⋆⟩ ≥ 0. (6.2.1)

Problem setup. As discussed in the introduction, our goal is to solve (P), with A ∈ Rm×n
+ . For

notational convenience, we work with the problem in the following scaled form:

min
x∈Rn

+

{
f (x) def

=
1
2
∥Ax∥22 − 1⊤x

}
, (6.2.2)

This assumption is w.l.o.g. since any (P) can be brought to this form by a simple change of variable
x̂ j = c jx j (see also e.g., [AZO19, DFO20a] for similar scaling ideas). The scaling need not be explicit
in the algorithm since the change of variable x̂ j = c jx j is easily reversible.

Properties of the objective. To kick off our analysis, we highlight some properties inherent to the
objective defined in (6.2.2). These properies, which strongly need the non-negativity of A and x, are
central to obtain a scale-invariant algorithm for (P).

Proposition 6.2.1. Given f : Rn
+ → R as defined in (6.2.2) and x⋆ ∈ argminx∈Rn

+
f (x), the following

statements all hold.

a) ∇ f (x⋆) ≥ 0.
b) f (x⋆) = − 1

2∥Ax⋆∥22 = −
1
2 1⊤x⋆.

c) for all j ∈ [n], we have x⋆j ∈
[
0, 1
∥A: j∥

2
2

]
.

d) − 1
2
∑

j∈[n]
1

∥A: j∥
2
2
≤ f (x⋆) ≤ − 1

2 min j∈[n] ∥A: j∥
2
2
.

The validity of division by ∥A: j∥2 in the preceding proposition is by the non-degeneracy of A
discussed in the introduction. We prove this proposition in Section E.1.1.

An important consequence of Proposition 6.2.1 (c) is that (P) can be restricted to the hyperrectangle
X = {x ∈ Rn : 0 ≤ x j ≤

1
∥A: j∥

2
2
} without affecting its optimal solution, but effectively reducing the

search space. Thus, going forward, we replace the constraint x ≥ 0 in (P) by x ∈ X.

Primal-dual gap perspective. As alluded earlier, our algorithm is analyzed through a primal-dual
perspective. For this reason, it is useful to consider the Lagrangian

L(x,y) = ⟨Ax,y⟩ −
1
2
∥y∥22 − 1⊤x (6.2.3)

from which we can derive our rescaled problem (6.2.2) as the primal problem minx∈XP(x), where

P(x) = max
y∈Rm

L(x,y) = −1⊤x +max
y≥0

[
−

1
2
∥y∥22 + ⟨Ax,y⟩

]
= −1⊤x +

1
2
∥Ax∥2.

Thus, the Lagrangian is constructed in a way that one can derive the primal problem from it while
also localizing the matrix in the bilinear term and ensuring coordinate-wise separability of the
terms involving either only the dual or only the primal variable since this greatly simplifies our
analysis. Similar to [SWD21], we use Equation (6.2.3) to define the following relaxation of the
primal-dual gap, for arbitrary but fixed u ∈ X, and v ∈ Rm:

Gap(u,v)
L

(x,y) def
= L(x,v) − L(u,y). (6.2.4)

The significance of this relaxed gap function is that for a candidate solution x̃ and an arbitrary
ỹ ∈ Rm, a bound on Gap(u,v)

L
(̃x, ỹ) translates to one on the primal error, as follows. First select u = x⋆,

v = Ax̃. Then, by observing that L(̃x,Ax̃) = f (̃x) and L(x⋆,Ax⋆) = f (x⋆), we have

f (̃x) − f (x⋆) = L(̃x,Ax̃) − L(x⋆,Ax⋆).

For a fixed x, L(x, ·) is 1-strongly concave and minimized at Ax. Thus, L(x⋆,Ax̃) ≤ L(x⋆,Ax⋆) −
1
2∥A(̃x − x⋆)∥2. Hence, we have the following primal bound:

f (̃x) − f (x⋆) +
1
2
∥A(̃x − x⋆)∥2 ≤ L(̃x,Ax̃) − L(x⋆, ỹ) = Gap(x⋆,Ax̃)

L
(̃x, ỹ). (6.2.5)

In light of this connection, our algorithm for bounding the primal error is one that generates iterates
that can be used to construct bounds on Gap(u,v)

L
(̃x, ỹ), as we detail next.

6.3 Our Algorithm and Convergence Analysis

Our algorithm, Scale Invariant NNLS+ (SI-NNLS+), is an iterative algorithm using the estimate
sequences ϕk(x) and ψk(y) for k ≥ 1 (see Section 6.3.1) giving the primal and dual updates

xk = argminx∈Xϕk(x) and yk = argmax
y∈Rm

ψk(y). (6.3.1)

We use our algorithm’s iterates from Equation (6.3.1) to construct Gk, an upper estimate of
Gap(u,v)

L
(̃xk, ỹk), where x̃k, ỹk are convex combinations of the iterates and u ∈ X,v ∈ Rm

+ , where u

is fixed and v is arbitrary. Our motivation for constructing Gk(u,v) ≥ Gap(u,v)
L

(̃xk, ỹk) is to obtain a

bound on the primal error, using Inequality 6.2.5. The main goal in the analysis is to show Gk ≤
Q
Ak
,

where Ak is a sequence of positive numbers and Q is bounded. To obtain the claimed multiplicative
approximation, we use Inequality 6.2.5 and argue that for u = x⋆, v = Ax̃k, we have Q ≤ O

(
| f (x∗)|

)
.

Our algorithm may be interpreted as a variant of the VRPDA2 algorithm [SWD21], with our analysis
inspired by the approximate duality gap technique [DO19]; however, unlike VRPDA2, which
uses estimate sequences, our analysis directly bounds the primal-dual gap. Another difference
from VRPDA2 is in our choice of primal regularizer (described shortly) and our lack of a dual
regularizer. A variant of SI-NNLS+ suitable for analysis is shown in Algorithm 6.3.1, with proofs in
Section E.1.2 and Section E.1.3. We give an equivalent implementation version (“Lazy SI-NNLS+”,
which updates as few coordinates as is possible to improve cost per iteration) in Algorithm E.2.1
and its analysis in Section E.2.

Algorithm 6.3.1 Scale Invariant Non-negative Least Squares with Non-negative Data (SI-NNLS+)

1: Input: Matrix A ∈ Rm×n
+ with n ≥ 4, accuracy ε, initial point x0

2: Initialize: x̃0 = x0, y0 = y0 = Ax0, K = 5
2 n log n + 6n

√
ϵ
, a1 =

1
√

2n1.5 , a2 =
a1

n−1 , A0 = 0, A1 = a1,

ϕ0(x) = 1
2∥x − x0∥

2
Λ

.
3: for k = 1, 2, . . . ,K do
4: Sample jk uniformly at random from {1, 2, . . . ,n}
5: xk ← arg minx∈X ϕk(x), for ϕk(x) defined by Equation (6.3.7) and Equation (6.3.10)
6: yk ← arg maxy∈Rm ψk(y), for ψk(y) defined by Equation (6.3.4)

7: x̃k =
1

Ak

[
Ak−1̃xk−1 + ak

(
nxk − (n − 1)xk−1

)]
.

8: yk ← yk +
ak

ak+1
(yk − yk−1)

9: Ak+1 ← Ak + ak+1, ak+2 = min{nak+1
n−1 ,

√
Ak+1
2n }

10: end for
11: Return x̃K

6.3.1 Gap Estimate Construction

The gap estimate Gk is constructed as the difference Gk(u, v) = Uk(v) − Lk(u),where Uk(v) ≥ L(̃xk, v)
and Lk(u) ≤ L(u, ỹk) are, respectively, upper and lower bounds we construct on the Lagrangian. It
then follows by Equation (6.2.4) that Gk(u,v) is a valid upper estimate of Gap(u,v)

L
(̃xk, ỹk).

We first introduce a technical component our constructions Lk and Uk crucially hinge on: we define
two positive sequences of numbers {ai}i≥1 and {ak

i }1≤i≤k, with one of their properties being that both
sum up to Ak > 0 for k ≥ 1. Specifically, we define A0 = 0 and {ai}i≥1 as ai = Ai − Ai−1. The sequence

{ak
i } changes with k and for k = 1 is defined by a1

1 = a1, while for k ≥ 2 :

ak
i =

a1 − (n − 1)a2, if i = 1,
nai − (n − 1)ai+1, if 2 ≤ i ≤ k − 1,
nak, if i = k.

(6.3.2)

Summing over i ∈ [k] verifies that Ak =
∑k

i=1 ak
i . For the sequence {ak

i }1≤i≤k to be non-negative, we
further require that a1 − (n − 1)a2 ≥ 0 and ∀i ≥ 2, nai − (n − 1)ai+1 ≥ 0.

The significance of these two sequences lies in defining the algorithm’s primal-dual output pair by

x̃k =
1

Ak

∑
i∈[k]

ak
i xi and ỹk =

1
Ak

∑
i∈[k]

aiyi. (6.3.3)

The intricate interdependence of {ai} and {ak
i } enables expressing x̃k in terms of only {ai}. This

expression further simplifies to a cheaper recursive one, which is used in Algorithm 6.3.1.

With the sequences {ai}i≥1 and {ak
i }1≤i≤k in tow, we are now ready to show the construction of an

upper bound Uk(v) on L(̃xk,v) and a lower bound Lk(u) on L(u, ỹk).

Upper bound. To construct an upper bound, first observe that by Equation (6.2.3) and Equa-
tion (6.3.3),

L(̃xk,v) = ⟨Ax̃k,v⟩ −
1
2
∥v∥22 − 1⊤x̃k =

1
Ak

∑
i∈[k]

ak
i

[
⟨Axi,v⟩ −

1
2
∥v∥22 − 1⊤xi

]
.

Consider the primal estimate sequence defined for k = 0 as ψ0 = 0 and for k ≥ 1 by

ψk(v) def
=

∑
i∈[k]

ak
i

[
⟨Axi,v⟩ −

1
2
∥v∥22 − 1⊤xi

]
, (6.3.4)

which ensures that L(̃xk,v) = 1
Ak
ψk(v). A key upshot of constructing ψk(v) as in Equation (6.3.4) is

that the quadratic term implies Ak-strong concavity of ψk for k ≥ 1, which in turn ensures that the
vector yk = arg maxy∈Rm ψk(y) from Equation (6.3.1) is unique. This property, coupled with the first-
order optimality condition in Inequality 6.2.1, gives that for any y ∈ Rm, ψk(y) ≤ ψk(yk)− Ak

2 ∥y−yk∥
2
2.

We are now ready to define the following upper bound by:

Uk(v) def
=

1
Ak
ψk(yk) −

1
2
∥v − yk∥

2
2. (6.3.5)

The preceding discussion immediately implies that Uk is a valid upper bound for the Lagrangian.

Lemma 6.3.1. For Uk as defined in Equation (6.3.5), Lagrangian defined in Equation (6.2.3) and x̃k ∈ R
n
+ in

Equation (6.3.3), we have, for all y ∈ Rm, the upper bound Uk(y) ≥ L(̃xk,y).

Lower bound. Analogous to the preceding section, we now obtain a lower bound on the Lagrangian,
completing the bound on the gap estimate. However, the construction becomes more technical. We
start with the same approach as for the upper bound. Since L(u, ỹk) is concave in ỹk, by Jensen’s
inequality: L(u, ỹk) ≥ 1

Ak

∑
i∈[k] ai

(
⟨Au,yi⟩ − 1⊤u − 1

2∥yi∥
2
2

)
.Were we to define the dual estimate

sequence ϕk in the same way as we did for the primal estimate sequence ψk, we would now simply

define it as Ak times the right-hand side in the last inequality. However, doing so would make ϕk
depend on yk, which is updated after xk, which in Equation (6.3.1) is defined as the minimizer of the
ϕk.

To avoid such a circular dependency, we add and subtract a linear term
∑

i∈[k]⟨A⊤yi−1,u⟩, where
yi−1, defined later, are extrapolation points that depend only on y1, . . .yi−1. We thus have

L(u, ỹk) ≥
1

Ak

∑
i∈[k]

ai

[
⟨Au,yi−1⟩ − 1⊤u −

1
2
∥yi∥

2
2

]
+

1
Ak

∑
i∈[k]

ai⟨Au,yi − yi−1⟩.

If we now defined ϕk based on the first term in the above inequality, we run into another obstacle:
the linearity of the resulting estimate sequence is insufficient for cancelling all the error terms in
the analysis. Hence, as is common, we introduce strong convexity by adding and subtracting an
appropriate strongly convex function. Our chosen strongly convex function is motivated by the
box-constrained property of the optimum from Proposition 6.2.1 (c) and crucial in bounding the
initial gap estimate. It coincides with ϕ0: for any x ∈ Rn

+, define the function

ϕ0(x) =
1
2
∥x − x0∥

2
Λ. (6.3.6)

This function is 1-strongly convex with respect to ∥ · ∥Λ and used in defining ϕ1 as:

ϕ1(u) = a1⟨A⊤ȳ0 − 1,u⟩ + ϕ0(u). (6.3.7)

The definition of ϕ1 is driven by the purpose of cancelling initial error terms. Next, we choose ϕk so
that for any fixed u ∈ X, we have

E[ϕk(u)] = E
[∑

i∈[k]

ai⟨A⊤yi−1 − 1,u⟩ + ϕ0(u)
]
, (6.3.8)

where the expectation is with respect to all the randomness in the algorithm. This construction is
used to reduce the per-iteration complexity, for which we employ a randomized coordinate update
on xk for k ≥ 2. To support such updates, we relax the lower bound to hold only in expectation.

Concretely, let ji be the coordinate sampled uniformly at random from [n] in the ith iteration of
SI-NNLS+, independent of history. Fix yi for i = 1, . . . , k − 1 and for k ≥ 2 and x ∈ X, define

ϕk(x) = ϕ1(x) +
k∑

i=2

nai⟨A⊤yi−1 − 1, x jie ji⟩. (6.3.9)

For k ≥ 2, ϕk(u) can also be defined recursively via

ϕk(x) = ϕk−1(x) + nak⟨A⊤yk−1 − 1, x jke jk⟩. (6.3.10)

The function ϕk inherits the strong convexity of ϕ0. This property, together with Equation (6.3.1)
and first-order optimality from Inequality 6.2.1, give

ϕk(x) ≥ ϕk(xk) +
1
2
∥x − xk∥

2
Λ. (6.3.11)

Along with strong convexity, our choice of ϕk in Equation (6.3.10) leads to the following properties
essential to our analysis: (1) ϕk is separable in its coordinates; (2) the primal variable xk is updated

only at its jthk coordinate; (3) Equation (6.3.8) is true. These are formally stated in Proposition E.1.2.

With the dual estimate sequence ϕk defined in Equation (6.3.10), we now define the sequence Lk by

Lk(x) def
=
ϕk(xk) + 1

2∥x − xk∥
2
Λ
− ϕ0(x) +

∑
i∈[k] ai(⟨Ax,yi − yi−1⟩ −

1
2∥yi∥

2
2)

Ak
. (6.3.12)

We conclude this section by justifying our choice of Lk as a valid expected lower bound on EL(x, ỹk).

Lemma 6.3.2. For Lk defined in Equation (6.3.12), for the Lagrangian in Equation (6.2.3) and ỹk in
Equation (6.3.3), we have, for a fixed u ∈ X, the lower bound EL(u, ỹk) ≥ ELk(u), where the expectation is
with respect to all the random choices of coordinates in Algorithm 6.3.1.

6.3.2 Bounding the Gap Estimate

With the gap estimate Gk constructed as in the preceding section and combining Equation (6.3.5)
and Equation (6.3.12), we now achieve our goal of bounding AkGk (to obtain a convergence rate of
the order 1/Ak) by bounding the change in AkGk and the initial scaled gap A1G1.

Lemma 6.3.3. Consider the iterates {xk} and {yk} evolving according to Algorithm 6.3.1. Let n ≥ 2 and
assume that a1 =

1
√

2n1.5 and a1 ≥ (n − 1)a2, while for k ≥ 3,

ak ≤ min
(nak−1

n − 1
,

√
Ak−1

2n

)
. (6.3.13)

Then, for fixed u ∈ X, any v ∈ Rm, and all k ≥ 2, the gap estimate Gk = Uk − Lk satisfies

E(AkGk(x,y) − Ak−1Gk−1(x,y))

≤ −E
(Ak

2
∥y − yk∥

2
2 −

Ak−1

2
∥y − yk−1∥

2
2

)
−

1
2
E∥x − xk∥

2
Λ +

1
2
E∥x − xk−1∥

2
Λ

− akE⟨A(x − xk),yk − yk−1⟩ + ak−1E⟨A(x − xk−1),yk−1 − yk−2⟩

−
1
4

Ak−1E∥yk − yk−1∥
2
2 +

1
4

Ak−2E∥yk−1 − yk−2∥
2
2.

Lemma 6.3.4. Given a fixed u ∈ X, any v ∈ Rm, ȳ0 = y0, and x1 and y1 from Algorithm 6.3.1, we have

A1G1(u,v) = a1⟨A⊤(y1 − y0), x1 − u⟩ + ϕ0(u) − ϕ0(x1) −
1
2
∥u − x1∥

2
Λ −

A1

2
∥v − y1∥

2
2.

Combining the two lemmas, we now bound GK and deduce our final result on the primal error.

Theorem 6.3.5. [Main Result] Assume that n ≥ 4. Given a matrix A ∈ Rm×n
+ , ϵ > 0, an arbitrary x0 ∈ X

and ȳ0 = y0 = Ax0, let xk and Ak evolve according to SI-NNLS+ (Algorithm 6.3.1) for k ≥ 1. For f defined
in (6.2.2), define x⋆ ∈ argminx≥0 f (x). Then, for all K ≥ 2, we have

E
[
⟨∇ f (̃xK), x̃K − x⋆⟩ +

1
2
∥A(̃xK − x⋆)∥2

]
≤

2ϕ0(x⋆)
AK

=
∥x0 − x⋆∥2

Λ

AK
.

When K ≥ 5
2 n log n, we have AK ≥

(K− 5
2 n log n)2

36n2 . If ϕ0(x⋆) ≤ | f (x⋆)|, then for K ≥ 5
2 n log n + 6n

√
ϵ
, we have

E[f (̃xK) − f (x⋆)] ≤ ε| f (x⋆)|. The total cost is O
(
nnz(A)

(
log n + 1

√
ϵ

))
.

The assumption ϕ0(x⋆) ≤ | f (x⋆)| above is satisfied by x0 = 0 (c.f. Proposition 6.2.1 and Equa-
tion (6.3.6)). We reiterate that the reason ∥A∥ does not show up in the final bounds (thereby rendering
our algorithm “scale-invariant”) is because Proposition 6.2.1 allows bounding ∥x0 − x⋆∥2

Λ
by | f (x⋆)|,

where we crucially used the non-negativity of A and x; this does not seem possible for general A.

Remark 6.3.6. SI-NNLS+ (Algorithm 6.3.1) and Theorem 6.3.5 also generalize to a mini-batch version.
Increasing the batch size grows our bounds and number of data passes by a factor of at most square-root of the
batch size s, by relating the spectral norm of the s columns of A corresponding to a batch to the Euclidean
norms of individual columns of A from the same batch. However, due to efficient available implementations of
vector operations, mini-batch variants of our algorithm with small batch sizes can have lower total runtimes
on some datasets (see Section 6.5).

6.4 Adaptive Restart

We now describe how SI-NNLS+ can be combined with adaptive restart to obtain linear convergence
rate. To apply the restart strategy, we need suitable upper and lower bounds on the measure of
convergence rate. Our measure of optimality is the natural residual r(x) = ∥R(x)∥Λ [MR94] for

R(x) = x −ΠRn
+
(x −Λ−1

∇ f (x)) = x − (x −Λ−1
∇ f (x))+, (6.4.1)

where ΠRn
+

is the projection operator onto Rn
+ and Λ is as defined in Section 6.2. For Λ = I, R(x) is

the natural map as defined in, e.g., [FP07]. Due to space constraints, we only state the main result
of this section in the following theorem, while full technical details are deferred to Section E.1.4.

Theorem 6.4.1. Given an error parameter ε > 0 and x0 = 0, consider the following algorithmA :

A : SI-NNLS+ with Restarts
Initialize: k = 1.
Initialize Lazy SI-NNLS+ at xk−1.
Run Lazy SI-NNLS+ until the output x̃k

K satisfies r(̃xk
K) ≤ 1

2 r(xk−1).
Restart Lazy SI-NNLS+ initializing at xk = x̃k

K.
Increment k.
Repeat until r(̃xk

K) ≤ ϵ.

Then, the expected number of arithmetic operations of A is O
(
nnz(A)

(
log n +

√
n
µ

)
log

(
r(x0)
ϵ

))
. As a

consequence, given ϵ̄ > 0, the total expected number of arithmetic operations until a point with f (x)− f (x⋆) ≤

ϵ̄| f (x⋆)| can be constructed byA is O
(
nnz(A)

(
log n +

√
n
µ

)
log

(
n
µϵ̄

))
.

6.5 Numerical Experiments and Discussion

We conclude this chapter by presenting the numerical performance of SI-NNLS+ and its restart ver-
sions (see the efficient implementation version in Algorithm E.2.1) against FISTA with restart [BT09,
Nes13], a general-purpose large-scale optimization algorithm, OA+DS with restart designed
by [KSD13] specifically for large-scale NNLS problems, and lazy implemented APCG [FR15] with
restart. We use the same restart strategy for all the algorithms, proposed in Section 6.4.

As an accelerated algorithm, FISTA has the optimal 1/k2 convergence rate; OA+DS, while often
efficient in practice, has only an asymptotic convergence guarantee. For FISTA, we compute the
tightest Lipschitz constant (i.e., the spectral norm ∥A∥); for OA+DS, we follow the best practices

(a) real-sim (b) real-sim (c) real-sim (d) real-sim

(e) news20 (f) news20 (g) news20 (h) news20

(i) E2006train (j) E2006train (k) E2006train (l) E2006train

Figure 6.1: NNLS+ algorithms with restart on real-sim, news20 and E2006train with spectral
norm 3 · 10−3, 10−3, 5 · 10−6 and condition number 6 · 1018, 5 · 1010, 6 · 105, respectively.

laid out by [KSD13]. For our SI-NNLS+ algorithm and its restart version with batch size bs = 1, we
follow Algorithm E.2.1 and the restart strategy in Section 6.4.3 For the restart version with batch size
larger than 1, we choose the best batch size in {10, 50, 300, 500} and compute the block coordinate
Lipschitz constants as the spectral norms of the corresponding block matrices. All algorithms were
implemented in Julia and run on a server with 32 Intel(R) Xeon(R) Silver 4110 32-Core Processors.

We evaluated the performance of the algorithms on the large-scale sparse datasets real-sim,
news20, and E2006train from the LibSVM library [CL11b]. Both real-sim and news20 datasets
have non-negative data matrices, but the labels may be negative. When there exist negative labels,
it is possible for the elements of A⊤b to be negative. In such cases, per the discussion from the
introduction, we can simply remove the corresponding columns of A and solve an equivalent
problem with smaller dimension. On the other hand, the data matrix in E2006train dataset is
not non-negative, which means that this dataset does not satisfy the assumption required for
the analysis of Algorithm 6.3.1. However, Algorithm 6.3.1 can still be run by keeping only the
non-negativity constraints for primal updates. This example is provided solely for illustration of
empirical performance.

Results. To compare all implemented algorithms, we plot the natural residual/objective value gap
versus number of data passes/time in Figure 6.1 for all algorithms implemented with restart and in
Figure 6.2 for all algorithms implemented without restart. As can be observed from the two figures,
our proposed restart speeds up all the algorithms.

3The algorithm is implemented for the non-scaled version of the problem, (P); see Section 6.2. An implementation is
in https://github.com/arcturus611/nnlr-2021.

https://github.com/arcturus611/nnlr-2021

(a) real-sim (b) real-sim (c) real-sim (d) real-sim

(e) news20 (f) news20 (g) news20 (h) news20

(i) E2006train (j) E2006train (k) E2006train (l) E2006train

Figure 6.2: NNLS+ algorithms without restart on real-sim, news20 and E2006train with spectral
norm 3 · 10−3, 10−3, 5 · 10−6 and condition number 6 · 1018, 5 · 1010, 6 · 105, respectively.

Figure 6.1(a)-(d) shows that SI-NNLS+ is better than FISTA and OA+DS in terms of number of
data passes on the real-sim dataset and better than APCG in terms of time. While the proposed
restart strategy speeds up all the algorithms to linear convergence, variants of SI-NNLS+ remain
competitive in all the settings. In terms of the performance of different variants of SI-NNLS+, with
bs = 1, we have a much better coordinate Lipschitz constant than for bs = 10 and thus the case of
bs = 1 dominates bs = 10 in terms of data passes. As FISTA and OA+DS take less time accessing
the full dataset once, they have lower runtimes than SI-NNLS+ but are beaten by SI-NNLS+ with
restart and bs = 1.

In Figure 6.1(e)-(h), on the news20 dataset, in terms of number of data passes, restarted APCG and
SI-NNLS+with bs = 1 are dominant. However, as news20 is a very sparse dataset, letting bs = 1
significantly increases the total time to access the full data once due to the overhead per iteration.
As a result, single-coordinate methods have the worst runtimes, while restarted OA+DS is the
fastest but SI-NNLS+with bs = 10 remains competitive.

Figure 6.1(i)-(l) shows the performance comparison on the E2006train dataset. On this dataset,
both restarted FISTA and restarted OA+DS ran for 4 hours without visibly reducing the function
value. SI-NNLS+ outperforms FISTA and OA+DS in both number of data passes and time, and
outperforms APCG in terms of time. Further experiments are left for future work.

Chapter 7

Computing Lewis Weights to High Precision

In Chapter 6, we saw an algorithm for structured ℓ2 regression. In this chapter, we expand our
focus from ℓ2 to the ℓp setting. Specifically, we present an algorithm for computing approximate
ℓp Lewis weights to high precision. Given a full-rank A ∈ Rm×n with m ≥ n and a scalar p > 2,
our algorithm computes ε-approximate ℓp Lewis weights of A in Õ(p log(1/ε)) iterations; the cost
of each iteration is linear in the input size plus the cost of computing the leverage scores of DA
for diagonal D ∈ Rm×m. Prior to our work, such a computational complexity was known only for
p ∈ (0, 4) in the work of Cohen and Peng. Combined with this result, our work yields the first
polylogarithmic-depth polynomial-work algorithm for the problem of computing ℓp Lewis weights
to high precision for all constant p > 0. An important consequence of this result is also the first
polylogarithmic-depth polynomial-work algorithm for computing a nearly optimal self-concordant
barrier for a polytope.

7.1 Introduction to Lewis Weights

In this chapter, we study the problem of computing the ℓp Lewis weights1 of a matrix.

Definition 7.1.1. [Lew78, CP15] Given a full-rank matrix A ∈ Rm×n with m ≥ n and a scalar p ∈ (0,∞),
the Lewis weights of A are the entries of the unique2 vector w ∈ Rm satisfying the equation

w2/p
i = a⊤i (A⊤W

1−2/p
A)−1ai for all i ∈ [m], (7.1.1)

where ai is the i’th row of matrix A and W is the diagonal matrix with vector w on the diagonal.

Motivation. We contextualize our problem with a simpler, geometric notion. Given a set of m
points {ai}

m
i=1 ∈ R

n (the rows of the preceding matrix A ∈ Rm×n), their John ellipsoid [Joh48] is the
minimum3 volume ellipsoid enclosing them. This ellipsoid finds use across experiment design and
computational geometry [Tod16] and is central to certain cutting-plane methods [Vai89a, LS14],
an algorithm fundamental to mathematical optimization (Section 7.1.3). It turns out that the John
ellipsoid of a set of points {ai}

m
i=1 ∈ R

n is expressible [BV04b] as the solution to the following convex
program, with the objective being a stand-in for the volume of the ellipsoid and the constraints
encoding the requirement that each given point ai lie within the ellipsoid:

minimizeM⪰0 det(M)−1, subject to a⊤i Mai ≤ 1, for all i ∈ [m]. (7.1.2)

1From hereon, we refer to these simply as “Lewis weights” for brevity.
2Existence and uniqueness was first proven by D.R.Lewis [Lew78], after whom the weights are named.
3The John ellipsoid may also refer to the maximal volume ellipsoid enclosed by the set {x : |x⊤ai| ≤ 1}, but in this

chapter, we use the former definition.

85

The problem (7.1.2) may be generalized by the following convex program [Woj96, CP15], the
generalization immediate from substituting p = ∞ in (7.1.3):

minimizeM⪰0 det(M)−1, subject to
m∑

i=1

(a⊤i Mai)p/2
≤ 1. (7.1.3)

Geometrically, (7.1.3) seeks the minimum volume ellipsoid with a bound on the p/2-norm of the
distance of the points to the ellipsoid, and its solution M is the “Lewis ellipsoid” [CP15] of {ai}

m
i=1.

The optimality condition of (7.1.3), written using w ∈ Rm defined as wi
def
= (a⊤i Mai)p/2, is equivalent

to Equation (7.1.1), and this demonstrates that solving (7.1.3) is one approach to obtaining the Lewis
weights of A (see [CP15]). This equivalence also underscores the fact that the problem of computing
Lewis weights is a natural ℓp generalization of the problem of computing the John ellipsoid.

More broadly, Lewis weights are ubiquitous across statistics, machine learning, and mathematical
optimization in diverse applications, of which we presently highlight two (see Section 7.1.3 for
details). First, their interpretation as “importance scores” of rows of matrices makes them key to
shrinking the row dimension of input data [DMM06]. Second, through their role in constructing
self-concordant barriers of polytopes [LS14], variants of Lewis weights have found prominence in
recent advances in the computational complexity of linear programming.

From a purely optimization perspective, Lewis weights may be viewed as the optimal solution to
the following convex optimization problem (which is in fact essentially dual to (7.1.3)):

w = arg min
w∈Rm

>0

F (w) def
= − log det

(
A⊤WA

)
+

1
1 + α

1⊤w1+α, for α = 2
p−2 . (7.1.4)

As elaborated in [CP15, LS14], the reason this problem yields the Lewis weights is that an appropriate
scaling of its solution w transforms its optimality condition from wα

i = a⊤i (A⊤WA)−1ai to Equa-
tion (7.1.1). The problem (7.1.4) is a simple and natural one and, in the case of α = 1 (corresponding
to the John ellipsoid), has been the subject of study for designing new optimization methods [Tod16].

In summary, Lewis weights naturally arise as generalizations of extensively studied problems in
convex geometry and optimization. This, coupled with their role in machine learning, makes under-
standing the complexity of computing Lewis weights, i.e., solving (7.1.4), a fundamental problem.

Our Goal. We aim to design high-precision algorithms for computing ϵ-approximate Lewis weights,
i.e., a vector w ∈ Rm satisfying

wi ≈ϵ wi, for all i ∈ [m], where w is defined in Equation (7.1.1) and (7.1.4). (7.1.5)

where a ≈ϵ b is used to denote (1 − ϵ)a ≤ b ≤ (1 + ϵ)a. To this end, we design algorithms to solve the
convex program (7.1.4) to ε̃-additive accuracy for an appropriate ε̃ = poly(ϵ,n), which we prove
suffices in Lemma 7.2.1.

By a “high-precision” algorithm, we mean one with a runtime polylogarithmic in ϵ. We emphasize
that for several applications such as randomized sampling [CP15], approximate Lewis weights
suffice; however, we believe that high-precision methods such as ours enrich our understanding of
the structure of the optimization problem (7.1.4). Further, as stated in Theorem 7.1.5, such methods
yield new runtimes for directly computing a near-optimal self-concordant barrier for polytopes.

We use number of leverage score computations as the complexity measure of our algorithms. Our

choice is a result of the fact that leverage scores of appropriately scaled matrices appear in both
∇F (w) (see Lemma 7.2.3) and in the verification of correctness of Lewis weights. This measure of
complexity stresses the number of iterations rather than the details of iteration costs (which depend
on exact techniques used for leverage core computation, e.g., fast matrix multiplication) and is
consistent with many prior algorithms (see Table 7.1).

Prior Results. The first polynomial-time algorithm for computing Lewis weights was presented
by [CP15] and performed only Õp(log(1/ϵ))4 leverage score computations. However, their result
holds only for p ∈ (0, 4). We explain the source of this limited range in Section 7.1.2.

In comparison, for p ≥ 4, existing algorithms are slower: the algorithms by [CP15], [Lee16], and
[LS14] perform Ω̃(n), Õ(1/ϵ), and Õ(

√
n) leverage score computations, respectively. [CP15] also

gave an algorithm with total runtime O(1
ϵnnzA + cpnO(p)). Of note is the fact that the algorithms

with runtimes polynomial in 1/ϵ ([Lee16, CP15]) satisfy the weaker approximation condition

w2/p
i ≈ϵ a⊤i (A⊤W

1−2/p
A)−1ai, which is in fact implied by our condition in Equation (7.1.5).

We display these runtimes in Table 7.1, assuming that the cost of a leverage score computation is
O(mn2) (which, we reiterate, may be reduced through the use of fast matrix multiplication). In
terms of the number of leverage score computations, Table 7.1 highlights the contrast between the
polylogarithmic dependence on input size and accuracy for p ∈ (0, 4) and polynomial dependence on
these factors for p ≥ 4. The motivation behind our chapter is to close this gap.

7.1.1 Our Contribution

We design an algorithm that computes Lewis weights to high precision for all p > 2 using only Õp(log(1/ϵ))
leverage score computations. Together with [CP15]’s result for p ∈ (0, 4), our result therefore completes
the picture on a near-optimal reduction from leverage scores to Lewis weights for all p > 0.

Theorem 7.1.2 (Main Theorem (Parallel)). Given a full-rank matrix A ∈ Rm×n and p ≥ 4, we can compute
(Algorithm 7.2.1 and Algorithm 7.2.2) its ϵ-approximate Lewis weights Equation (7.1.5) in O(p3 log

(
mp/ϵ

)
)

iterations5. Each iteration computes the leverage scores of a matrix DA for a diagonal matrix D. The total
runtime is O(p3mn2 log

(
mp/ϵ

)
), with O(p3 log

(
mp/ϵ

)
log2(m)) depth.

Theorem 7.1.2 is attained by a parallel algorithm for computing Lewis weights that consists of
polylogarithmic rounds of leverage score computations and therefore has polylogarithmic-depth, a
result that was not known prior to this work.

Theorem 7.1.3 (Main Theorem (Sequential)). Given a full-rank matrix A ∈ Rm×n and p ≥ 4, we
can compute (Algorithm 7.2.1 and Algorithm 7.2.3) its ϵ-approximate Lewis weights Equation (7.1.5) in
O(pm log

(
mp/ϵ

)
) iterations. Each iteration computes the leverage score of one row of DA for a diagonal

matrix D. The total runtime is O(pmn2 log
(
mp/ϵ

)
).

Remark 7.1.4. The solution to (7.1.3) characterizes a “Lewis ellipsoid,” and the ℓ∞ Lewis ellipsoid of A
is precisely its John ellipsoid. After symmetrization [Tod16], computing the John ellipsoid is equivalent to
solving a linear program (LP). Therefore, computing Lewis weights in O(log

(
mp/ϵ

)
) iterations would imply

a polylogarithmic-depth algorithm for solving LPs, which, given the current O(
√

n) depth [LS14], would
be a significant breakthrough in the field of optimization. We therefore believe that it would be difficult to
remove the polynomial dependence on p in our runtime.

4We use Op to hide a polynomial in p and Õ and Ω̃ to hide factors polylogarithmic in p,n, and m.
5Our algorithms work for all p > 2, as can be seen in our proof in Section 7.3.1. However, for p ∈ (2, 4), the algorithm

of [CP15] is faster, and therefore, in our main theorems, we state runtimes only for p ≥ 4.

Table 7.1: Runtime comparison for computing Lewis weights. Results with asterisks use a weaker notion of approximation than our
chapter Equation (7.1.1). All dependencies on n in the running times of these methods can be improved using fast matrix multiplication.

Authors Range of p
Number of

Leverage Score
Computations/Depth

Total Runtime

[CP15] p ∈ (0, 4) O
(

1
1−|1−p/2| · log

(log(m)
ϵ

))
O

(
1

1−|1−p/2| ·mn2
· log

(log(m)
ϵ

))
[CP15] p ≥ 4 Ω(n) Ω(mn3

· log
(

m
ϵ

)
)

[CP15]* p ≥ 4 not applicable O
(

nnz(A)
ϵ + cpnO(p)

)
[Lee16]* p ≥ 4 O

(
1
ϵ · log(m/n)

)
O

((
nnz(A)
ϵ + n3

ϵ3

)
· log(m/n)

)
[LS14] p ≥ 4 O(p2

· n1/2
· log

(
1
ϵ

)
) O(p2

·mn2.5
· poly log

(
m
ϵ

)
)

Theorem 7.1.2 p ≥ 4 O(p3
· log

(mp
ϵ

)
) O(p3

·mn2
· log

(mp
ϵ

)
)

7.1.2 Overview of Approach

Before presenting our algorithm, we describe obstacles to directly extending previous work on the
problem for p ∈ (0, 4) to the case p ≥ 4. For p ∈ (0, 4), [CP15, LS14] design algorithms that, with a
single computation of leverage scores, make constant (dependent on p) multiplicative progress on
error (such as function error or distance to optimal point), thus attaining runtimes polylogarithmic in
ϵ. However, these methods crucially rely on contractive properties that do not necessarily hold for p ≥ 4.

For example, one of the algorithms in [CP15] starts with a vector v ≈c w, where w is the vector of
true Lewis weights and c some constant. Consequently, we have (a⊤i (A⊤V1−2/pA)−1ai)p/2

≈c|p/2−1|

(a⊤i (A⊤W
1−2/p

A)−1ai)p/2. Due to this map being a contraction for |p/2 − 1| < 1, or equivalently, for
p ∈ (0, 4), O(log

(
log n

)
) recursive calls to it give Lewis weights for p < 4, but the contraction - and,

by extension, this method - does not immediately extend to the setting p ≥ 4.

Prior algorithms for p ≥ 4, therefore, resort to alternate optimization techniques. [CP15] frames
Lewis weights computation as determinant maximization (7.1.3) (see Section F.4) and applies cutting
plane methods [GLS81b, LSW15]. [Lee16] uses mirror descent, and [LS14] uses homotopy methods.
These approaches yield runtimes with poly(n) or poly(1

ϵ) leverage score computations, and therefore,
attaining runtimes of polylog(1/ϵ) leverage score computations requires rethinking the algorithm.

Our Approach. As stated in Section 7.1, to obtain ϵ-approximate Lewis weights for p ≥ 4, we
compute a w that satisfies F (w) ≤ F (w) ≤ F (w) + ε̃, where F and w are as defined in (7.1.4) and
ε̃ = O(poly(n, ϵ)). In light of the preceding bottlenecks in prior work, we circumvent techniques
that directly target constant multiplicative progress (on some potential) in each iteration.

Our main technical insight is that when the leverage scores for the current weight w ∈ Rn
>0 satisfy a

certain technical condition (Inequality 7.1.6), it is indeed possible to update w to get multiplicative
decrease in function error (F (w) − F (w)), thus resulting in our target runtime. To turn this insight
into an algorithm, we design a corrective procedure that ensures that Inequality 7.1.6 is always
satisfied: in other words, whenever Inequality 7.1.6 is violated, this procedure updates w so that the
new w does satisfy Inequality 7.1.6, setting the stage for the aforementioned multiplicative progress.
An important additional property of this procedure is that it does not increase the objective function
and is therefore in keeping with our goal of minimizing (7.1.4).

Specifically, the technical condition that our geometric decrease in function error hinges on is

max
i∈[m]

a⊤i (A⊤WA)−1ai

wα
i

≤ 1 + α . (7.1.6)

This ratio follows naturally from the gradient and Hessian of the function objective (see Lemma 7.2.3).
Our algorithm’s update rule to solve (7.1.4) is obtained from minimizing a second-order approxi-
mation to the objective at the current point, and the condition specified in Inequality 7.1.6 allows us
to relate the progress of a type of quasi-Newton step to lower bounds on the progress there is to
make, which is critical to turning a runtime of poly(1/ϵ) into polylog(1/ϵ) (Lemma 7.2.5).

The process of updating w so that Inequality 7.1.6 goes from being violated to being satisfied
corresponds, geometrically, to sufficiently rounding the ellipsoid E(w) = {x : x⊤A⊤WAx ≤ 1};

specifically, the updated ellipsoid satisfies E(w) ⊆ {∥W
1

2−p Ax∥∞ ≤
√

1 + α} (see Section F.3), and this
is the reason we use the term “rounding” to describe our corrective procedure to get w to satisfy
Inequality 7.1.6 and the term “rounding condition” to refer to Inequality 7.1.6.

We develop two versions of rounding: a parallel method and a sequential one that has an improved
dependence on p. Each version is based on the principles that (1) one can increase those entries
of w at which the rounding condition Inequality 7.1.6 does not hold while decreasing the objective
value, and (2) the vector w obtained after this update is closer to satisfying Inequality 7.1.6.

We believe that such a principle of identifying a technical condition needed for fast convergence
and the accompanying rounding procedures could be useful in other optimization problems. Addi-
tionally, we develop Algorithm 7.5.1, which, by varying the step sizes in the update rule, maintains
Inequality 7.1.6 as invariant, thereby eliminating the need for a separate rounding and progress steps.

7.1.3 Applications and Related Work

We elaborate here on the applications of Lewis weights we briefly alluded to in Section 7.1. While
for many applications (such as pre-processing in optimization [CP15]) approximate weights suffice,
solving regularized D-optimal and computing Õ(n) self-concordant barriers to high precision do
use high precision Lewis weights.

Pre-processing in optimization. Lewis weights are used as scores to sample rows of an input tall
data matrix so the ℓp norms of the product of the matrix with vectors are preserved. They have been
used in row sampling algorithms for data pre-processing [DMM06, DMIMW12, LMP13, CLM+15b],
for computing dimension-free strong coresets for k-median and subspace approximation [SW18],
and for fast tensor factorization in the streaming model [CCDS20]. Lewis weights are also used
for ℓ1 regression, a popular model in machine learning used to capture robustness to outliers, in:
[DLS18] for stochastic gradient descent pre-conditioning, [LWYZ20] for quantile regression, and
[BDM+20] to provide algorithms for linear algebraic problems in the sliding window model. Our
results for efficient Lewis weight computation for p ≥ 4 have also found use in the fast computation
of ℓp sensitivities [PWZ23].

John ellipsoid and D-optimal design. As noted in Remark 7.1.4, a fast algorithm for Lewis
weights could yield faster algorithms for computing John ellipsoid, a problem with a long history
of work [Kha96, SF04, KY05, DAST08, CCLY19, ZF20]. It is known [Tod16] that the John ellipsoid
problem is dual to the (relaxed) D-optimal experiment design problem [Puk06]. D-optimal design
seeks to select a set of linear experiments with the largest confidence ellipsoid for its least-square
estimator [AZLSW17, MSTX19, SX20].

Our problem (7.1.4) is equivalent to p
p−2 -regularized D-optimal design, which can be interpreted

as enforcing a polynomial experiment cost: viewing wi as the fraction of resources allocated to

experiment i, each wi is penalized by w
p

p−2

i . This regularization also appears in fair packing and fair
covering problems [MSZ16, DFO20b] from operations research.

Self-concordance. Self-concordant barriers are fundamental in convex optimization [NN94],
combinatorial optimization [LS14], sampling [KN09, LLV20], and online learning [AHR08]. Al-
though there are (nearly) optimal self-concordant barriers for any convex set [NN94, BE15, LY18],
computing them involves sampling from log-concave distributions, itself an expensive process
with a poly(1/ϵ) runtime. [LS14] shows how to construct nearly optimal barriers for polytopes
using Lewis weights. Unfortunately, doing so still requires polynomial-many steps to compute
these weights; [LS14] bypass this issue by showing it suffices to work with Lewis weights for
p ≈ 1. In this chapter, we show how to compute Lewis weights by computing leverage scores
of polylogarithmic-many matrices. This gives the first nearly optimal self-concordant barrier for
polytopes that can be evaluated to high accuracy with depth polylogarithmic in the dimension.

Theorem 7.1.5 (Applying Theorem 7.1.2 to [LS14, Section 5]). Given a non-empty polytope P = {x ∈
Rn
| Ax > b} for full rank A ∈ Rm×n, there is a O(n log5 m)-self concordant barrier ψ for P such that for

any ϵ > 0 and x ∈ P, in O(mnω−1 log3 m log(m/ϵ))-work and O(log3 m log(m/ϵ))-depth, we can compute
g ∈ Rn and H ∈ Rn×n with ∥g − ∇ψ(x)∥∇2ψ(x)−1 ≤ ϵ and ∇2ψ(x) ⪯ H ⪯ O(log m)∇2ψ(x). With an
additional O(mω+o(1)) work, H ∈ Rn×n with (1 − ϵ)∇2ψ(x) ⪯ H ⪯ O(1 + ϵ)∇2ψ(x) can be computed as well.

7.1.4 Notation and Preliminaries

We use A to denote our full-rank m × n (m ≥ n) real-valued input matrix and w ∈ Rm to denote
the vector of Lewis weights of A, as defined in Equation (7.1.1) and (7.1.4). All matrices appear
in boldface uppercase and vectors in lowercase. For any vector (say, σ), we use its uppercase
boldfaced form (Σ) to denote the diagonal matrix Σii = σi. For a matrix M, the matrix M(2) is the
Schur product (entry-wise product) of M with itself. For matrices A and B, we use A ⪰ B to mean
A − B is positive-semidefinite. For vectors a and b, the inequality a ≤ b applies entry-wise. We

use ei to denote the i’th standard basis vector. We define [n] def
= {1, 2, . . . ,n}. As in (7.1.4), since we

defined α def
= 2

p−2 , the ranges of p ∈ (2, 4) and p ≥ 4 translate to α > 1 and α ∈ (0, 1], respectively.
From hereon, we work with α. We also define ᾱ = max{1, α}. For a matrix A ∈ Rm×n and w ∈ Rm

>0,

we define the projection matrix P(w) def
= W1/2A(A⊤WA)−1A⊤W1/2

∈ Rm×m. The quantity P(w)ii is
precisely the leverage score of the i’th row of W1/2A:

σi(w) def
= wi · a⊤i (A⊤WA)−1ai. (7.1.7)

Fact 7.1.6 ([LS14]). For all w ∈ Rm
>0 we have that 0 ≤ σi(w) ≤ 1 for all i ∈ [m],

∑
i∈[m] σi(w) ≤ n, and

0 ⪯ P(w)(2)
⪯ Σ(w).

7.2 Our Algorithm

We present Algorithm 7.2.1 to compute an ε̃-additive solution to (7.1.4). We first provide the
following definitions that we frequently refer to in our algorithm and analysis. Given α > 0 and

w ∈ Rm
>0, the i’th coordinate of ρ(w) ∈ Rm is

ρi(w) def
=
σi(w)
w1+α

i

. (7.2.1)

Based on this quantity, we define the following procedure, derived from approximating a quasi-
Newton update on the objective F from (7.1.4):

[
Descent(w,C, η)

]
i

def
= wi

[
1 + ηi ·

ρi(w) − 1
ρi(w) + 1

]
for all i ∈ C ⊆ {1, 2, . . . ,m}. (7.2.2)

Using these definitions, we can now describe our algorithm. Depending on whether the following
condition (“rounding condition”) holds, we run either Descent(·) or Round(·) in each iteration:

ρmax(w) def
= max

i∈[m]
ρi(w) ≤ 1 + α. (7.2.3)

Specifically, if Inequality 7.2.3 is not satisfied, we run Round(·), which returns a vector that does
satisfy it without increasing the objective value. We design two versions of Round(·), one parallel
(Algorithm 7.2.2) and one sequential (Algorithm 7.2.3), with the sequential algorithm having an
improved dependence on α, to update the coordinates violating Inequality 7.2.3. We apply one
extra step of rounding to the vector returned after Ttotal iterations of Algorithm 7.2.1 and transform
it appropriately to obtain our final output. In the following lemma (proved in Section F.2), we
justify that this output is indeed the solution to Equation (7.1.5).

Lemma 7.2.1 (Lewis Weights from Optimization Solution). Let w ∈ Rm
>0 be a vector at which the objective

(7.1.4) is ε̃-suboptimal in the additive sense for ε̃ = α8ϵ4

(25m(
√

n+α)(α+α−1))4 , i.e., F (w) ≤ F (w) ≤ F (w) + ε̃.
Further assume that w satisfies the rounding condition: ρmax(w) ≤ 1+ α. Then, the vector ŵ defined as ŵi =
(a⊤i (A⊤WA)−1ai)1/α satisfies ŵi ≈ϵ wi for all i ∈ [m], thus achieving the goal spelt out in Equation (7.1.5).

Algorithm 7.2.1 Lewis Weight Computation Meta-Algorithm
Input: Matrix A ∈ Rm×n, parameter p > 2, accuracy ϵ
Output: Vector ŵ ∈ Rm

>0 that satisfies Equation (7.1.5)

1: For all i ∈ [m], initialize w(0)
i =

n
m .

2: Set α = 2
p−2 , ᾱ = max(α, 1), ε̃ = α8ϵ4

(25m(
√

n+α)(α+α−1))4 , and Ttotal = O(max(α−1, α) log
(
m/ε̃

)
).

3: for k = 1, 2, 3, . . . ,Ttotal do
4: w̃(k)

← Round(w(k−1),A, α) ▷ Invoke Algorithm 7.2.2 (parallel) or Algorithm 7.2.3
(sequential)

5: w(k)
← Descent(w̃(k), [m], 1

3ᾱ1) ▷ See Equation (7.2.2) and Lemma 7.2.2
6: end for
7: Set wR ← Round(w(Ttotal),A, α)
8: Return ŵ ∈ Rm

>0, where ŵi = (a⊤i (A⊤WRA)−1ai)1/α. ▷ See Section F.2

7.2.1 Analysis of Descent(·)

We first analyze Descent(·) since it is common to both the parallel and sequential algorithms.

Algorithm 7.2.2 RoundParallel(w, A, α)
Input: Vector w ∈ Rm

>0, matrix A ∈ Rm×n, parameter α > 0 Output: Vector w ∈ Rm
>0 satisfying

Inequality 7.2.3
1: Define ρ(w) as in (7.2.1)
2: while C = {i | ρi(w) > 1 + α} , ∅ do
3: w← Descent(w,C, 1

3ᾱ1) ▷ See Section 7.3
4: end while
5: Return w

Algorithm 7.2.3 RoundSequential(w, A,α)
Input: Vector w ∈ Rm

>0, matrix A ∈ Rm×n, parameter α > 0
Output: Vector w ∈ Rm

>0 satisfying Inequality 7.2.3

1: Define ρ(w) as in (7.2.1) and σ(w) as in (7.1.7)
2: Define C = {i | ρi(w) ≥ 1}
3: for i ∈ C do
4: wi ← wi(1 + δi), where δi solves ρi(w) = (1 + δiσi(w))(1 + δi)α ▷ see Section 7.4
5: end for
6: Return w

Lemma 7.2.2 (Iteration Complexity of Descent(·)). Each iteration of Descent(·) (described in
Equation (7.2.2)) decreases the value of F . Assuming that Round(·) does not increase the value of the
objective in (7.1.4), for any given accuracy parameter 0 < ε̃ < 1, the number of Descent(·) steps that
Algorithm 7.2.1 performs before achieving F (w) ≤ F (w) + ε̃ is given by the following bound:

Ttotal = O(max(α−1, α) log
(
m/ε̃

)
).

As is often the case to obtain such an iteration complexity, we prove Lemma 7.2.2 by incorporating the
maximum sub-optimality in function value (Lemma 7.2.5) and the initial error bound (Lemma 7.2.4)
into the inequality describing minimum function progress (Lemma 7.2.6). The assumption that
Round(·) does not increase the value of the objective is justified in Lemma 7.3.1.

Since our algorithm leverages quasi-Newton steps, we begin our analysis by stating the gradient and
Hessian of the objective in (7.1.4) as well as the error at the initial vector w(0), as measured against
the optimal function value. The Hessian below is positive semidefinite when α ≥ 0 (equivalently,
when p ≥ 2) and not necessarily so otherwise. Consequently, the objective is convex for α ≥ 0, and
we therefore consider only this setting throughout.

Lemma 7.2.3 (Gradient and Hessian). For any w ∈ Rm
>0, the objective in (7.1.4),F (w) = − log det(A⊤WA)+

1
1+α1⊤w1+α, has gradient and Hessian given by the following expressions.

[∇F (w)]i = w−1
i · (w

1+α
i − σi(w)) and ∇2

F (w) =W−1P(w)(2)W−1 + αWα−1.

Lemma 7.2.4 (Initial Sub-Optimality). At the start of Algorithm 7.2.1, the value of the objective of (7.1.4)
differs from the optimum objective value as F (w(0)) ≤ F (w) + n log(m/n).

Minimum Progress and Maximum Sub-optimality in Descent(·)

We first prove an upper bound on objective sub-optimality, necessary to obtain a runtime polylog-
arithmic in 1/ϵ. Often, to obtain such a rate, the bound involving objective sub-optimality has a
quadratic term derived from the Hessian; our lemma is somewhat non-standard in that it uses only
the convexity of F . Note that this lemma crucially uses Inequality 7.2.3.

Lemma 7.2.5 (Objective Sub-optimality). Suppose w ∈ Rm
>0 and ρmax(w) ≤ 1 + α. Then the value of the

objective of (7.1.4) at w differs from the optimum objective value as follows.

F (w) − F (w) ≤
∑
i∈[m]

w1+α
i

1 + α

(
1 +

ρi(w)
α

) (
ρi(w) − 1

)2
≤ 5 max{1, α−1

}

∑
i∈[m]

w1+α
i

(ρi(w) − 1)2

ρi(w) + 1
.

Proof. Since g(w) def
= − log det(A⊤WA) is convex and [∇g(w)]i = −w−1

i σi(w), we have

g(w) ≥ g(w) + ∇g(w)⊤(w − w) = g(w) +
∑
i∈[m]

(
−
σi(w)wi

wi
+ σi(w))

)
,

and therefore,

F (w) − F (w) = g(w) − g(w) +
1

1 + α

∑
i∈[m]

(
[w]1+α

i − w1+α
i

)
≥

∑
i∈[m]

ci where ci
def
= −

σi(w)wi

wi
+ σi(w) +

1
1 + α

(
[w]1+α

i − w1+α
i

)
.

To prove the claim, it suffices to bound each ci from below. First, note that

ci ≥ min
v≥0
−

v · σi(w)
wi

+ σi(w) +
1

1 + α

(
v1+α

− w1+α
i

)
= −

α
1 + α

(
σi(w)

wi

)1+ 1
α

+ σi(w) −
w1+α

i

1 + α

=
w1+α

i

1 + α

[
−αρi(w)1+ 1

α + (1 + α)ρi(w) − 1
]

(7.2.4)

where the first equality used that the minimization problem is convex and the solutions to
−σi(w)w−1

i + vα = 0 (i.e. where the gradient is 0) is a minimizer, and the second equality used
ρi(w) = σi(w)/w1+α

i . Applying ρi(w) ≤ 1 + α, 1 + x ≤ exp x, and exp x ≤ 1 + x + x2 for x ≤ 1 yields

ρi(w)
1
α = (1 − (1 − ρi(w)))

1
α ≤ exp

(
1
α (ρi(w) − 1)

)
≤ 1 +

1
α

(ρi(w) − 1) +
1
α2 (ρi(w) − 1)2. (7.2.5)

Combining (7.2.5) with (7.2.4) yields that

ci ≥
w1+α

i

1 + α

−αρi(w)

1 + (
ρi(w) − 1

α

)
+

(
ρi(w) − 1

α

)2 + (1 + α)ρi(w) − 1

=

w1+α
i

1 + α

[
−1 + 2ρi(w) − ρi(w)2

−
ρi(w)
α
· (ρi(w) − 1)2

]
= −

w1+α
i

1 + α

(
1 +

ρi(w)
α

)
·
(
ρi(w) − 1

)2

The claim then follows from the fact that for ρi(w) ≤ 1+ α, we have (1+ρi(w)α−1)(1+ρi(w))
1+α ≤

1
1+α +

1
α + 1+

1 + 1
α ≤ 5 max{1, α−1

}. □

Lemma 7.2.6 (Function Decrease in Descent(·)). Let w, η ∈ Rm
>0 with ηi ∈ [0, 1

3ᾱ] for all i ∈ [m].
Further, let w+ = Descent(w, [m], η), where Descent is defined in Equation (7.2.2). Then, w+ ∈ Rm

>0 with
the following decrease in function objective.

F (w+) ≤ F (w) −
∑
i∈[m]

ηi

2
· w1+α

i ·
(ρi(w) − 1)2

ρi(w) + 1
.

The proof of this lemma resembles that of quasi-Newton method: first, we write a second-order
Taylor approximation of F (w+) around w and apply Fact 7.1.6 to Lemma 7.2.3 to obtain the upper
bound on Hessian: ∇2

F (w̃) = W̃−1P(w̃)(2)W̃−1 + αW̃α−1
⪯ W̃−1Σ(w̃)W̃−1 + αW̃α−1. We further use

the expression for ∇F (w) in this second-order approximation and simplify to obtain the claim, as
detailed in Section F.1.

Iteration Complexity of Descent(·)

Proof of Lemma 7.2.2. Since Algorithm 7.2.1 calls Descent(·) after running Round(·), the requirement
ρmax(w) ≤ 1 + α in Lemma 7.2.5 is met. Therefore, we may combine Lemma 7.2.5 alongwith
Lemma 7.2.6 and our choice of ηi =

1
3ᾱ in Algorithm 7.2.1 to get a geometric decrease in function

error as follows.

F (w+) − F (w) ≤ F (w) − F (w) −
1

6 max(α, 1)

m∑
i=1

w1+α
i

(ρi(w) − 1)2

ρi(w) + 1

≤

(
1 −

1
30 max(1, α) ·max(1, α−1)

)
(F (w) − F (w)). (7.2.6)

We apply this inequality recursively over all iterations of Algorithm 7.2.1, while also using the
assumption that Round(·) does not increase the objective value. Setting the final value of (7.2.6)
to ε̃, bounding the initial error as F (w) − F (w) ≤ n log(m/n) ≤ m2 by Lemma 7.2.4, observing
max(1, α) ·max(1, α−1) = max(α, α−1), and taking logarithms on both sides of the inequality gives
the claimed iteration complexity of Descent(·). □

7.3 Analysis of Round(·): The Parallel Algorithm

The main export of this section is the proof of our main theorem about the parallel algorithm
(Theorem 7.1.2). This proof combines the iteration count of Descent(·) from the preceding section
with the analysis of Algorithm 7.2.2 (invoked by Round(·) in the parallel setting), shown next. In
Lemma 7.3.1, we show that RoundParallel(·) decreases the function objective, thereby justifying the
key assumption in Lemma 7.2.2. Lemma 7.3.1 also shows an upper bound on the new value of ρ after
one while loop of RoundParallel(·), and by combining this with the maximum value of ρ for termi-
nation in Algorithm 7.2.2, we get the iteration complexity of RoundParallel(·) in Corollary 7.3.2.

Lemma 7.3.1 (Outcome of RoundParallel(·)). Let w+ ∈ Rm
>0 be the state of w ∈ Rm

>0 at the end of onewhile
loop of RoundParallel(·) (Algorithm 7.2.2). Then,F (w+) ≤ F (w) and ρmax(w+) ≤ (1+ α

3ᾱ(2+α))−αρmax(w).

Proof. Each iteration of the while loop in RoundParallel(·) performs Descent(w,C, 1
3ᾱ1) over the

set of coordinates C = {i : ρi(w) > 1 + α}. Lemma 7.2.6 then immediately proves F (w+) ≤ F (w),
which is our first claim.

To prove the second claim, note that in Algorithm 7.2.2, for every i ∈ C

w+i = wi +
wi

3ᾱ
·

[
ρi(w) − 1
ρi(w) + 1

]
≥ wi +

wi

3ᾱ
·

[
α

1 + 1 + α

]
= wi ·

(
1 +

α
3ᾱ(2 + α)

)
,

where the second step is by the monotonicity of x→ x−1
x+1 for x ≥ 1. Combining it with w+i = wi for

all i < C implies that w+ ≥ w. Therefore, for all i ∈ C, we have

ρ(w+)i = [w+i]−α[A(A⊤W+A)−1A⊤]ii ≤

[
1 +

α
3ᾱ(2 + α)

]−α
· w−αi [A(A⊤WA)−1A⊤]ii. (7.3.1)

□

Corollary 7.3.2. Let w be the input to RoundParallel(·). Then, the number of iterations of the while
loop of RoundParallel(·) is at most O

(
(1 + α−2) log

(
ρmax(w)

1+α

))
.

Proof. Let w(i) be the value of w at the start of the i’th execution of the while loop of RoundParallel(·).
Repeated application of Lemma 7.3.1 over k executions of the while loop gives ρmax(w(k)) ≤

ρmax(w)
(
1 + α

3ᾱ(2+α)

)−αk
. We set ρmax(w)

(
1 + α

3ᾱ(2+α)

)−αk
≤ 1 + α in accordance with the termination

condition of RoundParallel(·). Next, applying 1 + x ≤ exp(x), and taking logarithms on both sides
yields the claimed limit on the number of iterations, k. □

Lemma 7.3.3. Over the entire run of Algorithm 7.2.1, the while loop of RoundParallel(·) runs for at
most O

(
Ttotal · α−2

· log
(

m
n(1+α)

))
iterations if α ∈ (0, 1] and O

(
Ttotal · α · log

(
m

n(1+α)

))
iterations if α ≥ 1.

Proof. Note that ρmax(n
m) ≤ (m

n)1+α; consequently, in the first iteration of Algorithm 7.2.1, there
are at most O((α + α−2) log(m/(n(1 + α)))) iterations of the while loop of RoundParallel(·) by
Corollary 7.3.2. Note that between each call to RoundParallel(·), for all i ∈ [m],

w+i = wi +
wi

3ᾱ
·

[
ρi(w) − 1
ρi(w) + 1

]
≥ wi +

wi

3ᾱ
·

[
−1

1 + 1 + α

]
= wi ·

(
1 −

1
(3ᾱ)(2 + α)

)
,

where the first inequality is by using the fact that the output w of RoundParallel(·) satisfies
ρmax(w) ≤ 1 + α. Therefore, applying the same logic as in (7.3.1), we get that between two calls to

RoundParallel(·), the value of ρi(w) increases by at most
(
1 − 1

(3ᾱ)(2+α)

)−(1+α)
= O(1) for all i ∈ [m].

Combining this with Corollary 7.3.2 and the total initial iteration count and observing that Ttotal is
the total number of calls to RoundParallel(·) finishes the proof. □

7.3.1 Proof of Main Theorem (Parallel)

Proof. (Proof of Theorem 7.1.2) First, we show correctness. Note that, as a corollary of Lemma 7.2.2,
F (w(Ttotal)) ≤ F (w) + ε̃. By the properties of Round as shown in Lemma 7.3.1, we also have that
F (wR) ≤ F (w) + ε̃ and ρmax(wR) ≤ 1 + α for wR = Round(w(Ttotal),A, α). Therefore, Lemma 7.2.1
is applicable, and by the choice of ε̃ = α4ϵ4

(2m(
√

n+α)(α+α−1))4 , we conclude that ŵ ∈ Rm defined as

ŵi = (a⊤i (A⊤WRA)−1ai)1/α satisfies ŵi ≈ϵ wi for all i ∈ [m]. Combining the iteration counts of
Descent(·) from Lemma 7.2.2 and of RoundParallel(·) from Lemma 7.3.3 yields the total iteration
count as O(α−3 log(m/(ϵα))) if α ≤ 1 and O(α2 log(m/ϵ)) if α > 1. As stated in Section 7.1.4, α = 2

p−2 ,

and so translating these rates in terms of p gives O(p3 log
(
mp/ϵ

)
) for p ≥ 4 and O(p−2 log

(
mp/ϵ

)
) for

p ∈ (2, 4), thereby proving the stated claim. The cost per iteration is O(mn2)6 for multiplying two
m × n matrices. □

7.4 Analysis of Round(·): Sequential Algorithm

We now analyze Algorithm 7.2.3. Note that these proofs work for all α > 0.

Lemma 7.4.1 (Coordinate Step Progress). Given w ∈ Rm
>0, a coordinate i ∈ [m], and δi ∈ R, we have

F (w + δiwiei) = F (w) − log(1 + δiσi(w)) +
w1+α

i

1 + α
((1 + δi)1+α

− 1).

Proof. By definition of F , we have

F (w + δiwiei) = − log det
(
A⊤WA + δiwiaia⊤i

)
+

1
1 + α

∑
j,i

w1+α
j +

w1+α
i

1 + α
(1 + δi)1+α.

Recall the matrix determinant lemma: det(A + uv⊤) = (1 + v⊤A−1u) det(A). Applying it to
det

(
A⊤diag(()w + δiwiei)A

)
in the preceding expression for F (w + δiwiei) proves the lemma.

□

Lemma 7.4.2 (Coordinate Step Outcome). Given w ∈ Rm
>0 and C = {i : ρi(w) ≥ 1}, let w+ = w+δiwiei for

any i ∈ C, where δi = arg minδ
[
− log(1 + δσi(w)) + 1

1+αw1+α
i ((1 + δ)1+α

− 1)
]
. Then, we have F (w+) ≤

F (w) and ρi(w+) ≤ 1.

Proof. We note that minδ
[
− log(1 + δσi(w)) + 1

1+αw1+α
i ((1 + δ)1+α

− 1)
]
≤ 0. Then, Lemma 7.4.1

implies the first claim. Since the update rule optimizes over F coordinate-wise, at each step the
optimality condition given by ρi(w+) = 1 is met for each i ∈ C. The second claim is then proved by
noting that for j , i, w+j = w j and by the Sherman-Morrison-Woodbury identity, ρ j(w+) ≤ ρ j(w):

a⊤j (A⊤W+A)−1a j = a⊤j (A⊤WA)−1a j − δiwi

(a⊤j (A⊤WA)−1a j)2

1 + δiwia⊤i (A⊤WA)−1ai
≤ a⊤j (A⊤WA)−1a j.

□

Lemma 7.4.3 (Number of Coordinate Steps). For any 0 ≤ ε̃ ≤ 1, over allTtotal iterations of Algorithm 7.2.1,
there are at most O(m max(α, α−1) log

(
m/ε̃

)
) coordinate steps (see Algorithm 7.2.3).

Proof. There are at most m coordinate steps in each call to Algorithm 7.2.3. Combining this with the
value of Ttotal in Algorithm 7.2.1 gives the count of O(mα−1 log

(
m/ε̃

)
) coordinate steps. □

6This can be improved to O(mnω−1) using fast matrix multiplication.

7.4.1 Proof of Main Theorem (Sequential)

We now combine the preceding results to prove the main theorem about the sequential algorithm
(Algorithm 7.2.1 with Algorithm 7.2.3).

Proof of Theorem 7.1.3. The proof of correctness is the same as that for Theorem 7.1.2 since the
parallel and sequential algorithms share the same meta-algorithm. Computing leverage scores in
the sequential version (Algorithm 7.2.1 with Algorithm 7.2.3) takes O(m max(α, α−1) log(m/(αϵ))) co-
ordinate steps. The costliest component of a coordinate step is computing a⊤i (A⊤(W+δiwieie⊤i)A)−1ai.
By the Sherman-Morrison-Woodbury formula, computing this costs O(n2) for each coordinate. Since
the initial cost to compute (A⊤WA)−1 is O(mn2), the total run time is O(max(α, α−1)mn2 log(m/ϵ)).
In terms of p, this gives O(pmn2 log

(
mp/ϵ

)
) for p ≥ 4 and O(p−1mn2 log

(
mp/ϵ

)
) for p ∈ (2, 4). □

7.5 A “One-Step” Parallel Algorithm

We conclude this chapter with an alternative algorithm (Algorithm 7.5.1) in which each iteration
avoids any rounding and performs only Descent(·).

Algorithm 7.5.1 One-Step Algorithm
Input: Matrix A ∈ Rm×n, parameter p > 2, accuracy ϵ
Output: Vector ŵ ∈ Rm

>0 that satisfies Equation (7.1.5)

1: For all i ∈ [m], initialize w(0)
i = 1. Set α = 2

p−2 . Set ε̃ = α4ϵ4

(2m(
√

n+α)(α+α−1))4 .

2: Set β = 1
1000 min(α2, 1) and Ttotal =

{
O(α−3 log

(
mp/ε̃

)
) if α ∈ (0, 1]

O(α2 log
(
mp/ε̃

)
) α > 1

3: for k = 0, 1, 2, 3, . . . ,Ttotal − 1 do

4: Let η(k)
∈ Rm where for all i ∈ [m] we let η(k)

i =

 1
3ᾱ if ρi(w(k)) ≥ 1
1

3ᾱβ if ρi(w(k)) < 1
5: w(k+1)

← Descent(w(k), [m], η(k)) ▷ See Equation (7.2.2) and Lemma 7.2.2
6: end for
7: Return ŵ ∈ Rm

>0, where ŵi = (a⊤i (A⊤W(Ttotal)A)−1ai)1/α. ▷ See Section F.2

Theorem 7.5.1 (Main Theorem (One-Step Parallel Algorithm)). Given a full rank matrix A ∈ Rm×n

and p ≥ 4, we can compute ϵ-approximate Lewis weights Equation (7.1.5) in O(p3 log
(
mp/ϵ

)
iterations.

Each iteration computes the leverage score of one row of DA for some diagonal matrix D. The total runtime
is O(p3mn2 log

(
mp/ϵ

)
).

We first spell out the key idea of the proof of Theorem 7.5.1 in Lemma 7.5.2 next, which is that
Inequality 7.2.3 is maintained in every iteration through the use of varying step sizes, without
explicitly invoking rounding procedures. Since Inequality 7.2.3 always holds, we may use Lemma 7.2.5
in bounding the iteration complexity.

Lemma 7.5.2 (Rounding Condition Invariance). For any iteration k ∈ [Ttotal − 2] in Algorithm 7.5.1, if
ρmax(w(k)) ≤ 1 + α, then ρmax(w(k+1)) ≤ 1 + α.

Proof. By the definition of Descent(·) in Equation (7.2.2) and choice of η(k)
i in Algorithm 7.5.1, we

have,

w(k+1)
i = w(k)

i ·

[
1 + η(k)

i

(
ρi(w(k)) − 1
ρi(w(k)) + 1

)]
(7.5.1)

≥ w(k)
i (1 − η(k)

i) ≥ w(k)
i

(
1 −

β

3ᾱ

)
. (7.5.2)

Applying this inequality to the definition of ρ(w) in (7.2.1), for all i ∈ [m], we have

ρi(w(k+1)) =

w(k+1)
i

w(k)
i

−α

1

[w(k)
i]α

a⊤i (A⊤W(k+1)A)−1ai ≤

(
1 −

β

3ᾱ

)−1
w(k+1)

i

w(k)
i

−α

ρi(w(k)). (7.5.3)

Plugging Inequality 7.5.2 into Inequality 7.5.3 when ρi(w(k)) ≤ 1 and using the upper bound on β
yields that

ρi(w(k+1)) ≤
(
1 −

β

3ᾱ

)−(1+α)

≤ 1 + α .

Ifρi(w(k)) ≥ 1, then Inequality 7.5.3, the equality in Inequality 7.5.2, the bound on β, andρi(w(k)) ≤ 1+α
imply that

ρi(w(k+1)) ≤
(
1 −

β

3ᾱ

)−1 [
1 +

1
3ᾱ

(
ρi(w(k)) − 1
ρi(w(k)) + 1

)]−α
ρi(w(k)) ≤ 1 + α.

□

Proof of Theorem 7.5.1. By our choice of w(0)
i = 1 for all i ∈ [m], we have that ρi(w(0)) = σi(w(0)) ≤ 1 by

Fact 7.1.6. Then applying Lemma 7.5.2 yields by induction that ρmax(w(k)) ≤ 1 + α at every iteration
k. We may now therefore upper bound the objective sub-optimality from Lemma 7.2.5; as before,
combining this with the lower bound on progress from Lemma 7.2.6 (noticing that ηi ≥

β
3ᾱ) yields

F (w+) − F (w) ≤ F (w) − F (w) −
β

6ᾱ

m∑
i=1

w1+α
i

(ρi(w) − 1)2

ρi(w) + 1

≤

(
1 −

β

30 max(1, α) max(1, α−1)

)
(F (w) − F (w)). (7.5.4)

Thus, Descent(·) decreases F . Using F (w) − F (w) ≤ n log(m/n) ≤ m2 from Lemma 7.2.4 and
setting Inequality 7.5.4 to ε̃ gives an iteration complexity of O(β−1α−1 log

(
m/ε̃

)
) = O(α−3 log

(
m/ε̃

)
)

if α ∈ (0, 1] and O(αβ−1 log
(
m/ε̃

)
) = O(α log

(
m/ε̃

)
) otherwise. As in the proofs of Theorem 7.1.2 and

Theorem 7.1.3, we then invoke Lemma 7.2.1 to construct an ϵ-approximation to the Lewis weights. □

Chapter 8

Online Bidding Algorithms for Return-on-Spend Constrained
Advertisers

Online advertising has recently grown into a highly competitive and complex multi-billion-dollar
industry, with advertisers bidding for ad slots at large scales and high frequencies. This has resulted
in a growing need for efficient "auto-bidding" algorithms that determine the bids for incoming
queries to maximize advertisers’ targets subject to their specified constraints. This work explores
efficient online algorithms for a single value-maximizing advertiser under an increasingly popular
constraint: Return-on-Spend (RoS). We quantify efficiency in terms of regret relative to the optimal
algorithm, which knows all queries a priori. We contribute a simple online algorithm that achieves
near-optimal regret in expectation while always respecting the specified RoS constraint when the
input sequence of queries are i.i.d. samples from some distribution. We also integrate our results
with the previous work of Balseiro, Lu, and Mirrokni [BLM20] to achieve near-optimal regret
while respecting both RoS and fixed budget constraints. Our algorithm follows the primal-dual
framework and uses online mirror descent (OMD) for the dual updates. However, we need to use
a non-canonical setup of OMD, and therefore the classic low-regret guarantee of OMD, which is
for the adversarial setting in online learning, no longer holds. Nonetheless, in our case and more
generally where low-regret dynamics are applied in algorithm design, the gradients encountered
by OMD can be far from adversarial but influenced by our algorithmic choices. We exploit this key
insight to show our OMD setup achieves low regret in the realm of our algorithm.

8.1 Introduction

With the explosive growth of online advertising into a billion-dollar industry, auto-bidding — the
practice of using optimization algorithms to generate bids for search queries on behalf of advertisers
— has emerged as a predominant tool in online advertising [ABM19, BG19, BCH+21, GJLM21,
DMMZ21, BDM+21a, BDM+21b, GYC+22]. Unlike manual cost-per-click bidding, which requires
advertisers to manually submit bids for new search queries, auto-bidding needs only high-level
goals and constraints from advertisers. The advertising platform then deploys its auto-bidding
agent, which, using its underlying optimization algorithms, transforms these inputs into fine-
grained bids. Hence, designing an efficient bidding algorithm for advertisers to meet their targets
while respecting their specified constraints constitutes a central problem in online advertising.

We study return-on-spend (RoS) constrained auto-bidding for a single bidder. The RoS constraint
requires the ratio of the bidder’s total value to its total payment to be at least some specified target
ratio. In practice, this captures popular constraints like target cost-per-acquisition (tCPA) and target
return-on-ad-spend (tROAS).1 Our algorithm, though tailored to the RoS constraint, easily adapts

1See Google ads support page and Meta business help center for examples.

99

https://support.google.com/google-ads/answer/2979071?hl=en
https://www.facebook.com/business/help/1619591734742116?id=2196356200683573

to an additional budget constraint on the total payment.

Our setting is stochastic: In each round, a search query and auction are generated i.i.d. from
an unknown distribution, after which the bidder observes the value of the query and submits
a bid. The auction mechanism specifies if the bidder wins and the price. We aim to design an
online bidding algorithm for the bidder to maximize its total value respecting the RoS and budget
constraints.

8.1.1 Our Main Result

We evaluate our algorithm’s performance via regret (Equation (8.2.8)), its expected loss over
instances in reference to the offline optimal solution. Our main result follows.

Theorem 8.1.1 (Informal; see Theorem 8.5.2). We give an algorithm (Algorithm 8.5.2) for value
maximization under RoS and budget constraints, which, for a T-length input i.i.d. sequence of search queries,
provably attains O(

√
T log T) regret while respecting both the budget and RoS constraints.

Our notion of regret differs from that in online learning, which compares the algorithm to the
optimal fixed strategy over all instances. Moreover, our guarantee on the constraints is for each
instance (i.e. worst-case) rather than in expectation. Our result holds for i.i.d. input sequences and
under an additional mild technical assumption on the input distribution (Assumption 8.4.1). To
the best of our knowledge, ours is the first algorithm attaining near-optimal regret satisfying both
budget and RoS constraints in any outcome. In doing so, we improve upon the work of [BLM20],
which obtains similar guarantees under only budget constraints.

8.1.2 Our Main Techniques

Underlying all our algorithms is a primal-dual framework similar to that used by [BLM20]. Such
a framework lets our algorithms adapt to the changing values and prices of input queries while
respecting the advertisers’ specified constraints and goals over the entire time horizon. Specifically,
the dual variable (which tracks the constraint violation) is updated via online mirror descent (OMD)
using the generalized cross-entropy function, which imposes a large (exponential) penalty on total
constraint violation.

An immediate technical challenge in attempting to use generalized cross-entropy as the mirror
map is its lack of strong convexity on the non-negative orthant. While this mirror map appears
in [BLM20] as well, here, the fixed budget constraint bounds the corresponding dual variable
by a constant, which in turn implies the desired strong convexity on the space over which their
algorithm operates. In our case (with the RoS constraint), there exist example inputs on which no such
bound exists, thus necessitating a novel analysis that circumvents the lack of strong convexity.

Our novel insight is as follows. While the low-regret guarantee of OMD with a strongly convex
mirror map holds even when the gradients seen by OMD are adversarial, OMD’s dual updates
in our algorithm produces gradients that are connected to our primal algorithmic decisions (i.e.,
bids); this connection suffices to give our algorithm the low-regret guarantee even without a strongly
convex mirror map. In a white-box adaptation of the OMD analysis tailored to our algorithm, we use
this connection along with properties of the generalized cross-entropy function from the (offline)
positive linear programming literature [AZO14].

Our Algorithmic Outline. To build up to our result, we first obtain a O(
√

T)-regret algorithm
(Algorithm 8.3.1) for value maximization under an approximate RoS constraint, which allows
up to O(

√
T log T) constraint violation; Assumption 8.4.1 is not needed for this result. When

Assumption 8.4.1 holds, a simple modification to Algorithm 8.3.1 yields Algorithm 8.4.1, with a
O(
√

T log T) regret guarantee under a strict RoS constraint (Theorem 8.4.4). We then combine Algo-
rithm 8.3.1 with ideas from [BLM20] to design Algorithm 8.5.1, which attains O(

√
T)-regret under

two constraints: strict budget and approximate RoS. Finally, unifying ideas from Algorithm 8.4.1
and Algorithm 8.5.1 yields our main result.

To turn an algorithm that only approximately satisfies a constraint into one that strictly satisfies it,
we employ a simple strategy: We first submit a sequence of bids that lets us accumulate a slack
on the RoS constraint (at the cost of bidding sub-optimally), followed by the existing algorithm,
which suffers some bounded constraint violation (see Section 8.4). The first phase compensates
for the constraint violation from the subsequent iterations. This allows trading off the violation
on the RoS constraint for the objective value.

8.1.3 Related Work

Our problem falls under the broader umbrella of online optimization under stochastic time-
varying constraints, and it has seen a long line of research by various research communities,
e.g. [MTY09, MJY12, MYJ13, AD14, YNW17, BKS18, ISSS19, YN20, BLM20, CCM+22, GYC+22].

Most of these works study the budget constraint, e.g., [DJSW19] prove the optimal O(
√

T)-regret under
linear objective and constraints, [AD14] generalizes this beyond the linear objective, and [BLM20]
generalizes it to nonlinear budget constraints. The RoS constraint we study is fundamentally
different from these packing-type constraints studied in these works as well as in [BKS18, ISSS19].
There also exist papers that study a variant of our problem with a constraint class more general
than ours (e.g. [AD14, CCM+22]); however, they do not provide guarantees as strong as ours, as
we elaborate next.

For example, [CCM+22] gives a primal-dual framework using regret minimization, which, when
adapted to our bidding problem under the RoS constraint, achieves Õ(T3/4) regret with Õ(T3/4)
constraint violation (both with high probability). Both bounds are polynomially weaker than
our guarantees (that further hold deterministically). Their bounds improve to Õ(T1/2) under a
‘strictly feasible’ assumption, which is essentially our Assumption 8.4.1; in contrast, under that
assumption, we guarantee strict constraint satisfaction (Theorem 8.4.4). Moreover, their algorithm
uses techniques from the multi-armed bandits literature, thus requiring values and bids to be
of finite size nv,nb respectively, and their regret bound scales with nv

√
nb. Our algorithm works

directly with continuous values and bids.

Another example is [AD14], which considers general online optimization with convex constraints.
This work uses black-box low-regret methods that rely on a globally strongly convex regularizer
over the dual space, and a sub-linear regret bound is attainable only when the dual space is
well-bounded (e.g. a scaled simplex) or the dual variable can be projected onto such a space without
incurring too much additional regret. This canonical approach turns out to be difficult for the RoS
constraint, which can incur poor problem-specific parameters in generic guarantees. Hence, this
technique cannot give sub-linear regret for the RoS constraint. To circumvent this issue, we rely
on problem-specific structure rather than globally strongly convex regularization.

Another closely related work is [GJLM21] which investigates the same problem we do but with the
RoS and budget constraints holding only in expectation over the distribution; in contrast, our constraint
guarantees hold for any realization of samples. Though [GJLM21] give an example where bidding
based on the optimal offline (fixed) dual variable cannot achieve sub-linear regret, it does not
contradict our results since our algorithm is adaptive rather than bidding based on fixed offline

optimal dual variables. Our algorithm updates our dual variables based on the previous outcomes,
which takes advantage of stochastic information to balance the objective and constraint violation.

The problem of learning to bid in repeated auctions has been widely studied in both academia and
industry, e.g. [BCI+07, WPR16, FPS18, HZF+20, BFG21, NS21, NCKP22]. These papers mainly
abstract the problem of learning to bid as contextual bandits but do not incorporate constraints
into them. Beyond this, there has been some work on bidding under budget constraints, e.g.,
[BG19, AWL+22], however, these papers focus on utility-maximizing agents with at most one
constraint. [CCBKS22] also considers multiple different constraints in online bidding algorithms,
however, they directly add a regularizer of one non-packing constraint in the objective and apply the
standard dual mirror descent approach to design the algorithms. Their regret bound is measured
against this relaxed objective, whereas, our regret guarantee is relative to the adaptive optimal
benchmark.

Finally, loosely related work includes the AdWords problem [MSVV07, DH09], which manages
budgets for multiple bidders to maximize the seller’s revenue; in contrast, we focus on online
bidding algorithms for a single bidder with RoS and budget constraints.

As a final remark on the novelty of our work, we note that algorithms in this line of research are never
surprising: a gradient-based online optimization blackbox (e.g. OMD) to update dual variables,
with primal variables choosing the best responses. The progress lies largely in analysis techniques
showing if and why such simple methods achieve optimal guarantees in broader settings. For the
budget constraint, [DJSW19] prove the optimal O(

√
T)-regret under linear objective and constraints,

[AD14] generalizes this beyond the linear objective, and [BLM20] generalizes it to nonlinear budget
constraints. Our result is no exception to this trend in generalizing to RoS constraints, which are
fundamentally different from packing-type budget constraints.

Our result is surprising given prior results for the RoS constraint which either use more compli-
cated algorithms for suboptimal guarantees [CCM+22] or switch to an approach of learning the
distribution, which yields only a bound on the expectation of the constraint error [GJLM21]. It is a
bonus that our algorithm continues to remain simple and practical while achieving both optimal
regret and ex-post constraint error bound.

8.2 Preliminaries

We consider an online bidding model for a single learner (auto-bidder): At each time step t, nature
stochastically generates for the learner an ad query associated with a value vt ∈ [0, 1] and an
auction mechanism (xt, pt), where xt : R≥0 7→ [0, 1] is an allocation function and pt : R≥0 7→ [0, 1]
the expected payment rule.2 We assume the following stochastic model: (vt, xt, pt) are drawn
independently and identically (i.i.d.) from an unknown distribution. At each time step t, the value
vt is known to the learner before making a bid, and the learner decides its bid bt given vt and
historical information. At the end of time step t, the learner observes the realized outcome of the
auction mechanism, i.e., xt(bt) and pt(bt).

We focus only on truthful auctions. This requires that the allocation function xt(b) be non-decreasing
with the input bid b and the payment function pt be characterized by [Mye81] as

pt(b) = b · xt(b) −
∫ b

z=0
xt(z)dz. (8.2.1)

2Our algorithm’s regret guarantee depends linearly on the scales of the valuation and payment, and the assumed
bounds on these quantities are for theoretical simplicity.

For instance, the well-known second-price auction for a single item is truthful, and its payment
function satisfies Equation (8.2.1). Note the payment must be zero when the allocation is zero, and
the payment is also at most the bid. This work also assumes vt · xt(bt) to be the realized value of the
learner in each round.

We design online bidding algorithms to maximize the learner’s total realized value subject to an
RoS constraint. Formally, the optimization problem under RoS constraint we study is

maximize
bt:t=1,··· ,T

∑T
t=1 vt · xt(bt)

subject to RoS ·
∑T

t=1 pt(bt) ≤
∑T

t=1 vt · xt(bt),
(8.2.2)

where RoS > 0 is the target ratio of the RoS bidder. Throughout this chapter we assume without
loss of generality3 that RoS = 1. As noted in Section 6.1, our results can be extended to handle
different learner objectives, e.g., a hybrid version between utility maximizing and value maximizing∑T

t=1 vt · xt(bt) − τpt(bt) for some τ ∈ [0, 1].

To simplify notation, we denote the difference between value and price in iteration t as

gt(b) := vt · xt(b) − pt(b), (8.2.3)

and now the RoS constraint in Problem 8.2.2 may be stated as

T∑
t=1

gt(bt) ≥ 0. (8.2.4)

Our algorithm also extends to the bidding problem subject to an additional budget constraint:

maximize
bt:t=1,··· ,T

∑T
t=1 vt · xt(bt)

subject to
∑T

t=1 pt(bt) ≤
∑T

t=1 vt · xt(bt),∑T
t=1 pt(bt) ≤ ρT.

(8.2.5)

where ρT is the budget and ρ > 0 (assumed a fixed constant) is the limit of the average expenditure
over T rounds (ad queries).

To collect notation, we denote the sample (ad query and auction) at time t as a tuple γt = (vt, pt, xt)
and assume γt ∼ P for all t ∈ [T]. We denote the sequence of T samples by −→γ := {γ1, γ2, . . . , γT} ∼ P

T

and sequences of length ℓ , T by −→γℓ where needed.

Analysis setup. We use the notions of regret and constraint violation to measure the performance
of our algorithms. To define the regret, we first define the reward of Alg for a sequence of requests
−→γ over a time horizon T as

Reward(Alg,−→γ) :=
T∑

t=1

vt · xt(bt). (8.2.6)

Next, we define the optimal value in the same setup as for Alg as

Reward(Opt,−→γ) := maximumbt∈B

T∑
t=1

vt · xt(bt), (8.2.7)

3For any RoS , 1, we can scale the values to be vt := RoS · vt.

where B is the exact set of constraints. These definitions lead to the definition of regret of Alg in this
setup as

Regret(Alg,PT) := E−→γ∼PT

[
Reward(Opt,−→γ) − Reward(Alg,−→γ)

]
. (8.2.8)

We remark that we define Reward for some specific input sequence, whereas Regret is defined with
respect to a distribution.

Finally, we use online mirror descent as a technical component in our analysis. In this regard, we
use Vh(y, x) = h(y) − h(x) − h′(x) · (y − x) to denote the Bregman divergence of y in reference to
x, measuring with the distance-generating function (“mirror map”) h. We review online mirror
descent in the supplemental material.

8.3 Approximate RoS Constraint

As noted in Section 8.1.2, we first design and analyze an algorithm for Problem 8.2.2 allowing
for sub-linear violation of the RoS constraint. The main export of this section is this algorithm
(Algorithm 8.3.1) and its guarantee (Theorem 8.3.1).

To explain Algorithm 8.3.1, we first rewrite Problem 8.2.2 as

maximize{bi}

 T∑
i=1

vi · xi(bi) +min
λ≥0

λ ·
T∑

i=1

gi(bi)

 , (8.3.1)

in which
∑T

i=1 gi(bi) ≥ 0 is enforced using the minimization via the dual variable λ that applies an
unbounded penalty for the constraint violation. We update, in each iteration t, the bid bt and the
current best penalizing (dual) variable dual variable λt, described next.

Updating the bid. Based on the formulation in Problem 8.3.1, our algorithm chooses the bid bt as
the maximizer of the penalty-adjusted reward of the current round, with the penalty applied by the
current dual variable λt:

bt = arg max
b≥0

[1 + λt

λt
· vt · xt(b) − pt(b)

]
= vt +

vt

λt
, (8.3.2)

where the final step is because of the auction being truthful.4 The final expression for bt is consistent
with the setting that we first observe only the value vt before making the bid.

Updating the dual variable. To maintain a meaningful dual variable, we relax the penalty on
the constraint violation in Problem 8.3.1 by adding a scaled regularization function h(λ). This
regularizer prevents λ from getting too large:

max{bi}

 T∑
i=1

vi · xi(bi) +min
λ≥0

λ · T∑
i=1

gi(bi) +
h(λ)
α

 , (8.3.3)

where α > 0 is the scaling factor of the regularizer to be set later. At any iteration t, the value of
λt+1 is chosen to be the minimizer of the inner constrained minimization problem (until iteration
i = t). We choose the generalized negative entropy h(u) = u log u − u, which gives the following

4Because it is a truthful auction, we have ∇bxt(b) ≥ 0, which, when used in the definition of bt, gives the claimed final
step.

expression for λt+1.

λt+1 = arg min
λ≥0

[
gt(bt) · λ +

Vh(λ, λt)
α

]
= λ1 · exp

− t∑
i=1

α · gi(bi)

 . (8.3.4)

Through this rule, a net constraint violation (i.e.,
∑t

i=1 gi(bi) ≤ 0) makes the next dual variable (λt+1)
exponential in the net violation, which in turn shrinks the next bid (in Equation (8.3.2)); on the other
hand, an accumulated buffer in the net constraint violation (i.e.,

∑t
i=1 gi(bi) > 0) encourages λt+1 to

be small, allowing the next bid to grow. We formalize this notion in Lemma 13 and now display
Algorithm 8.3.1 and its guarantee, Theorem 8.3.1.

Algorithm 8.3.1 Bidding under an approximate RoS constraint in a truthful auction (i.i.d. inputs).

1: Input: Total time horizon T and requests −→γ from the distribution PT.
2: Initialize: Initial dual variable λ1 = 1 and dual mirror descent step size α = 1

√
T

.
3: for t = 1, 2, · · · ,T do
4: Observe the value vt, and set the bid bt = vt +

vt
λt

.
5: Observe the price pt and allocation xt at bt, and compute gt(bt) = vt · xt(bt) − pt(bt).
6: Update the dual variable as λt+1 = λt exp

[
−α · gt(bt)

]
.

7: end for
8: return The sequence {bt}

T
t=1 of generated bids.

Theorem 8.3.1. With i.i.d. inputs from a distribution P over a time horizon T, Algorithm 8.3.1 guarantees,
for Problem 8.2.2, an RoS constraint violation of at most 2T

√
T log T and a regret bound of

Regret(Algorithm 8.3.1,PT) ≤ O(
√

T). (8.3.5)

The proof of the theorem is an application of our chief technical results Lemma 13 and Lemma 14,
which we sketch next.

8.3.1 Constraint Violation of Algorithm 8.3.1

To conclude that the constraint described by Inequality 8.2.4 is violated by only a small amount
in Algorithm 8.3.1, we observe that when the cumulative violation is (non-trivially) larger than
1/α, the exponential function quickly makes λt huge; in turn, our bid bt = vt +

vt
λt

prevents us from
over-bidding. Formally, we show the following result, later used in Theorem 8.3.1 to obtain the
stated constraint violation bound.

Lemma 13. Consider the sequence {λt}
T
t=1 starting at λ1 = 1 and evolving as λt+1 = λt exp

[
−αgt(bt)

]
where gt(bt) satisfies gt(bt) ≥ − 1

λt
and α = 1

√
T

. Then,

−

T∑
t=1

gt(bt) ≤ 2
√

T log T.

Proof. Equation (8.3.4) implies λt+1 = exp
[
−α

∑t
t′=1 gt′(bt′)

]
. If −

∑T
t=1 gt(bt) ≤

√
T log T, we are done.

If this is not the case, let T′ be the last time that −
∑T′

t=1 gt(bt) ≤
√

T log T, so we know for any t > T′,

the dual variable λt must be larger than T since

λt = λ1 · exp

−α t∑
t′=1

gt′(bt′)

 > exp
[
α
√

T log T
]
= T,

which suggests

−gt(bt) ≤
1
λt
≤

1
T

∀t > T′. (8.3.6)

Finally, using Inequality 8.3.6 to bound the terms after iteration T′ and the fact that there are at
most T such iterations gives

−

T∑
t=1

gt(bt) = −
T′∑

t=1

gt(bt) −
∑
t>T′

gt(bt) ≤
√

T log T + 1 ≤ 2
√

T log T.

□

8.3.2 Regret of Algorithm 8.3.1

As noted in Section 6.1, our RoS constraint differs fundamentally from the well-studied budget
constraint, which is why regret guarantees from the latter (e.g., [BLM20]) do not transfer to our
setting. In the primal-dual framework, the dual variables corresponding to the budget constraint
are naturally upper bounded by a constant, which is critical for sub-linear regret bounds with the
existing analysis framework. Such bounds do not exist in general, which is why efforts to extend
the approach beyond the budget constraint have used much more complicated algorithms (albeit
getting weaker regret guarantees, e.g., [CCM+22]).

Our key insight is to recognize the RoS constraint’s special structures that enable near-optimal
results even with unbounded dual variables in the basic primal-dual method (which has no reason
to perform well on arbitrary constraints). This is captured in Proposition 8.3.3 and Lemma 14.

We first state the following upper bound on the regret whose proof follows the primal-dual
framework of Theorem 1 in [BLM20]; our effort in the remaining section is towards bounding the
right-hand side of this result.

Proposition 8.3.2. With i.i.d. inputs from a distributionP over a time horizon T, the regret of Algorithm 8.3.1
on Problem 8.2.2 is bounded by

Regret(Algorithm 8.3.1,PT) ≤ E−→γ∼PT

∑
t∈[T]

λt · gt(bt)

 ,
where gt and λt are as defined in Line 5 and Line 6 of Algorithm 8.3.1. We note that the bound on the
right-hand side can be negative since Algorithm 8.3.1 does not guarantee

∑T
t=1 gt(bt) ≥ 0, but we do show a

bound on the worst-case constraint violation in Lemma 13.

Bounding the regret then requires bounding
∑T

t=1 λt · gt(bt). We start with the following structural
lemma about the gradient.

Proposition 8.3.3. Let gt be as defined in Equation (8.2.3) and pt be as defined in Equation (8.2.1). Let
bt ≤

1+λt
λt
· vt. Then we have

max(−1/λt,−1) ≤ gt(bt) ≤ vt · xt(bt).

Proof. The non-negativity of vt and xt along with the bound pt(b) ≤ 1 immediately give gt(bt) ≥ −1.
Further, the non-negativity of pt from Equation (8.2.1) gives the upper bound gt(bt) ≤ vt · xt(bt).

Using the expression for pt from Equation (8.2.1), we may write gt(bt) = (vt − bt) · xt(bt) +
∫ b

z=0 xt(z)dz.

The non-negativity of xt implies
∫ b

z=0 xt(z)dz ≥ 0. Finally, applying the stated assumption bt ≤
1+λt
λt
·vt

and vt, xt ≤ 1 gives gt(bt) ≥ − 1
λt

, as claimed. □

Proposition 8.3.3 gives us the following intuition for the main technical component (Lemma 14)
of the regret bound. When gt(bt) = − 1

λt
, it means that the dual can grow at most linearly as seen

by λt+1 = λt exp
[
−αgt(bt)

]
≈ λt + α. On the other hand, a large positive gt(bt) decreases the dual

multiplicatively. This suggests there cannot be too many iterations where both the dual and the
(positive) gradient are large, and Proposition 8.3.2 suggests these are exactly the iterations that
contribute a lot to the regret bound. We capture the above intuition in the following lemma.

Lemma 14. For any input sequence −→γ of length T, running Algorithm 8.3.1 on Problem 8.2.2 generates
sequences {bt}

T
t=1, {gt}

T
t=1 and {λt}

T
t=1 such that for any λ ≥ 0, we have

T∑
t=1

gt(bt) · (λt − λ) ≤
Vh(λ, λ1)

α
+ (1 − λT) +O(

√

T),

where Vh(·, ·) is the Bregman divergence with h(u) = u log u − u.

Proof. We first split gt(bt) · (λt − λ), for any λ ≥ 0, as:

αgt(bt) · (λt − λ) = αgt(bt) · (λt − λt+1) + αgt(bt) · (λt+1 − λ). (8.3.7)

The dual variable update in Algorithm 8.3.1 implies

gt(bt) = α−1 log(λt/λt+1). (8.3.8)

For the mirror map h(u) = u log u−u, the Bregman divergence Vh(y, x) = h(y)− h(x)− h′(x) · (y− x) is

Vh(y, x) = y log
(
y/x

)
− y + x. (8.3.9)

We may then bound Equation (8.3.7) as follows:

αgt(bt) · (λt − λ) − [Vh(λ, λt) − Vh(λ, λt+1)] = αgt(bt) · (λt − λt+1) − Vh(λt+1, λt)

≤ αgt(bt) · (λt − λt+1) −
(λt − λt+1)2

2 max(λt, λt+1)

≤
1
2
α2gt(bt)2

·max(λt, λt+1), (8.3.10)

where the first step is by applying Equation (8.3.9) and Equation (8.3.8) to Equation (8.3.7), the second
step is by the local strong convexity of Vh as shown in [AZO14] (see Lemma 15 for completeness),
and the final step is by Cauchy-Schwarz inequality. We now show that

α
2

gt(bt)2 max(λt, λt+1) ≤ (λt − λt+1) + 2α +
e

2αT
, (8.3.11)

which when plugged into Inequality 8.3.10, summing over t = 1, 2, . . . ,T (and telescoping), and

using the values of λ1 and α from Algorithm 8.3.1 yields the claimed bound. We now prove
Inequality 8.3.11 in a case-wise manner.

C.1 Assume gt(bt) ≥ 0. Then, the inequality gt(bt) ≤ 1 (from Proposition 8.3.3) and our choice of
α = 1

√
T

imply αgt(bt) ≤ 1
√

T
, which in turn implies

λt+1 = λt exp
[
−αgt(bt)

]
≤ λt −

α
2
λt · gt(bt), (8.3.12)

where we used exp(−x) ≤ 1 − x/2 for x ∈ [0, 1.5]. Therefore, we have

α
2

gt(bt)2 max(λt, λt+1) =
α
2

gt(bt)2λt ≤ λt − λt+1, (8.3.13)

where the first step uses λt ≥ λt+1 (since this case assumes gt(bt) ≥ 0), and the second step
uses gt(bt) ≤ 1 (from Proposition 8.3.3) and Inequality 8.3.12.

C.2 Assuming gt(bt) < 0 gives the following bound:

gt(bt)2 max(λt, λt+1) = gt(bt)2λt+1 ≤
1
λt
· λt+1, (8.3.14)

where the first step uses λt+1 ≥ λt (since this case assumes gt(bt) < 0), and the second uses
0 ≥ gt(bt) ≥ max(−1,−1/λt) (in turn from Proposition 8.3.3).

Since gt(bt) ≥ −1 and α = 1
√

T
, we have −αgt(bt) ≤ 1. This implies

λt+1 = λt exp
[
−αgt(bt)

]
≤ eλt. (8.3.15)

Plugging Inequality 8.3.15 back into Inequality 8.3.14 gives

1
2
αgt(bt)2 max(λt, λt+1) ≤

e
2αT

. (8.3.16)

Using −αgt(bt) ≤ 1 again allows us to claim

λt+1 = λt exp
[
−αgt(bt)

]
≤ λt(1 − 2αgt(bt)),

where we used exp(x) ≤ 1 + 2x for x ∈ [0, 1]. Again applying λtgt(bt) ≥ −1 gives

λt+1 − λt ≤ 2α. (8.3.17)

This proves Inequality 8.3.11 and finishes the proof of the lemma. □

Lemma 15 ([AZO14]). The Bregman divergence of the generalized negative entropy satisfies “local strong
convexity”: for any x, y > 0,

Vh(y, x) = y log
(
y/x

)
+ x − y ≥

1
2 max(x, y)

· (y − x)2.

Proof. The claimed inequality is equivalent to

t log t ≥ (t − 1) +
1

2 max(1, t)
· (t − 1)2 (8.3.18)

for t > 0. Suppose t ≥ 1. Then, choosing u = 1 − 1/t, Inequality 8.3.18 is equivalent to − log(1 − u) ≥
u + 1

2 u2, for u ∈ [0, 1), which holds by Taylor series. Suppose 0 < t ≤ 1. Then Inequality 8.3.18 is
equivalent to log t− 1

2

(
t − 1

t

)
≥ 0,which may be checked by observing that the function is decreasing

and equals zero at t = 1. This completes the proof of the claim. □

8.4 Strict RoS Constraint

Having started with an algorithm with non-zero (but bounded) violation of the RoS constraint,
we now describe one strictly obeying it. Our core idea (displayed in Algorithm 8.4.1) is as follows.

Suppose we have an algorithm (say, Alg), which can guarantee an at most vRoS violation of the RoS
constraint on any sequence −→γ of input requests. We start by bidding the true value bt = vt in the
initial iterations t = 1, . . . ,K(−→γ) for some K(−→γ) — we call this sequence of iterations the first phase.
In a truthful auction, this choice of bids guarantees gt(bt) = vt · xt(bt) − pt(bt) ≥ 0 for all t ≤ K(−→γ). In
other words, the bidder builds up a buffer on the RoS constraint. We continue until the cumulative

buffer
∑K(−→γ)

t=1 gt(bt) increases to at least vRoS. Starting at iteration K(−→γ) + 1, we run Alg afresh (i.e.
without accounting for the first phase); recall, this violates the RoS constraint by at most vRoS over
the remaining iterations. We refer to this run of Alg as the second phase. Since the buffer from the
first phase is enough to offset Alg’s violation in the second phase, there is no violation of the RoS
constraint at the end.

Algorithm 8.4.1 Bidding under a strict RoS constraint in a truthful auction (i.i.d. inputs)

1: Input: Total time horizon T and requests −→γ from the data distribution PT.
2: Initialize: Set vRoS = 2

√
T log T and t = 1.

3: while
∑t−1

i=1 gi(bi) ≤ vRoS do ▷ First phase
4: Observe the value vt, and set the bid bt = vt.
5: Observe the price pt and the allocation xt at bt, and compute gt(bt) := vt · xt(bt) − pt(bt).
6: Increment the iteration count t = t + 1.
7: end while
8: Run Algorithm 8.3.1 with time horizon T − t and the remaining T − t requests from −→γ as input.
▷ Second phase

9: return The sequence {bt}
T
t=1 of generated bids from both phases.

8.4.1 Analysis of Algorithm 8.4.1

The high-level idea to guarantee a low regret for Algorithm 8.4.1 is to start with the observation
that the reward collected by Algorithm 8.4.1 for any −→γ in T steps is at least that collected by
Algorithm 8.3.1 in the second phase (i.e., the last T − K(−→γ) steps). The second phase suffers (in
expectation) a regret bounded by the guarantee of Theorem 8.3.1. We then use the i.i.d. assumption
on the input sequence to bound the gap between the expected reward collected by Opt in a sequence
of length T − K(−→γ) to that in a sequence of length T, which naturally depends on the expected
length of K(−→γ); finally, we show this expected length is at most O(

√
T log T) under a mild technical

assumption on the input distribution; this bounds the additional regret accrued over the first phase
and thus completes the analysis.

To formally see this, we need two simple technical tools. First, we make the following assumption
on the distribution P. Our β is similar to the ’strictly feasible’ margin used in the broader literature
(e.g. dg, ρ in [CCM+22]).

Assumption 8.4.1. Define the parameter β of a distribution P as follows

β = Ev,p,x∼P
[
max(0, v · x(v) − p(v)

]
.

We assume in our problem β is an absolute constant bounded away from 0 and independent of T.

The parameter β is the expected amount of buffer we accrue per iteration during the first phase.
The assumption of β being a constant bounded away from 0 captures the more interesting scenarios
of bidding under RoS. For example, when the allocation and price functions of each query arise
from a single-item second-price auction, the essence of the problem becomes how best to spend the
extra slack vt − pt(vt) gained from queries with vt > p(vt). If β is tiny, or in the extreme case of β = 0,
there is nothing to optimize for, and the optimal solution would simply be bt = vt all the time.

Since we need to accrue a buffer of size only O(
√

T log T), and the expected increment of the buffer
is a constant β per iteration, we can show the first phase has O(

√
T log T) iterations in expectation.

Proposition 8.4.2. Under Assumption 8.4.1 for the distribution P, let K(−→γ) be the number of iterations in
the first phase of Algorithm 8.4.1 for some input sequence −→γ . Then, we have

E−→γ∼PT [K(−→γ)] ≤ O(
√

T log T).

We also need the following technical statement on the difference in reward collected by Algo-
rithm 8.3.1 and Opt for various lengths of input sequences.

Proposition 8.4.3. Let −→γℓ ∼ Pℓ and −→γr ∼ P
r be sequences of lengths ℓ and r, respectively, with ℓ ≤ r, of

i.i.d. requests each from a distribution P. Then the following inequality holds.

E−→γℓ∼Pℓ
[
Reward(Algorithm 8.3.1,−→γℓ)

]
≥
ℓ
r
E−→γr∼Pr

[
Reward(Opt,−→γr)

]
−O(

√
r).

The above two results help us bound the regret from the first phase, and we can use Theorem 8.3.1
to bound the regret due to the second phase. Altogether we get the main result below.

Theorem 8.4.4. With i.i.d. inputs from a distribution P over a time horizon T, the regret of Algorithm 8.4.1
on Problem 8.2.2 is, under Assumption 8.4.1, bounded by

Regret(Algorithm 8.4.1,PT) ≤ O(
√

T log T).

Further, there is no violation of the RoS constraint in Problem 8.2.2.

Proof. The claim on constraint violation follows by design of the algorithm: we collect a constraint
violation buffer of at least vRoS before starting the second phase, in which we are guaranteed to
violate the constraint by an additive factor of at most vRoS.

We now prove the claimed regret bound by combining a lower bound on the expected reward and
an upper bound on the expected optimum. To lower bound the algorithm’s reward, we note that it
is at least the reward from the second phase.

Let K(−→γ) be the random variable that represents the last iteration of the first phase, after which we
run Algorithm 8.3.1. In this proof, we use −→γa:b to denote the sequence −→γ from time steps a through
b; when these end points do not matter, we simply denote a length T sequence as −→γ . With this

notation, we have for any sequence −→γ :

Reward(Algorithm 8.4.1,−→γ) ≥
T∑

t=K(−→γ)+1

vt · xt(bt).

Then taking expectations on both sides and using conditional expectations gives

E−→γ∼PT

[
Reward(Algorithm 8.4.1,−→γ)

]
≥ Ek

E−→γ∼PT |K(−→γ)=k

 T∑
t=k+1

vt · xt(bt) | K(−→γ) = k

= Ek

[
E−→γk+1:T∼P

T−k

[
Reward(Algorithm 8.3.1,−→γk+1:T)

]]
≥ Ek

[
T − k

T
· E−→γ∼PT

[
Reward(Opt,−→γ)

]]
−O(

√

T), (8.4.1)

where the third step is due to the requests all being i.i.d. and the fact that we run Algorithm 8.3.1 fresh
in the second phase, and the fourth step is by Proposition 8.4.3. Finally, plugging Inequality 8.4.1
into the definition of Regret from Equation (8.2.8) and simplifying:

Regret(Algorithm 8.4.1,PT) ≤ E−→γ∼PT

[
K(−→γ)

]
·

E−→γ∼PT

[
Reward(Opt,−→γ)

]
T

+O(
√

T)

≤ E−→γ∼PT

[
K(−→γ)

]
+O(

√

T) = O(
√

T log T),

where the third step uses Reward(Opt,−→γ) ≤ T, and the last step uses Proposition 8.4.2 and that β is
a constant (Assumption 8.4.1). □

Despite the two-phased structure of the algorithm, the used vRoS can be pessimistic and make us
run the first phase unnecessarily longer. A more practical implementation can break the first phase
into smaller chunks and intermingle them with the execution of Algorithm 8.3.1 on demand. That
is, whenever we are about to violate the RoS constraint in Algorithm 8.3.1, we put it on hold and bid
exactly vt for some iterations until we build up a certain amount of buffer and resume Algorithm 8.3.1,
where these special iterations are ignored (i.e., won’t affect the dual variable updates). Intuitively
this can perform better than Algorithm 8.4.1, although without a rigorous regret guarantee.

8.5 RoS and Budget Constraints

In this section, we combine our techniques from Section 8.3 and Section 8.4 with those of [BLM20]
to obtain algorithms that satisfy both the RoS and budget constraints (i.e., Problem 8.2.5).

8.5.1 Approximate RoS and Strict Budget Constraints

We start with a bidding algorithm that satisfies the budget constraint exactly and the RoS constraint
up to some small violation in the worst case. Similar to the bidding rule in Equation (8.3.2), the
candidate bid for this algorithm is the one maximizing the price-adjusted reward, with one dual
variable for each constraint:

bt = arg max
b≥0

{
vt · xt(b) + λt · (vt · xt(b) − pt(b)) − µt · pt(b)

}
=

1 + λt

µt + λt
· vt, (8.5.1)

where the final equation holds by the definition of a truthful auction. Since the budget constraint is
strict, the candidate bid given by Equation (8.5.1) is used as the final bid in this iteration only if we are
not close to exhausting the total budget, as formalized in Line 4 of Algorithm 8.5.1. Similar to Algo-
rithm 8.3.1, the Lagrange multipliers λt and µt enforce the RoS and budget constraints respectively.

Algorithm 8.5.1 Bidding under an approximate RoS and a strict budget constraint in a truthful
auction (i.i.d. inputs)

1: Input: Total time horizon T, requests −→γ i.i.d. from the distribution PT, total budget ρT.
2: Initialize: Initial dual variable λ1 = 1, µ1 = 0, total initial budget B1 := ρT, dual mirror descent

step size α = 1
√

T
and η = 1

(1+ρ2)
√

T
.

3: for t = 1, 2, · · · ,T do
4: Observe the value vt, and set the bid

bt =

{ 1+λt
µt+λt

· vt if Bt ≥ 1
0 otherwise

.

5: Compute gt(bt) = vt · xt(bt) − pt(bt).
6: Update the dual variable of the RoS constraint λt+1 = λt exp

[
−α · gt(bt)

]
.

7: Compute g′t(bt) = ρ − pt(bt).
8: Update the dual variable of the budget constraint as µt+1 := Projµ≥0(µt − η · g′t(bt)).
9: Update the leftover budget Bt+1 = Bt − pt(bt).

10: end for
11: return The sequence {bt}

T
t=1 of bids.

Algorithm 8.5.1 may be interpreted as combining our Algorithm 8.3.1 with Algorithm 1 of [BLM20].
The analysis of the regret bound also follows the outline of the main proof of [BLM20], integrating
it with our regret bound for Algorithm 8.3.1 from Theorem 8.3.1. Intuitively the integration is
straightforward since the analyses of both methods are linear in nature, allowing us to easily
decompose the intermediate regret bound from the primal-dual framework into two components
corresponding to the two constraints. We then bound them with the tools from earlier sections to
handle the RoS constraint and those from [BLM20] for the budget constraint.

As for the constraint violation guarantees, the budget constraint is always satisfied by design, and the
RoS violation bound follows from a simple corollary of Lemma 13, which applies here since the extra
budget constraint makes our bid only more conservative than that of Algorithm 8.3.1. We formally
collect and state these results in Theorem 8.5.1, deferring the proof to the supplemental material.

Theorem 8.5.1. With i.i.d. inputs from a distribution P over a time horizon T, the regret of Algorithm 8.5.1
on Problem 8.2.5 is bounded by

Regret(Algorithm 8.5.1,PT) ≤ O(
√

T).

Further, Algorithm 8.5.1 incurs a violation of at most O(
√

T log T) of the RoS constraint and no violation of
the budget constraint.

8.5.2 Strict RoS and Strict Budget Constraints

In the case when we impose both strict RoS and strict budget constraints, we essentially combine the
key ideas from Algorithm 8.4.1 and Algorithm 8.5.1: We keep bidding the value until we accumulate

a sufficient buffer on the RoS constraint; following this phase, we run Algorithm 8.5.1, which, as
explained in the preceding section, imposes strict budget and approximate RoS constraints.

Algorithm 8.5.2 Bidding under a strict RoS and a strict budget constraint in a truthful auction (i.i.d.
inputs)

1: Input: Total time horizon T, requests −→γ i.i.d. from the distribution PT, total budget ρT.
2: Initialize: Set the initial buffer g0(b0) = 0, vRoS = 2

√
T log T, initial total budget B1 = ρT, and

iteration t = 1.
3: while

∑t−1
i=0 gi(bi) ≤ vRoS do ▷ First phase

4: Observe the value vt, and set the bid bt = vt.
5: Observe the price pt and the allocation xt at bt, and compute gt(bt) := vt · xt(bt) − pt(bt).
6: Update the total budget to Bt+1 = Bt − pt(bt).
7: Increment the iteration count t = t + 1.
8: if t ≥ ρT then
9: Exit algorithm.

10: end if
11: end while
12: Run Algorithm 8.5.1 with time horizon T − t and the remaining T − t requests from −→γ as input

and initial total budget Bt. ▷ Second phase
13: return The sequence {bt}

T
t=1 of generated bids.

Similar to Algorithm 8.4.1, the RoS constraint is not violated; the budget constraint is also respected
via Line 8. The regret analysis follows a strategy similar to that of the proofs of Theorem 8.5.1 and
Theorem 8.4.4. Our main result of this section follows, with its proof in Section G.2.

Theorem 8.5.2. With i.i.d. inputs from a distribution P over a time horizon T, the regret of Algorithm 8.5.2
on Problem 8.2.5 is, under Assumption 8.4.1, bounded by

Regret(Algorithm 8.5.2,PT) ≤ O(
√

T log T).

Further, Algorithm 8.5.2 suffers no constraint violation of either the RoS or budget constraint.

8.6 Conclusion

We design algorithms for the online bidding problem under budget and Return-on-Spend constraints,
a problem of tremendous practical importance in online advertising. In particular, we achieve
O(
√

T) average regret compared to the offline optimal solution in the stochastic i.i.d. model and
up to O(

√
T log T) violation on the RoS constraint in any outcome; under a mild assumption on the

distribution, this result can be further improved to guarantee no constraint violation. Our algorithm
is simple and easily implementable using the existing pacing controller [CKP+22, CKSSM22].

Our key novelty lies in the insight that when a low-regret learning dynamic is employed in the setting
of designing primal-dual online algorithms, the gradients encountered during the dual updates
may depend on the choices of the primal side of the algorithm (rather than being fully adversarial
as in online learning). Our result is an example where one can exploit problem-specific structures
to come up with tailored low-regret methods and achieve qualitatively stronger guarantees than
those given by generic black-box methods. As low-regret methods have become workhorses in
designing online constrained optimization algorithms, we are optimistic that this high-level idea
may be broadly applicable.

Bibliography

[AB15] Alekh Agarwal and Leon Bottou. A lower bound for the optimization of finite sums.
In International conference on machine learning, pages 78–86. PMLR, 2015. 4.1

[ABH15] Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the
stochastic block model. IEEE Transactions on Information Theory, 62(1):471–487, 2015.
1.1, 2.1

[ABM19] Gagan Aggarwal, Ashwinkumar Badanidiyuru, and Aranyak Mehta. Autobidding
with constraints. In International Conference on Web and Internet Economics, pages
17–30. Springer, 2019. 8.1

[AD14] Shipra Agrawal and Nikhil R Devanur. Fast algorithms for online stochastic convex
programming. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on
Discrete algorithms, pages 1405–1424. SIAM, 2014. 8.1.3

[AH53] Hoffman AJ and Wielandt HW. The variation of the spectrum of a normal matrix.
Duke Mathematical Journal, 20(1):37, 1953. B.1.2

[AHK05] Sanjeev Arora, Elad Hazan, and Satyen Kale. Fast algorithms for approximate
semidefinite programming using the multiplicative weights update method. In 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pages 339–348.
IEEE, 2005. 2.1.1

[AHR08] Jacob Abernethy, Elad E Hazan, and Alexander Rakhlin. Competing in the dark:
An efficient algorithm for bandit linear optimization. In 21st Annual Conference on
Learning Theory, COLT 2008, 2008. 7.1.3

[AJRV20] Pranjal Awasthi, Himanshu Jain, Ankit Singh Rawat, and Aravindan Vijayaraghavan.
Adversarial robustness via robust low rank representations. CoRR, abs/2007.06555,
2020. 1.1, 2.1

[AK07] Sanjeev Arora and Satyen Kale. A combinatorial, primal-dual approach to semidef-
inite programs. In Proceedings of the 39th Annual ACM Symposium on Theory of
Computing (STOC), 2007. 1.1, 2.1, 2.1, 2.1, 2.1.1, 2.1.1, 2.2, 2.2, 3.1.2, A.3.1, A.3.1

[AKM+21] Kyriakos Axiotis, Adam Karczmarz, Anish Mukherjee, Piotr Sankowski, and Adrian
Vladu. Decomposable submodular function minimization via maximum flow. In
International Conference on Machine Learning, pages 446–456. PMLR, 2021. 4.1.1

[ALO16a] Zeyuan Allen Zhu, Yin Tat Lee, and Lorenzo Orecchia. Using optimization to obtain
a width-independent, parallel, simpler, and faster positive SDP solver. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 1824–1831, 2016. 2.1.1

114

[ALO16b] Zeyuan Allen Zhu, Yin Tat Lee, and Lorenzo Orecchia. Using optimization to obtain
a width-independent, parallel, simpler, and faster positive SDP solver. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms(SODA),
pages 1824–1831. https://arxiv.org/pdf/1507.02259.pdf, 2016. 3.1.2, B.1.1

[Ans00] Kurt M Anstreicher. The volumetric barrier for semidefinite programming. Mathe-
matics of Operations Research, 25(3):365–380, 2000. 1.1, 3.1, 3.1.1, 3.1, 3.2, 3.2

[AO15] Zeyuan Allen-Zhu and Lorenzo Orecchia. Using optimization to break the epsilon
barrier: A faster and simpler width-independent algorithm for solving positive
linear programs in parallel. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’15, 2015. 2.2.2

[AR04] Anders H Andersen and William S Rayens. Structure-seeking multilinear methods
for the analysis of fmri data. NeuroImage, 22(2):728–739, 2004. 1.3, 6.1

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric em-
beddings and graph partitioning. Journal of the ACM (JACM), 56(2):1–37, 2009. 1.1,
3.1

[AV95] David S Atkinson and Pravin M Vaidya. A cutting plane algorithm for convex
programming that uses analytic centers. Mathematical Programming, 69(1-3):1–43,
1995. 3.1.2

[AWL+22] Rui Ai, Chang Wang, Chenchen Li, Jinshan Zhang, Wenhan Huang, and Xiaotie
Deng. No-regret learning in repeated first-price auctions with budget constraints,
2022. 8.1.3

[AZ17] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient
methods. The Journal of Machine Learning Research, 18(1):8194–8244, 2017. 4.1, 4.1, 4.1,
4.1.2

[AZ18] Zeyuan Allen-Zhu. How to make the gradients small stochastically: Even faster
convex and nonconvex sgd. Advances in Neural Information Processing Systems, 31,
2018. 5.1

[AZL17a] Zeyuan Allen-Zhu and Yuanzhi Li. Follow the compressed leader: faster online
learning of eigenvectors and faster mmwu. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 116–125, 2017. 2.1, 2.1.1, 2.1.1

[AZL17b] Zeyuan Allen-Zhu and Yuanzhi Li. Follow the compressed leader: faster online
learning of eigenvectors and faster mmwu. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 116–125, 2017. 3.1.2

[AZLSW17] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal design
of experiments via regret minimization. In Proceedings of the 34th International
Conference on Machine Learning, 2017. 7.1.3

[AZO14] Zeyuan Allen-Zhu and Lorenzo Orecchia. Using optimization to break the epsilon
barrier: A faster and simpler width-independent algorithm for solving positive
linear programs in parallel. In Proceedings of the twenty-sixth annual ACM-SIAM
symposium on Discrete algorithms, pages 1439–1456. SIAM, 2014. 8.1.2, 8.3.2, 15

https://arxiv.org/pdf/1507.02259.pdf

[AZO19] Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly linear-time packing and covering
lp solvers. Mathematical Programming, 175(1):307–353, 2019. 6.1, 6.1, 6.2

[AZQRY16] Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik, and Yang Yuan. Even faster accelerated
coordinate descent using non-uniform sampling. In International Conference on Machine
Learning, pages 1110–1119. PMLR, 2016. 6.1

[AZY16] Zeyuan Allen-Zhu and Yang Yuan. Improved svrg for non-strongly-convex or
sum-of-non-convex objectives. In International conference on machine learning, pages
1080–1089. PMLR, 2016. 1.2, 4.1

[B+15] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015. A.2.2, A.4.6

[Bac22] Francis Bach. Sum-of-squares relaxations for information theory and variational
inference. arXiv preprint arXiv:2206.13285, 2022. 1.1

[Ban19] Nikhil Bansal. On a generalization of iterated and randomized rounding. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 1125–1135. https://arxiv.org/pdf/1811.01597.pdf, 2019. 1.1, 3.1

[BB88] Jonathan Barzilai and Jonathan M Borwein. Two-point step size gradient methods.
IMA journal of numerical analysis, 8(1):141–148, 1988. 6.1

[BBL+07] Michael W Berry, Murray Browne, Amy N Langville, V Paul Pauca, and Robert J
Plemmons. Algorithms and applications for approximate nonnegative matrix
factorization. Computational statistics & data analysis, 52(1):155–173, 2007. 1.3, 6.1

[BBN13] Michel Baes, Michael Bürgisser, and Arkadi Nemirovski. A randomized mirror-prox
method for solving structured large-scale matrix saddle-point problems. SIAM
Journal on Optimization, 23(2):934–962, 2013. 1.1, 2.1.1

[BBV04] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004. 4.2.1, 4.2.3

[BC03] Léon Bottou and Yann Cun. Large scale online learning. Advances in neural information
processing systems, 16, 2003. 1.2, 4.1

[BCH+21] Moshe Babaioff, Richard Cole, Jason Hartline, Nicole Immorlica, and Brendan Lucier.
Non-quasi-linear agents in quasi-linear mechanisms. In 12th Innovations in Theoretical
Computer Science Conference (ITCS 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021. 8.1

[BCI+07] Christian Borgs, Jennifer Chayes, Nicole Immorlica, Kamal Jain, Omid Etesami,
and Mohammad Mahdian. Dynamics of bid optimization in online advertisement
auctions. In Proceedings of the 16th international conference on World Wide Web, pages
531–540, 2007. 8.1.3

[BCL+20] James V Burke, Frank E Curtis, Adrian S Lewis, Michael L Overton, and Lucas EA
Simões. Gradient sampling methods for nonsmooth optimization. In Numerical
Nonsmooth Optimization, pages 201–225. Springer, 2020. 5.1.1, 5.2

https://arxiv.org/pdf/1811.01597.pdf

[BCS97] Peter Bürgisser, Michael Clausen, and Mohammad A Shokrollahi. Algebraic complexity
theory, volume 315. Springer Science & Business Media, 1997. B.2.3

[BCSZ14] Afonso S Bandeira, Moses Charikar, Amit Singer, and Andy Zhu. Multireference
alignment using semidefinite programming. In Proceedings of the 5th conference on
Innovations in theoretical computer science, pages 459–470, 2014. 1.1, 2.1

[BDG16] Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm for komlós
conjecture matching banaszczyk. In 57th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 788–799. https://arxiv.org/pdf/1605.02882.pdf,
2016. 1.1, 3.1

[BDM+20] Vladimir Braverman, Petros Drineas, Cameron Musco, Christopher Musco, Jalaj
Upadhyay, David P Woodruff, and Samson Zhou. Near optimal linear algebra in
the online and sliding window models. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), 2020. 1.3, 7.1.3

[BDM+21a] Santiago Balseiro, Yuan Deng, Jieming Mao, Vahab Mirrokni, and Song Zuo. Robust
auction design in the auto-bidding world. Advances in Neural Information Processing
Systems, 34:17777–17788, 2021. 8.1

[BDM+21b] Santiago R Balseiro, Yuan Deng, Jieming Mao, Vahab S Mirrokni, and Song Zuo.
The landscape of auto-bidding auctions: Value versus utility maximization. In
Proceedings of the 22nd ACM Conference on Economics and Computation, pages 132–133,
2021. 8.1

[BE15] Sébastien Bubeck and Ronen Eldan. The entropic barrier: a simple and optimal
universal self-concordant barrier. In Conference on Learning Theory, 2015. 5, 9, 4.4.1,
4.4.2, 7.1.3

[BEGFB94] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
Linear matrix inequalities in system and control theory. SIAM, 1994. 1.1

[Ber73] Dimitri P Bertsekas. Stochastic optimization problems with nondifferentiable cost
functionals. Journal of Optimization Theory and Applications, 12(2):218–231, 1973. 5.1.1

[BEZ08] Alfred M Bruckstein, Michael Elad, and Michael Zibulevsky. On the uniqueness
of nonnegative sparse solutions to underdetermined systems of equations. IEEE
Transactions on Information Theory, 54(11):4813–4820, 2008. 6.1

[BFG21] Ashwinkumar Badanidiyuru, Zhe Feng, and Guru Guruganesh. Learning to bid in
contextual first price auctions. CoRR, abs/2109.03173, 2021. 8.1.3

[BG17] Nikhil Bansal and Shashwat Garg. Algorithmic discrepancy beyond partial coloring.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), pages 914–926. https://arxiv.org/pdf/1611.01805.pdf, 2017. 1.1, 3.1

[BG19] Santiago R Balseiro and Yonatan Gur. Learning in repeated auctions with budgets:
Regret minimization and equilibrium. Management Science, 65(9):3952–3968, 2019.
8.1, 8.1.3

https://arxiv.org/pdf/1605.02882.pdf
https://arxiv.org/pdf/1611.01805.pdf

[BGJR88] Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An
application of combinatorial optimization to statistical physics and circuit layout
design. Operations Research, 36(3):493–513, 1988. 1.1, 2.1

[BGVV14] Silouanos Brazitikos, Apostolos Giannopoulos, Petros Valettas, and Beatrice-Helen
Vritsiou. Geometry of isotropic convex bodies, volume 196. American Mathematical
Soc., 2014. 4.5.4

[BHS05] Michel Benaïm, Josef Hofbauer, and Sylvain Sorin. Stochastic approximations and
differential inclusions. SIAM Journal on Control and Optimization, 44(1):328–348, 2005.
1.2, 5.1

[BJ97] Rasmus Bro and Sijmen Jong. A fast non-negativity-constrained least squares
algorithm. Journal of Chemometrics, 11:393–401, 09 1997. 1.3, 6.1, 6.1

[BKL+20] Sébastien Bubeck, Bo’az Klartag, Yin Tat Lee, Yuanzhi Li, and Mark Sellke. Chasing
nested convex bodies nearly optimally. In Proceedings of the Thirty-First Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1496–1508, 2020. 4.2.9

[BKS18] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits
with knapsacks. Journal of the ACM (JACM), 65(3):1–55, 2018. 8.1.3

[Blä13] Markus Bläser. Fast matrix multiplication. Theory of Computing, pages 1–60, 2013.
B.2.3

[BLM20] Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. Dual mirror descent for online
allocation problems. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 613–628. PMLR, 13–18 Jul 2020. 8.1.1, 8.1.2, 8.1.2, 8.1.3, 8.3.2,
8.5, 8.5.1

[BLO02] J.V. Burke, A.S. Lewis, and M.L. Overton. Approximating subdifferentials by random
sampling of gradients. Mathematics of Operations Research, 27(3):567–584, 2002. 5.1

[BLO05] James V Burke, Adrian S Lewis, and Michael L Overton. A robust gradient sampling
algorithm for nonsmooth, nonconvex optimization. SIAM Journal on Optimization,
15(3):751–779, 2005. 5.2

[BLSS20] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense
linear programs in nearly linear time. In 52nd Annual ACM SIGACT Symposium on
Theory of Computing (STOC). https://arxiv.org/pdf/2002.02304.pdf, 2020. 3.1.2,
3.3.1, 3.3.1, 3.3.1

[BM20] Sébastien Bubeck and Dan Mikulincer. How to trap a gradient flow. In Conference on
Learning Theory, pages 940–960. PMLR, 2020. 5.1.1

[Bot12] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade,
pages 421–436. Springer, 2012. 1.2, 4.1

[BP20] Jerome Bolte and Edouard Pauwels. A mathematical model for automatic differenti-
ation in machine learning. arXiv preprint arXiv:2006.02080, 2020. 5.1.1

https://arxiv.org/pdf/2002.02304.pdf

[BP21] Jérôme Bolte and Edouard Pauwels. Conservative set valued fields, automatic differ-
entiation, stochastic gradient methods and deep learning. Mathematical Programming,
188(1):19–51, 2021. 1.2, 5.1, 5.1.1

[Bra20] Jan van den Brand. A deterministic linear program solver in current matrix
multiplication time. In ACM-SIAM Symposium on Discrete Algorithms (SODA).
https://arxiv.org/pdf/1910.11957.pdf, 2020. 3.1.2

[BT09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009. 6.5

[BV02] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random
walks. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing
(STOC), pages 109–115. ACM, 2002. 3.1.2, 4.1

[BV04a] Dimitris Bertsimas and Santosh S. Vempala. Solving convex programs by random
walks. J. ACM, 51(4):540–556, 2004. 5.3.6

[BV04b] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, New York, NY, USA, 2004. 7.1, A.4.1

[C+47] Augustin Cauchy et al. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847. 4.1

[CCBKS22] Andrea Celli, Riccardo Colini-Baldeschi, Christian Kroer, and Eric Sodomka. The
parity ray regularizer for pacing in auction markets. In Proceedings of the ACM Web
Conference 2022, WWW ’22, page 162–172, New York, NY, USA, 2022. Association for
Computing Machinery. 8.1.3

[CCDS20] Rachit Chhaya, Jayesh Choudhari, Anirban Dasgupta, and Supratim Shit. Streaming
coresets for symmetric tensor factorization. In International Conference on Machine
Learning, 2020. 1.3, 7.1.3

[CCLY19] Michael B. Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. A near-optimal algorithm
for approximating the john ellipsoid. In Proceedings of the Thirty-Second Conference on
Learning Theory, 2019. 7.1.3

[CCM+22] Matteo Castiglioni, Andrea Celli, Alberto Marchesi, Giulia Romano, and Nicola
Gatti. A unifying framework for online optimization with long-term constraints.
arXiv preprint arXiv:2209.07454, 2022. 8.1.3, 8.3.2, 8.4.1

[CDG19] Yu Cheng, Ilias Diakonikolas, and Rong Ge. High-dimensional robust mean
estimation in nearly-linear time. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2755–2771. SIAM, https:
//arxiv.org/pdf/1811.09380.pdf, 2019. 1.1, 3.1

[CDGW19] Yu Cheng, Ilias Diakonikolas, Rong Ge, and David Woodruff. Faster algorithms for
high-dimensional robust covariance estimation. In Conference on Learning Theory
(COLT). https://arxiv.org/pdf/1906.04661.pdf, 2019. 1.1, 3.1

[CDHS18] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Accelerated methods
for nonconvex optimization. SIAM Journal on Optimization, 28(2):1751–1772, 2018. 5.1

https://arxiv.org/pdf/1910.11957.pdf
https://arxiv.org/pdf/1811.09380.pdf
https://arxiv.org/pdf/1811.09380.pdf
https://arxiv.org/pdf/1906.04661.pdf

[CDHS20] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for
finding stationary points i. Mathematical Programming, 184(1):71–120, 2020. 5.1.1

[CDST19a] Yair Carmon, John C. Duchi, Aaron Sidford, and Kevin Tian. A rank-1 sketch for
matrix multiplicative weights. In Conference on Learning Theory, COLT 2019, 25-28
June 2019, Phoenix, AZ, USA, pages 589–623, 2019. 1.1, 2.1.1, A.1.2

[CDST19b] Yair Carmon, John C. Duchi, Aaron Sidford, and Kevin Tian. A rank-1 sketch for
matrix multiplicative weights. In Conference on Learning Theory, COLT 2019, 25-28
June 2019, Phoenix, AZ, USA, pages 589–623, 2019. 3.1.2

[CG18] Yu Cheng and Rong Ge. Non-convex matrix completion against a semi-random
adversary. In Conference On Learning Theory (COLT), pages 1362–1394. https:
//arxiv.org/pdf/1803.10846.pdf, 2018. 1.1, 3.1

[Che21] Sinho Chewi. The entropic barrier is n-self-concordant. arXiv preprint
arXiv:2112.10947, 2021. 5, 4.4.1, 4.4.3

[CKC83] Ruen-Wu Chen, Yoji Kajitani, and Shu-Park Chan. A graph-theoretic via minimization
algorithm for two-layer printed circuit boards. IEEE Transactions on Circuits and
Systems, 30(5):284–299, 1983. 1.1, 2.1

[CKP+22] Vincent Conitzer, Christian Kroer, Debmalya Panigrahi, Okke Schrijvers, Nicolas E
Stier-Moses, Eric Sodomka, and Christopher A Wilkens. Pacing equilibrium in first
price auction markets. Management Science, 2022. 8.6

[CKSSM22] Vincent Conitzer, Christian Kroer, Eric Sodomka, and Nicolas E Stier-Moses. Mul-
tiplicative pacing equilibria in auction markets. Operations Research, 70(2):963–989,
2022. 8.6

[CL11a] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm. 1.2, 4.1

[CL11b] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.
ACM transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011. 6.5

[Cla90] Frank H Clarke. Optimization and nonsmooth analysis. SIAM, 1990. 5.1

[CLM+15a] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng,
and Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science, pages 181–190, 2015.
1.3

[CLM+15b] Michael B. Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard
Peng, and Aaron Sidford. Uniform sampling for matrix approximation. In Tim
Roughgarden, editor, Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015. ACM, 2015. 7.1.3

[CLS19] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. In Proceedings of the 51st Annual ACM Symposium on
Theory of Computing (STOC). https://arxiv.org/pdf/1810.07896.pdf, 2019. 3.1.2,
3.3.1, 3.3.1

https://arxiv.org/pdf/1803.10846.pdf
https://arxiv.org/pdf/1803.10846.pdf
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://arxiv.org/pdf/1810.07896.pdf

[CMO23] Ashok Cutkosky, Harsh Mehta, and Francesco Orabona. Optimal stochastic non-
smooth non-convex optimization through online-to-non-convex conversion. arXiv
preprint arXiv:2302.03775, 2023. 5.2.1

[CP15] Michael B. Cohen and Richard Peng. Lp row sampling by lewis weights. In
Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC
’15. Association for Computing Machinery, 2015. 1.3, 7.1.1, 7.1, 7.1, 7.1, 7.1, 7.1, 7.1.1,
5, 7.1, 7.1.2, 7.1.3, F.4

[CPRT22] Flavio Chierichetti, Alessandro Panconesi, Giuseppe Re, and Luca Trevisan. Spectral
robustness for correlation clustering reconstruction in semi-adversarial models. In
AISTATS, 2022. 1.1

[CRT06] E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on
Information Theory, 52(2):489–509, 2006. 1.2

[CZPA09] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi Amari. Nonnegative
matrix and tensor factorizations: applications to exploratory multi-way data analysis and
blind source separation. John Wiley & Sons, 2009. 1.3, 6.1

[Dan47] George B Dantzig. Maximization of a linear function of variables subject to linear
inequalities. Activity analysis of production and allocation, 13:339–347, 1947. 3.1.2

[DAST08] S Damla Ahipasaoglu, Peng Sun, and Michael J Todd. Linear convergence of
a modified frank–wolfe algorithm for computing minimum-volume enclosing
ellipsoids. Optimisation Methods and Software, 23(1), 2008. 7.1.3

[DBLJ14a] A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2014. 2.1

[DBLJ14b] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gra-
dient method with support for non-strongly convex composite objectives. Advances
in neural information processing systems, 27, 2014. 1.2, 4.1

[DBW12] John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing
for stochastic optimization. SIAM Journal on Optimization, 22(2):674–701, 2012. 5.1.1

[DD19] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of
weakly convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019. 5.1,
5.2.1

[DDKL20] Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic
subgradient method converges on tame functions. Foundations of computational
mathematics, 20(1):119–154, 2020. 1.2, 5.1

[DDL+22] Damek Davis, Dmitriy Drusvyatskiy, Yin Tat Lee, Swati Padmanabhan, and Guang-
hao Ye. A gradient sampling method with complexity guarantees for lipschitz
functions in high and low dimensions. In Advances in Neural Information Processing
Systems, 2022. 1.2

[DDM21] Monica Dessole, Marco Dell’Orto, and Fabio Marcuzzi. The lawson-hanson algorithm
with deviation maximization: Finite convergence and sparse recovery. arXiv preprint
arXiv:2108.05345, 2021. 6.1

[DDMP18] Damek Davis, Dmitriy Drusvyatskiy, Kellie J MacPhee, and Courtney Paquette.
Subgradient methods for sharp weakly convex functions. Journal of Optimization
Theory and Applications, 179(3):962–982, 2018. 5.1

[DFO20a] Jelena Diakonikolas, Maryam Fazel, and Lorenzo Orecchia. Fair packing and
covering on a relative scale. SIAM Journal on Optimization, 30(4):3284–3314, 2020. 6.1,
6.1, 6.2

[DFO20b] Jelena Diakonikolas, Maryam Fazel, and Lorenzo Orecchia. Fair packing and
covering on a relative scale. SIAM J. Optim., 30(4), 2020. 7.1.3

[DH09] Nikhil R Devanur and Thomas P Hayes. The adwords problem: online keyword
matching with budgeted bidders under random permutations. In Proceedings of the
10th ACM conference on Electronic commerce, pages 71–78, 2009. 8.1.3

[DJL+22] Sally Dong, Haotian Jiang, Yin Tat Lee, Swati Padmanabhan, and Guanghao Ye.
Decomposable non-smooth convex optimization with nearly-linear gradient oracle
complexity. In Advances in Neural Information Processing Systems, 2022. 1.2

[DJSW19] Nikhil R. Devanur, Kamal Jain, Balasubramanian Sivan, and Christopher A. Wilkens.
Near optimal online algorithms and fast approximation algorithms for resource
allocation problems. J. ACM, 66(1), 2019. 8.1.3

[DLPS22] Jelena Diakonikolas, Chenghui Li, Swati Padmanabhan, and Chaobing Song. A fast
scale-invariant algorithm for non-negative least squares with non-negative data. In
Advances in Neural Information Processing Systems, 2022. 1.3

[DLS18] David Durfee, Kevin A Lai, and Saurabh Sawlani. \ell_1 regression using lewis
weights preconditioning and stochastic gradient descent. In Conference On Learning
Theory, 2018. 1.3, 7.1.3

[DLY21] Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear
programs with small treewidth: a multiscale representation of robust central path.
In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pages 1784–1797, 2021. 4.1

[DMIMW12] Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff.
Fast approximation of matrix coherence and statistical leverage. The Journal of
Machine Learning Research, 13(1), 2012. 1.3, 7.1.3

[DMM06] Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. Sampling algorithms
for l 2 regression and applications. In Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, 2006. 1.3, 7.1, 7.1.3

[DMMZ21] Yuan Deng, Jieming Mao, Vahab Mirrokni, and Song Zuo. Towards efficient auctions
in an auto-bidding world. In Proceedings of the Web Conference 2021, pages 3965–3973,
2021. 8.1

[DO18] Jelena Diakonikolas and Lorenzo Orecchia. Alternating randomized block coordinate
descent. In International Conference on Machine Learning, pages 1224–1232. PMLR,
2018. 6.1

[DO19] Jelena Diakonikolas and Lorenzo Orecchia. The approximate duality gap technique:
A unified theory of first-order methods. SIAM Journal on Optimization, 29(1):660–689,
2019. 6.1, 6.3

[Eld13] Ronen Eldan. Thin shell implies spectral gap up to polylog via a stochastic localization
scheme. Geometric and Functional Analysis, 23(2):532–569, 2013. B.1.1

[FGKS15] Roy Frostig, Rong Ge, Sham Kakade, and Aaron Sidford. Un-regularizing: approxi-
mate proximal point and faster stochastic algorithms for empirical risk minimization.
In International Conference on Machine Learning, pages 2540–2548. PMLR, 2015. 4.1

[FHB04] M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system
theory. In Proceedings of the 2004 American Control Conference, 2004. 1.1, 2.1

[FJPZ13] Alexander Fix, Thorsten Joachims, Sung Min Park, and Ramin Zabih. Structured
learning of sum-of-submodular higher order energy functions. In Proceedings of the
IEEE International Conference on Computer Vision, pages 3104–3111, 2013. 1.2, 4.1

[FK14] Simon Foucart and David Koslicki. Sparse recovery by means of nonnegative least
squares. IEEE Signal Processing Letters, 21(4):498–502, 2014. 6.1

[FKM04] Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online
convex optimization in the bandit setting: gradient descent without a gradient. arXiv
preprint cs/0408007, 2004. 5.1.1

[FLLZ18] Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-optimal
non-convex optimization via stochastic path-integrated differential estimator. Ad-
vances in Neural Information Processing Systems, 31, 2018. 5.1

[FLPS22] Maryam Fazel, Yin Tat Lee, Swati Padmanabhan, and Aaron Sidford. Computing
lewis weights to high precision. In Symposium on Discrete Algorithms (SODA), 2022.
1.3

[FP07] Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and
complementarity problems. Springer Science & Business Media, 2007. 6.4

[FPS18] Zhe Feng, Chara Podimata, and Vasilis Syrgkanis. Learning to bid without knowing
your value. In Proceedings of the 2018 ACM Conference on Economics and Computation,
page 505–522, 2018. 8.1.3

[FPW23] Zhe Feng, Swati Padmanabhan, and Di Wang. Online bidding algorithms for return-
on-spend constrained advertisers. In Proceedings of the ACM Web Conference 2023,
pages 3550–3560, 2023. 1.4

[FR15] Olivier Fercoq and Peter Richtárik. Accelerated, parallel, and proximal coordinate
descent. SIAM Journal on Optimization, 25(4):1997–2023, 2015. 6.5

[FW56] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956. 2.1.1

[GH16a] Dan Garber and Elad Hazan. Sublinear time algorithms for approximate semidefinite
programming. Mathematical Programming, 158(1-2):329–361, 2016. 1.1, 2.1.1, 2.1.1,
A.1.2

[GH16b] Dan Garber and Elad Hazan. Sublinear time algorithms for approximate semidefinite
programming. Mathematical Programming, 158(1-2):329–361, 2016. 3.1.2

[Gil14] Nicolas Gillis. The why and how of nonnegative matrix factorization. Connections,
12:2–2, 2014. 1.3, 6.1

[GJLM21] Negin Golrezaei, Patrick Jaillet, Jason Cheuk Nam Liang, and Vahab Mirrokni.
Bidding and pricing in budget and roi constrained markets. arXiv preprint
arXiv:2107.07725, 2021. 8.1, 8.1.3

[GL13] Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for
nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368,
2013. 5.1

[GLS81a] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.
1.1, 3.1

[GLS81b] Martin Grötschel, László Lovász, and Alexander Schrijver. The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.
7.1.2

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and
combinatorial optimization. Springer, 1988. C.1.1, C.1.2, C.1.3

[GM12] Bernd Gärtner and Jiri Matousek. Approximation algorithms and semidefinite
programming. Springer Science & Business Media, 2012. 1.1

[Gol77] AA Goldstein. Optimization of lipschitz continuous functions. Mathematical Pro-
gramming, 13(1):14–22, 1977. 1.2, 5.1, 5.2, 5.2, 5.2.2

[Grü60] Branko Grünbaum. Partitions of mass-distributions and of convex bodies by
hyperplanes. Pacific Journal of Mathematics, 10(4):1257–1261, 1960. 4.2.9, 8, 5.3.6

[GU18] François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication
using powers of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, 2018. 3.2.1, B.2.1,
B.2.4

[Gül97] Osman Güler. On the self-concordance of the universal barrier function. SIAM
Journal on Optimization, 7(2):295–303, 1997. 4.4.2, 4.4.5

[GV02] Jean-Louis Goffin and Jean-Philippe Vial. Convex nondifferentiable optimization: A
survey focused on the analytic center cutting plane method. Optimization methods
and software, 17(5):805–867, 2002. 1.1, 3.1

[GV16] Olivier Guédon and Roman Vershynin. Community detection in sparse networks
via grothendieck’s inequality. Probability Theory and Related Fields, 165(3-4):1025–1049,
2016. 1.1, 2.1

[GW95] Michel X Goemans and David P Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal
of the ACM (JACM), 42(6):1115–1145, 1995. 1.1, 1.1, 2.1, 3.1

[GYC+22] Yuan Gao, Kaiyu Yang, Yuanlong Chen, Min Liu, and Noureddine El Karoui. Bidding
agent design in the linkedin ad marketplace. arXiv preprint arXiv:2202.12472, 2022.
8.1, 8.1.3

[Hal18] Georgina Hall. Optimization over nonnegative and convex polynomials with and without
semidefinite programming. PhD thesis, Princeton University, 2018. 1.1

[Haz08] Elad Hazan. Sparse approximate solutions to semidefinite programs. In Latin
American symposium on theoretical informatics, pages 306–316, 2008. 2.1.1

[HJ12] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, New York, NY, USA, 2nd edition, 2012. B.1.2, B.1.3

[HJST21] Baihe Huang, Shunhua Jiang, Zhao Song, and Runzhou Tao. Solving tall dense sdps
in the current matrix multiplication time. arXiv preprint arXiv:2101.08208, 6, 2021. 1.1

[HL16a] Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic
optimization. In International Conference on Machine Learning, pages 1263–1271.
PMLR, 2016. 1.2, 4.1

[HL16b] Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic
optimization. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, 2016. 2.1

[HRVW96] Christoph Helmberg, Franz Rendl, Robert J. Vanderbei, and Henry Wolkowicz. An
interior-point method for semidefinite programming. SIAM Journal on Optimization,
6(2):342–361, 1996. 2.1.1, A.1.1

[HZF+20] Yanjun Han, Zhengyuan Zhou, Aaron Flores, Erik Ordentlich, and Tsachy Weissman.
Learning to bid optimally and efficiently in adversarial first-price auctions. CoRR,
abs/2007.04568, 2020. 8.1.3

[IFAB90] Takashi Isobe, Eric D Feigelson, Michael G Akritas, and Gutti Jogesh Babu. Linear
regression in astronomy. The astrophysical journal, 364:104–113, 1990. 1.3, 6.1

[ISSS19] Nicole Immorlica, Karthik Abinav Sankararaman, Robert Schapire, and Aleksandrs
Slivkins. Adversarial bandits with knapsacks. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), pages 202–219. IEEE, 2019. 8.1.3

[Jag11] Martin Jaggi. Sparse Convex Optimization Methods for Machine Learning. PhD thesis,
ETH Zurich, 2011. 1.1, 2.1

[JGN+17] Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How
to escape saddle points efficiently. In International Conference on Machine Learning,
pages 1724–1732. PMLR, 2017. 5.1

[JHD18] Ethan C Jackson, James Alexander Hughes, and Mark Daley. On the generalizability
of linear and non-linear region of interest-based multivariate regression models for
fmri data. In 2018 IEEE Conference on Computational Intelligence in Bioinformatics and
Computational Biology (CIBCB), pages 1–8. IEEE, 2018. 1.3, 6.1

[JJUW11] Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP = PSPACE.
Journal of the ACM (JACM), 58(6):1–27, 2011. 1.1, 3.1

[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song.
A faster interior point method for semidefinite programs. In Proceedings of the 61st
Annual IEEE Foundations of Computer Science, FOCS 2020, Virtual Conference, November
16-19, 2020, 2020. 1.1

[JL84] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into
a hilbert space. Contemporary mathematics, 26(189-206):1, 1984. 2.1, A.3.10

[JLL+20a] Arun Jambulapati, Yin Tat Lee, Jerry Li, Swati Padmanabhan, and Kevin Tian.
Positive semidefinite programming: Mixed, parallel, and width-independent.
arXiv:2002.04830, 2020. 1.1

[JLL+20b] Arun Jambulapati, Yin Tat Lee, Jerry Li, Swati Padmanabhan, and Kevin Tian.
Positive semidefinite programming: Mixed, parallel, and width-independent. In
STOC. https://arxiv.org/pdf/2002.04830.pdf, 2020. 3.1.2, B.1.1

[JLLV21] He Jia, Aditi Laddha, Yin Tat Lee, and Santosh Vempala. Reducing isotropy and
volume to kls: an o*(n 3 ψ 2) volume algorithm. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 961–974, 2021. 4.1.2

[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved
cutting plane method for convex optimization, convex-concave games, and its
applications. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, 2020. 3.1, 3.2

[JLT20] Arun Jambulapati, Jerry Li, and Kevin Tian. Robust sub-gaussian principal compo-
nent analysis and width-independent schatten packing. Advances in Neural Information
Processing Systems, 33:15689–15701, 2020. 6.1

[JN08] Anatoli Juditsky and Arkadii S Nemirovski. Large deviations of vector-valued
martingales in 2-smooth normed spaces. arXiv preprint arXiv:0809.0813, 2008. 2.2.2,
2.2.2, A.4.5

[Joh48] Fritz John. Extremum problems with inequalities as subsidiary conditions, studies
and essays presented to r. courant on his 60th birthday, january 8, 1948, 1948. 7.1

[JP87] Michael S Jennis and Joyce L Peabody. Pulse oximetry: an alternative method for
the assessment of oxygenation in newborn infants. Pediatrics, 79(4):524–528, 1987.
1.3, 6.1

[JST21] Fernando Granha Jeronimo, Shashank Srivastava, and Madhur Tulsiani. Near-linear
time decoding of ta-shma’s codes via splittable regularity. Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, 2021. 1.1

[JY11] Rahul Jain and Penghui Yao. A parallel approximation algorithm for positive
semidefinite programming. In Proceedings of the 2011 IEEE 52nd Annual Symposium
on Foundations of Computer Science (FOCS), 2011. 3.1.2

https://arxiv.org/pdf/2002.04830.pdf

[JZ13a] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. Advances in neural information processing systems, 26,
2013. 1.2, 4.1, 4.1

[JZ13b] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. In Advances in neural information processing systems,
pages 315–323, 2013. 2.1, 2.1.1

[Kar72] R. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972. 2.1

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear programming.
In Proceedings of the sixteenth annual ACM symposium on Theory of computing (STOC),
pages 302–311, 1984. 1.1, 3.1, 3.1.2

[KB13] Kamil A Khan and Paul I Barton. Evaluating an element of the clarke generalized
jacobian of a composite piecewise differentiable function. ACM Transactions on
Mathematical Software (TOMS), 39(4):1–28, 2013. 5.1

[Kha80] Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Compu-
tational Mathematics and Mathematical Physics, 20(1):53–72, 1980. 1.1, 3.1, 3.1, 3.2, 3.1.2,
3.1.2

[Kha96] Leonid G Khachiyan. Rounding of polytopes in the real number model of computa-
tion. Mathematics of Operations Research, 21(2), 1996. 7.1.3

[Kiw07] Krzysztof C Kiwiel. Convergence of the gradient sampling algorithm for nonsmooth
nonconvex optimization. SIAM Journal on Optimization, 18(2):379–388, 2007. 1.2, 5.1

[KJ18] Richard Kueng and Peter Jung. Robust nonnegative sparse recovery and the nullspace
property of 0/1 measurements. IEEE Transactions on Information Theory, 64(2):689–703,
2018. 6.1

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal
inapproximability results for max-cut and other 2-variable csps? SIAM Journal on
Computing, 37(1):319–357, 2007. 4

[KL96] Philip Klein and Hsueh-I Lu. Efficient approximation algorithms for semidefinite
programs arising from max cut and coloring. In Proceedings of the Twenty-eighth
Annual ACM Symposium on Theory of Computing, STOC ’96, 1996. 2.1.1, A.1.3

[Kla06] Boas Klartag. On convex perturbations with a bounded isotropic constant. Geometric
& Functional Analysis GAFA, 16(6):1274–1290, 2006. 9

[KLS95a] R. Kannan, L. Lovász, and M. Simonovits. Isoperimetric problems for convex bodies
and a localization lemma. Discrete Comput. Geom., 13(3–4):541–559, Dec 1995. 5.3.7

[KLS95b] Ravi Kannan, László Lovász, and Miklós Simonovits. Isoperimetric problems
for convex bodies and a localization lemma. Discrete & Computational Geometry,
13(3):541–559, 1995. 4.5.3

[KLS22] Tarun Kathuria, Yang P Liu, and Aaron Sidford. Unit capacity maxflow in almost
m4/3 time. SIAM Journal on Computing, pages FOCS20–175, 2022. 1.1

[KLT09] Pushmeet Kohli, Lubor Ladicky, and Philip H. S. Torr. Robust higher order potentials
for enforcing label consistency. International Journal of Computer Vision, 82(3):302–324,
2009. 1.2, 4.1

[KM03] Kartik Krishnan and John E Mitchell. Properties of a cutting plane method for
semidefinite programming. submitted for publication, 2003. 3.1, 3.2

[KMS94] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by
semidefinite programming. In Proceedings 35th Annual Symposium on Foundations of
Computer Science (FOCS), pages 2–13. IEEE, 1994. 1.1, 3.1

[KN09] Ravi Kannan and Hariharan Narayanan. Random walks on polytopes and an affine
interior point method for linear programming. In Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, STOC ’09, New York, NY, USA, 2009.
Association for Computing Machinery. 7.1.3

[KS21] Guy Kornowski and Ohad Shamir. Oracle complexity in nonsmooth nonconvex
optimization. Advances in Neural Information Processing Systems, 34, 2021. 1.2, 5.1

[KS22] Guy Kornowski and Ohad Shamir. On the complexity of finding small subgradients
in nonsmooth optimization. arXiv preprint arXiv:2209.10346, 2022. 5.2.1

[KSD13] Dongmin Kim, Suvrit Sra, and Inderjit S Dhillon. A non-monotonic method for large-
scale non-negative least squares. Optimization Methods and Software, 28(5):1012–1039,
2013. 1.3, 6.1, 6.1, 6.5

[KSK13] Abhishek Kumar, Vikas Sindhwani, and Prabhanjan Kambadur. Fast conical hull
algorithms for near-separable non-negative matrix factorization. In International
Conference on Machine Learning, pages 231–239. PMLR, 2013. 1.3, 6.1

[KST09] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Applications of strong
convexity–strong smoothness duality to learning with matrices. CoRR, abs/0910.0610,
2009. 2.2.2, 2.2.2, A.3.4, A.4.4

[KT10] Alex Kulesza and Ben Taskar. Structured determinantal point processes. Advances in
neural information processing systems, 23, 2010. 1.2, 4.1

[KTE88] Leonid G Khachiyan, Sergei Pavlovich Tarasov, and I. I. Erlikh. The method of
inscribed ellipsoids. In Soviet Math. Dokl, volume 37, pages 226–230, 1988. 3.1, 3.2,
3.1.2, 4.1

[KY05] Piyush Kumar and E Alper Yildirim. Minimum-volume enclosing ellipsoids and
core sets. Journal of Optimization Theory and applications, 126(1), 2005. 7.1.3

[LCB+04] Gert RG Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I
Jordan. Learning the kernel matrix with semidefinite programming. Journal of
Machine learning research, 5(Jan):27–72, 2004. 1.1

[Lee16] Yin Tat Lee. Faster Algorithms for Convex and Combinatorial Optimization. PhD thesis,
Massachusetts Institute of Technology, 2016. 1.1, 3.1.2, 7.1, 7.1, 7.1.2, F.4

[Lew78] D Lewis. Finite dimensional subspaces of l_{p}. Studia Mathematica, 63(2), 1978. 7.1.1,
2

[Lew95] Adrian S Lewis. The convex analysis of unitarily invariant matrix functions. Journal
of Convex Analysis, 2(1):173–183, 1995. 2.2.2, 2.2.2, A.4.6

[LH95] Charles L. Lawson and Richard J. Hanson. Solving least squares problems, volume 15
of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1995. Revised reprint of the 1974 original. 1.3, 6.1, 6.1

[LLV20] Aditi Laddha, Yin Tat Lee, and Santosh Vempala. Strong self-concordance and
sampling. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020, New York, NY, USA, 2020. Association for Computing
Machinery. 7.1.3

[LLX14] Qihang Lin, Zhaosong Lu, and Lin Xiao. An accelerated proximal coordinate gradient
method. Advances in Neural Information Processing Systems, 27:3059–3067, 2014. 6.1

[LMH15] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order
optimization. Advances in neural information processing systems, 28, 2015. 4.1

[LMP13] Mu Li, Gary L Miller, and Richard Peng. Iterative row sampling. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science, pages 127–136. IEEE, 2013. 1.3,
7.1.3

[LN93] Michael Luby and Noam Nisan. A parallel approximation algorithm for positive
linear programming. In Proc. ACM STOC’93, 1993. 6.1

[LP20] Yin Tat Lee and Swati Padmanabhan. An $\widetilde\mathcalo(m/\varepsilonˆ3.5)$-
cost algorithm for semidefinite programs with diagonal constraints. In Jacob D.
Abernethy and Shivani Agarwal, editors, Conference on Learning Theory, COLT 2020, 9-
12 July 2020, Virtual Event [Graz, Austria], Proceedings of Machine Learning Research.
PMLR, 2020. 1.1, 2.1, 3.1.2

[LS13] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods
and faster algorithms for solving linear systems. In 2013 ieee 54th annual symposium
on foundations of computer science, pages 147–156. IEEE, 2013. 1.3, 6.1

[LS14] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in õ(sqrt(rank)) iterations and faster algorithms for maximum flow.
In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014, 2014. 1.1, 3.1.2, 7.1, 7.1, 7.1, 7.1, 7.1.4, 7.1,
7.1.2, 7.1.3, 7.1.5, 7.1.6, F.1, F.2.2

[LS15] Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms
for linear programming. In 56th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 230–249. https://arxiv.org/pdf/1503.01752.pdf, 2015.
3.1.2

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane
method and its implications for combinatorial and convex optimization. In 56th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 1049–1065.
https://arxiv.org/pdf/1508.04874.pdf, 2015. 1.1, 2.1.1, 3.1, 3.1.1, 3.1, 3.2, 3.1.1,
3.1.3, 3.1.2, 4.1, 4.1.1, 4.1.2, 7.1.2, A.1.1, 3.1.3, B.7, C.1.4, F.4

https://arxiv.org/pdf/1503.01752.pdf
https://arxiv.org/pdf/1508.04874.pdf

[LV07] László Lovász and Santosh Vempala. The geometry of logconcave functions and
sampling algorithms. Random Structures & Algorithms, 30(3):307–358, 2007. A.4.20

[LV21] Yin Tat Lee and Santosh S Vempala. Tutorial on the robust interior point method.
arXiv preprint arXiv:2108.04734, 2021. 4.1, 4.1.2

[LWYZ20] Yi Li, Ruosong Wang, Lin Yang, and Hanrui Zhang. Nearly linear row sampling
algorithm for quantile regression. In Proceedings of the 37th International Conference on
Machine Learning, 2020. 1.3, 7.1.3

[LY18] Yin Tat Lee and Man-Chung Yue. Universal barrier is n-self-concordant. arXiv
preprint arXiv:1809.03011, 2018. 7.1.3

[LY21] Yin Tat Lee and Man-Chung Yue. Universal barrier is n-self-concordant. Mathematics
of Operations Research, 46(3):1129–1148, 2021. 6, 4.4.2, 4.4.5

[Mai15] Julien Mairal. Incremental majorization-minimization optimization with application
to large-scale machine learning. SIAM Journal on Optimization, 25(2):829–855, 2015.
1.2, 4.1

[MFLS17] Joe M Myre, Erich Frahm, David J Lilja, and Martin O Saar. TNT-NN: A fast active
set method for solving large non-negative least squares problems. Procedia Computer
Science, 108:755–764, 2017. 6.1

[MJY12] Mehrdad Mahdavi, Rong Jin, and Tianbao Yang. Trading regret for efficiency: online
convex optimization with long term constraints. The Journal of Machine Learning
Research, 13(1):2503–2528, 2012. 8.1.3

[MMM18] Szymon Majewski, Błażej Miasojedow, and Eric Moulines. Analysis of nons-
mooth stochastic approximation: the differential inclusion approach. arXiv preprint
arXiv:1805.01916, 2018. 1.2, 5.1

[MMMO17] Song Mei, Theodor Misiakiewicz, Andrea Montanari, and Roberto Imbuzeiro
Oliveira. Solving sdps for synchronization and maxcut problems via the grothendieck
inequality. In Conference on Learning Theory, COLT 2017, pages 1476–1515, 2017. 2.1.1

[MMSBVS08] Eduardo Martínez-Montes, José M Sánchez-Bornot, and Pedro A Valdés-Sosa.
Penalized parafac analysis of spontaneous eeg recordings. Statistica Sinica, pages
1449–1464, 2008. 1.3, 6.1

[MR94] Olvi L. Mangasarian and J Ren. New improved error bounds for the linear com-
plementarity problem. Mathematical Programming, 66(1):241–255, 1994. 6.4, E.1.4,
E.1.10

[MRWZ16] Michael W Mahoney, Satish Rao, Di Wang, and Peng Zhang. Approximating the
solution to mixed packing and covering LPs in parallel Õ(ϵ−3) time. In Proc. ICALP’16,
2016. 6.1

[MS16a] Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random
graphs and their application to community detection. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 814–827, 2016. 1.1, 2.1

[MS16b] Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random
graphs and their application to community detection. In Proceedings of the Forty-eighth
Annual ACM Symposium on Theory of Computing, STOC ’16, 2016. 2.1.1

[MSTX19] Vivek Madan, Mohit Singh, Uthaipon Tantipongpipat, and Weijun Xie. Combinatorial
algorithms for optimal design. In Proceedings of the Thirty-Second Conference on Learning
Theory, 2019. 7.1.3

[MSVV07] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and
generalized online matching. Journal of the ACM (JACM), 54(5):22–es, 2007. 8.1.3

[MSZ16] Jelena Marasevic, Clifford Stein, and Gil Zussman. A fast distributed stateless
algorithm for alpha-fair packing problems. In 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016), volume 55, 2016. 6.1, 7.1.3

[MTY09] Shie Mannor, John N Tsitsiklis, and Jia Yuan Yu. Online learning with sample path
constraints. Journal of Machine Learning Research, 10(3), 2009. 8.1.3

[Mye81] Roger B Myerson. Optimal auction design. Mathematics of operations research,
6(1):58–73, 1981. 8.2

[MYJ13] Mehrdad Mahdavi, Tianbao Yang, and Rong Jin. Stochastic convex optimization
with multiple objectives. Advances in neural information processing systems, 26, 2013.
8.1.3

[MZJ13] Mehrdad Mahdavi, Lijun Zhang, and Rong Jin. Mixed optimization for smooth
functions. Advances in neural information processing systems, 26, 2013. 1.2, 4.1

[N+18] Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018. 6.1

[NCKP22] Thomas Nedelec, Clément Calauzènes, Noureddine El Karoui, and Vianney Perchet.
Learning in repeated auctions. Foundations and Trends® in Machine Learning, 15(3):176–
334, 2022. 8.1.3

[Nem92] Arkadi S Nemirovsky. Information-based complexity of linear operator equations.
Journal of Complexity, 8(2):153–175, 1992. 6.1

[Nes83a] Yurii Nesterov. A method of solving a convex programming problem with conver-
gence rate O(1/k2). In Doklady AN SSSR (translated as Soviet Mathematics Doklady),
volume 269, pages 543–547, 1983. 6.1

[Nes83b] Yurii E Nesterov. A method for solving the convex programming problem with
convergence rate O(1/k2). In Dokl. akad. nauk Sssr, volume 269, pages 543–547, 1983.
4.1, 4.1, 4.1, 4.1.2

[Nes04] Yurii E. Nesterov. Introductory Lectures on Convex Optimization - A Basic Course,
volume 87 of Applied Optimization. Springer, 2004. 4.1, 4.4.4, 4.5.2, 4.5.6

[Nes09] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
programming, 120(1):221–259, 2009. 2.1.2

[Nes12] Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization, 22(2):341–362, 2012. 6.1

[Nes13] Yu Nesterov. Gradient methods for minimizing composite functions. Mathematical
programming, 140(1):125–161, 2013. 6.5

[NN89] Yurii Nesterov and Arkadi Nemirovski. Self-concordant functions and polynomial
time methods in convex programming. preprint, central economic & mathematical
institute, ussr acad. Sci. Moscow, USSR, 1989. 3.1, 3.2, 3.1.2, 4.1

[NN92] Yurii Nesterov and Arkadi Nemirovski. Conic formulation of a convex programming
problem and duality. Optimization Methods and Software, 1(2):95–115, 1992. 1.1, 3.1,
3.1.1, 3.1, 3.2, 3.2, 3.2, 3.2, 3.2.1, 3.2.1, 3.2.1

[NN94] Yurii Nesterov and Arkadi Nemirovski. Interior-point polynomial algorithms in convex
programming, volume 13. Siam, 1994. 1.1, 3.1.1, 3.1, 3.2, 3.2, 4.1.2, 4.2.2, 4, 6, 4.4.2,
4.4.5, 4, 7.1.3

[NS17] Yurii Nesterov and Sebastian U Stich. Efficiency of the accelerated coordinate
descent method on structured optimization problems. SIAM Journal on Optimization,
27(1):110–123, 2017. 6.1

[NS21] Gali Noti and Vasilis Syrgkanis. Bid prediction in repeated auctions with learning.
In Proceedings of the Web Conference 2021, WWW ’21, page 3953–3964, New York, NY,
USA, 2021. Association for Computing Machinery. 8.1.3

[Nur73] E. A. Nurminskii. The quasigradient method for the solving of the nonlinear
programming problems. Cybernetics, 9(1):145–150, Jan 1973. 5.1

[NY83a] Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity
and method efficiency in optimization. 1983. 6.1

[NY83b] A.S. Nemirovsky and D.B. Yudin. Problem complexity and method efficiency in optimiza-
tion. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1983.
Translated from the Russian and with a preface by E. R. Dawson, Wiley-Interscience
Series in Discrete Mathematics. 1.2

[Par00] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000. 1.1,
3.1

[PC99] Victor Y. Pan and Zhao Q. Chen. The complexity of the matrix eigenproblem. In
Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May
1-4, 1999, Atlanta, Georgia, USA, pages 507–516, 1999. 2.1

[PST91] S. A. Plotkin, D. B. Shmoys, and E. Tardos. Fast approximation algorithms for frac-
tional packing and covering problems. In [1991] Proceedings 32nd Annual Symposium
of Foundations of Computer Science, 1991. 2.1.1

[PT12] Richard Peng and Kanat Tangwongsan. Faster and simpler width-independent
parallel algorithms for positive semidefinite programming. In Proceedings of the
twenty-fourth annual ACM symposium on Parallelism in algorithms and architectures
(SPAA), pages 101–108, 2012. 3.1.2

[Puk06] Friedrich Pukelsheim. Optimal Design of Experiments (Classics in Applied Mathematics)
(Classics in Applied Mathematics, 50). Society for Industrial and Applied Mathematics,
USA, 2006. 7.1.3

[PWZ23] Swati Padmanabhan, David Woodruff, and Qiuyi Zhang. Computing approximate
ℓp sensitivities. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. 7.1.3

[QR16] Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling i:
Algorithms and complexity. Optimization Methods and Software, 31(5):829–857, 2016.
6.1

[Ren01a] James Renegar. A mathematical view of interior-point methods in convex optimization.
SIAM, 2001. 4.2.2, 4.2.5, 4.2.6, 4.2.7, 4.2.8, 4.3.1

[Ren01b] James Renegar. A Mathematical View of Interior-point Methods in Convex Optimization.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001. B.4.3,
B.4.5, B.4.6

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM review,
52(3):471–501, 2010. 1.2

[RHS+16] Sashank J Reddi, Ahmed Hefny, Suvrit Sra, Barnabas Poczos, and Alex Smola.
Stochastic variance reduction for nonconvex optimization. In International conference
on machine learning, pages 314–323. PMLR, 2016. 5.1

[RM51] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951. 1.2, 4.1

[Roc70] R Tyrrell Rockafellar. Convex Analysis, volume 36. Princeton University Press, 1970.
4.2.1, 4.2.1, 4.2.2, 4.2.3, 4.2.4

[RRWN11] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A
lock-free approach to parallelizing stochastic gradient descent. Advances in neural
information processing systems, 24, 2011. 4.1

[RS09] Prasad Raghavendra and David Steurer. How to round any csp. In Proceedings of the
2009 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’09, 2009.
2.1.1

[RSB12] Nicolas Roux, Mark Schmidt, and Francis Bach. A stochastic gradient method with
an exponential convergence rate for finite training sets. Advances in neural information
processing systems, 25, 2012. 1.2, 4.1, 4.1

[RSL18] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations
for certifying robustness to adversarial examples. In Advances in Neural Information
Processing Systems (NeurIPS), pages 10877–10887. https://arxiv.org/pdf/1811.
01057.pdf, 2018. 1.1

[RW09] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer
Science & Business Media, 2009. 3, 5.1

https://arxiv.org/pdf/1811.01057.pdf
https://arxiv.org/pdf/1811.01057.pdf

[SF04] Peng Sun and Robert M Freund. Computation of minimum-volume covering
ellipsoids. Operations Research, 52(5), 2004. 7.1.3

[SH14] Martin Slawski and Matthias Hein. Non-negative least squares for high-dimensional
linear models: consistency and sparse recovery without regularization, 2014. 6.1

[Sha20] Ohad Shamir. Can we find near-approximately-stationary points of nonsmooth
nonconvex functions? arXiv preprint arXiv:2002.11962, 2020. 5.2.1

[Sho77] Naum Z Shor. Cut-off method with space extension in convex programming
problems. Cybernetics and systems analysis, 13(1):94–96, 1977. 3.1, 3.2, 3.1.2

[Sid15] Aaron Daniel Sidford. Iterative methods, combinatorial optimization, and linear program-
ming beyond the universal barrier. PhD thesis, Massachusetts Institute of Technology,
2015. 3.1.2

[SJC19] Yonatan Shadmi, Peter Jung, and Giuseppe Caire. Sparse non-negative recovery
from biased subgaussian measurements using nnls. arXiv preprint arXiv:1901.05727,
2019. 6.1

[SK10] Peter Stobbe and Andreas Krause. Efficient minimization of decomposable sub-
modular functions. Advances in Neural Information Processing Systems, 23, 2010.
4.1

[SKR85] Naum Z. Shor, Krzysztof C Kiwiel, and Andrzej Ruszcayński. Minimization methods
for non-differentiable functions, 1985. 5.1

[SLRB17a] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the
stochastic average gradient. Mathematical Programming, 162(1):83–112, 2017. 1.2, 4.1

[SLRB17b] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the
stochastic average gradient. Mathematical Programming, 162(1-2):83–112, 2017. 2.1

[SS05] Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In International
Conference on Computational Learning Theory, pages 545–560, 2005. 1.1, 2.1

[SS11] Amit Singer and Yoel Shkolnisky. Three-dimensional structure determination from
common lines in cryo-em by eigenvectors and semidefinite programming. SIAM
journal on imaging sciences, 4(2):543–572, 2011. 1.1, 2.1

[SSZ13a] Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual
coordinate ascent. Advances in Neural Information Processing Systems, 26, 2013. 4.1

[SSZ13b] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods
for regularized loss minimization. Journal of Machine Learning Research, 14(2), 2013.
1.2, 4.1, 4.1

[SSZ13c] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for
regularized loss minimization. Journal of Machine Learning Research, 14(Feb):567–599,
2013. 2.1

[SV+14] Sushant Sachdeva, Nisheeth K Vishnoi, et al. Faster algorithms via approximation
theory. Foundations and Trends® in Theoretical Computer Science, 9(2):125–210, 2014.
2.1, A.4.2, A.4.14, A.4.15, A.4.16

[SW18] Christian Sohler and David P Woodruff. Strong coresets for k-median and subspace
approximation: Goodbye dimension. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), 2018. 1.3, 7.1.3

[SWD21] Chaobing Song, Stephen J Wright, and Jelena Diakonikolas. Variance reduction
via primal-dual accelerated dual averaging for nonsmooth convex finite-sums. In
International Conference on Machine Learning, 2021. 6.1, 6.2, 6.3

[SX20] Mohit Singh and Weijun Xie. Approximation algorithms for d-optimal design.
Mathematics of Operations Research, 45(4), 2020. 7.1.3

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996. 6.1

[Tod16] Michael J. Todd. Minimum volume ellipsoids - theory and algorithms, volume 23 of
MOS-SIAM Series on Optimization. SIAM, 2016. 7.1, 7.1, 7.1.4, 7.1.3

[TZS22] Lai Tian, Kaiwen Zhou, and Anthony Man-Cho So. On the finite-time complexity
and practical computation of approximate stationarity concepts of lipschitz functions.
In International Conference on Machine Learning, pages 21360–21379. PMLR, 2022. 5.1.1

[UT19] Madeleine Udell and Alex Townsend. Why are big data matrices approximately low
rank? SIAM Journal on Mathematics of Data Science, 1(1):144–160, 2019. 1.2

[Vai87] Pravin M Vaidya. An algorithm for linear programming which requires o(((m+n)n2+
(m + n)1.5n)l) arithmetic operations. In 28th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 1987. 3.1.2

[Vai89a] Pravin M Vaidya. A new algorithm for minimizing convex functions over convex
sets. In 30th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
338–343, 1989. 3.1, 3.2, 3.1.2, 3.2, 4.1, 7.1, F.2.1

[Vai89b] Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication.
In 30th Annual Symposium on Foundations of Computer Science (FOCS), pages 332–337.
IEEE, 1989. 3.1.2

[VB96] Lieven Vandenberghe and Stephen P. Boyd. Semidefinite programming. SIAM
Review, 38(1):49–95, 1996. 3.1

[VBK04] Mark H Van Benthem and Michael R Keenan. Fast algorithm for the solution of large-
scale non-negativity-constrained least squares problems. Journal of Chemometrics: A
Journal of the Chemometrics Society, 18(10):441–450, 2004. 6.1

[VBK20] Nate Veldt, Austin R Benson, and Jon Kleinberg. Minimizing localized ratio cut
objectives in hypergraphs. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1708–1718, 2020. 4.1

[vdB21] Jan van den Brand. Dynamic Matrix Algorithms and Applications in Convex and
Combinatorial Optimization. PhD thesis, KTH Royal Institute of Technology, 2021. 1.1

[VDBLL+21] Jan Van Den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, mdps, and ℓ1-regression in nearly
linear time for dense instances. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 859–869, 2021. 1.1

[VKR09] Sara Vicente, Vladimir Kolmogorov, and Carsten Rother. Joint optimization of
segmentation and appearance models. In 2009 IEEE 12th international conference on
computer vision, pages 755–762. IEEE, 2009. 1.2, 4.1

[Wan17] Di Wang. Fast Approximation Algorithms for Positive Linear Programs. University of
California, Berkeley, 2017. 1.3, 1.4, 6.1

[WdM15] Irène Waldspurger, Alexandre d’Aspremont, and Stéphane Mallat. Phase recovery,
maxcut and complex semidefinite programming. Mathematical Programming, 2015.
1.1, 2.1

[Wil67] R. M. Wilcox. Exponential Operators and Parameter Differentiation in Quantum
Physics. Journal of Mathematical Physics, 1967. 2.1.2

[WJC13] Jun Wang, Tony Jebara, and Shih-Fu Chang. Semi-supervised learning using greedy
max-cut. Journal of Machine Learning Research, 14(Mar):771–800, 2013. 1.1, 2.1

[Woj96] Przemyslaw Wojtaszczyk. Banach spaces for analysts. Cambridge University Press,
1996. 7.1

[Woo49] Max A Woodbury. The stability of out-input matrices. Chicago, IL, 9, 1949. B.1.4

[Woo50] Max A Woodbury. Inverting modified matrices. 1950. B.1.4

[WPR16] Jonathan Weed, Vianney Perchet, and Philippe Rigollet. Online learning in repeated
auctions. In Conference on Learning Theory, pages 1562–1583. PMLR, 2016. 8.1.3

[WPTP88] Michael W Wukitsch, Michael T Petterson, David R Tobler, and Jonas A Pologe. Pulse
oximetry: analysis of theory, technology, and practice. Journal of clinical monitoring,
4(4):290–301, 1988. 1.3, 6.1

[WS16] Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing
composite objectives. Advances in neural information processing systems, 29, 2016. 4.1,
4.1.2

[WXT11] Meng Wang, Weiyu Xu, and Ao Tang. A unique “nonnegative” solution to an
underdetermined system: From vectors to matrices. IEEE Transactions on Signal
Processing, 59(3):1007–1016, 2011. 6.1

[YN76] David B Yudin and Arkadi S Nemirovski. Evaluation of the information complexity
of mathematical programming problems. Ekonomika i Matematicheskie Metody, 12:128–
142, 1976. 3.1, 3.2, 3.1.2

[YN20] Hao Yu and Michael J Neely. A low complexity algorithm with o(
√

T) regret and
o(1) constraint violations for online convex optimization with long term constraints.
Journal of Machine Learning Research, 21(1):1–24, 2020. 8.1.3

[YNW17] Hao Yu, Michael Neely, and Xiaohan Wei. Online convex optimization with stochastic
constraints. Advances in Neural Information Processing Systems, 30, 2017. 8.1.3

[You01] Neal Young. Sequential and parallel algorithms for mixed packing and covering. In
Proc. IEEE FOCS’01, 2001. 6.1

[YTF+19a] Alp Yurtsever, Joel A. Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher.
Scalable semidefinite programming, 2019. 1.1, 2.1.1, A.1.3

[YTF+19b] Alp Yurtsever, Joel A. Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher.
Scalable semidefinite programming, 2019. 3.1.2

[ZF20] Renbo Zhao and Robert M Freund. Analysis of the frank-wolfe method
for logarithmically-homogeneous barriers, with an extension. arXiv preprint
arXiv:2010.08999, 2020. 7.1.3

[Zha04] Tong Zhang. Solving large scale linear prediction problems using stochastic gradient
descent algorithms. In Proceedings of the twenty-first international conference on Machine
learning, page 116, 2004. 1.2, 4.1

[ZL15] Yuchen Zhang and Xiao Lin. Stochastic primal-dual coordinate method for regu-
larized empirical risk minimization. In International Conference on Machine Learning,
pages 353–361. PMLR, 2015. 4.1

[ZLSJ20] Jingzhao Zhang, Hongzhou Lin, Suvrit Sra, and Ali Jadbabaie. On complexity of
finding stationary points of nonsmooth nonconvex functions. International Conference
on Machine Learning, 2020. 1.2, 5.1, 5.1, 5.1.1, 5.1.1, 5.2, 5.2, 5.2.2, 1, 5.2, 5.2, 5.2.3, 5.2,
5.2.1, 5.2.1, 5.2.1, 5.2.1

[ZLY22] Manru Zong, Yin Tat Lee, and Man-Chung Yue. Short-step methods are not strongly
polynomial-time. arXiv preprint arXiv:2201.02768, 2022. 4.5.7

[ZXG18] Dongruo Zhou, Pan Xu, and Quanquan Gu. Stochastic nested variance reduction for
nonconvex optimization. Advances in Neural Information Processing Systems, 31, 2018.
5.1

Appendices

138

Appendix A

Appendix for Chapter 2

This chapter contains details and proofs from Chapter 2.

A.1 Previous Results

In this section, we show how to derive the runtimes we mentioned in Section 2.1.1, of some previous
works in solving (2.1.1).

A.1.1 Cutting plane and interior point methods

In this subsection, we derive the complexities we claimed are attained by some cutting plane and
interior point methods in solving (2.1.1).

Result of Helmberg, Rendl, Vanderbei, and Wolkowikz. The interior point method of [HRVW96]
first writes a dual of the problem and then runs an interior point method using log-barrier. The
purpose of running IPM on the dualized problem is to reduce the problem dimension from O(n2) to
n. The iteration complexity, by self concordance of log-barrier, is O(

√
n). Each iteration performs

operations that have cost equal to that of a matrix multiplication of two n × n matrices; this gives a
per iteration cost of nω, thus giving us a total cost of O(nω+1/2), as we claimed in Section 2.1.1.

Result of Lee, Sidford, and Wong. The cutting plane method of [LSW15] solves an SDP of size
m ×m with n constraints in time O(n(n2 +mω + S)), where S is the number of nonzero entries in the
cost matrix. Translated to our setting (and being careful with the differences in definitions of n and
m), this implies a run time of O(n(nω +m)), since we denote m to be the number of nonzero entries
of the cost matrix, and the number of constraints equals the number of rows of our matrix variable.

A.1.2 Saddle point methods

Result of Garber and Hazan. Per Theorem 1 of [GH16a], their paper solves, up to additive ε
accuracy, an instance of (2.1.5) in time at least O(Sε−2.5), where S is the number of nonzero entries
among all input matrices of the problem. Note that by scaling C by λ =

∑
i, j |Ci j|, we ensure, due to

the Gershgorin Circle Theorem, that the spectral norm of the scaled cost matrix is bounded by one,
as required by their theorem.

Result of Carmon, Duchi, Sidford, and Tian. Per Section 4 of [CDST19a], the cost of obtaining an
ε-additive accurate solution to (2.1.5) is O(mv(A)ω2.5ε−2.5), where they use mv(A) to denote the cost
of a matrix vector product using any of the input matrices and ω to denote the maximum spectral
norm of the input matrices. Translating to our notation, this becomes O(mε−2.5).

139

A.1.3 Low rank methods

Result of Klein and Lu. The result of [KL96] for solving (2.1.1) is stated in their Lemma 4. They
have O(nε−2) iterations from the framework of Plotkin, Shmoys, and Tardos, and each iteration
performs a power method that costs O(mε−1).

Result of Yurtsever et al. Per Theorem 6.3 of [YTF+19a], the cost is at least O(ε−2(d + Rn) + ε−3n),
where we omit polylogarithmic factors. The bound on distance of iterates of the algorithm from the
optimal set is given in Theorem 6.2.

A.2 Analysis Common to Both Algorithms

In this section we provide proofs for two results: the first is that a solution to the reformulated
problem (2.1.2) is indeed ε close to that of the original; the second is the convergence guarantee of
approximate lazy mirror descent, the framework for both the Arora-Kale algorithm as well as ours.

Algorithm A.2.1 Approximate lazy mirror descent
Input: Objective function f : X → R, accuracy parameter ε.
Parameters: Mirror map Φ : D→ R, norm ∥ · ∥, step size η, iteration T, error bound δ.

1: Initialize: x(1)
∈ argminx∈X∩DΦ(x), x̃(1) = x(1), and z(1) satisfying ∇Φ(z(1)) = 0.

2: for t = 1→ T do
3: ∇Φ(z(t+1))← ∇Φ(z(t)) − η∇ f (x̃(t)) ▷ Lazy gradient update
4: Find x̃(t+1) such that E∥x̃(t+1)

− x(t+1)
∥ ≤ δ, where x(t+1)

∈ argminx∈X∩DDΦ(x, z(t+1)) ▷
Approximate projection

5: end for
6: For t∗ unif.

∼ {1, 2, . . . ,T}, return x̃(t∗).

A.2.1 From the Reformulated to the Original SDP

Our claim of reformulating (2.1.1) as (2.1.2) works because once we have a solution X for the latter,
we can apply the following result to obtain a matrix X̂ which satisfies all the required constraints of
(2.1.1), and at which the objective value in (2.1.1) is better than that at X in (2.1.2).

Lemma 2.1.4. Given C ∈ Rn×n and 0 ⪯ X, let ρ ∈ Rn with ρi =
∑n

j=1

∣∣∣Ci j
∣∣∣; diagonal matrix S with

Sii = min(1/√ρi, 1/√Xii) for i ∈ [n]; X̂ = SXS; Ĉ = diag(1/√ρ)Cdiag(1/√ρ). Then, X̂ ⪰ 0, X̂ii ≤ 1 for all
i ∈ [n], and Ĉ • X −

∑n
i=1

(
Xii − ρi

)+
≤ C • X̂.

Proof. We first prove the positive semidefiniteness. Observe that since X̂ and X are similar matrices,
X ⪰ 0 implies X̂ ⪰ 0 as well. Next, we define a matrix Y as Yi j =

Xi j
√
ρi
√
ρ j

. Without loss of generality,

assume Y11 ≥ Y22 ≥ . . . ≥ Ynn. We also define a diagonal matrix, D̂ as D̂ii = min(1, 1/
√

Yii). If
Yii ≥ 1, then X̂ii =

ρiYii
√
ρiYii
√
ρiYii
= 1; otherwise, X̂ii = Yii. This proves that X̂ii ≤ 1 for all 1 ≤ i ≤ n,

which is precisely the claim bounding every diagonal entry. We now prove the claim about the

objective value. By definition of D̂, X̂ and Y, we have X̂ = D̂ · Y · D̂. Therefore we get

C • (X̂ − Y) −
n∑

i=1

CiiYii(D̂2
ii − 1) =

n∑
i=1

∑
j,i

Ci jYi j(D̂iiD̂ j j − 1)

= 2
n∑

i=1

∑
i< j

Ci jYi j(D̂iiD̂ j j − 1).

The definition of D̂ and the ordering assumption on {Yii} imply 0 < D̂11 ≤ D̂22 ≤ . . . ≤ D̂nn ≤ 1,
which in turn means D̂iiD̂ j j ≥ D̂2

ii. Further, since X ⪰ 0 and Y = diag(()1/√ρ) · X · diag(()1/√ρ), we
have Y ⪰ 0. Therefore YiiY j j ≥ Yi jY ji. By symmetry of Y and the assumed ordering of {Yii}

n
1 , this

can be simplified to Yii ≥
∣∣∣Yi j

∣∣∣ for i < j. These two facts simplify the above to

C • (X̂ − Y) −
n∑

i=1

CiiYii(D̂2
ii − 1) ≥ 2

n∑
i=1

∑
i< j

∣∣∣Ci j
∣∣∣∣∣∣Yi j

∣∣∣(D̂2
ii − 1)

≥ 2
n∑

i=1

∑
i< j

∣∣∣Ci j
∣∣∣Yii(D̂2

ii − 1)

Finally, since D̂ii ≤ 1, we have D̂2
ii − 1 ≤ 0. Rearranging the terms in the last inequality, we get

C • (X̂ − Y) ≥
n∑

i=1

CiiYii(D̂2
ii − 1) +

n∑
i=1

Yii(D̂2
ii − 1)(

∑
j>i

∣∣∣Ci j
∣∣∣ +∑

j<i

∣∣∣Ci j
∣∣∣)

=

n∑
i=1

Yii(D̂2
ii − 1)

Cii +
∑
i> j

∣∣∣Ci j
∣∣∣ +∑

i< j

∣∣∣Ci j
∣∣∣︸ ︷︷ ︸

≤ ρi

≥

n∑
i=1

Yiiρi(D̂2
ii − 1)

= −

n∑
i=1

ρi (Yii − 1)+

where we used D̂ii = min(1, 1/
√

Yii) in the last step. Rearranging the terms in the last inequality
gives

C • X̂ ≥ C • Y −
n∑

i=1

ρi (Yii − 1)+ = Ĉ • X −
n∑

i=1

(Xii − ρi)+,

where the last step is by definition of matrix Y. □

A.2.2 Analysis of Approximate Lazy Mirror Descent

We now derive the convergence bound of approximate lazy mirror descent. The proof closely
follows that of Theorem 4.3 in Bubeck’s monograph [B+15].

Theorem 2.1.3 (Convergence of Lazy Mirror Descent). Fix a norm ∥ · ∥. Given an α-strongly convex

mirror map Φ : D → R and a convex, G-Lipschitz objective f : X → R, run Algorithm A.2.1 with step

size η and E∥x(t)
− x̃(t)

∥ ≤ δ. Let D
def
= supx∈X∩DΦ (x) − infx∈X∩DΦ (x) and x∗ = arg minX f (x). Then,

Algorithm A.2.1, after T iterations, returns x̃t∗ , satisfying

E f (x̃(t∗)) − f (x∗) ≤
D
Tη
+

2ηG2

α
+ δG. (2.1.6)

Proof. By convexity of f ,

T∑
t=1

(f (x̃(t)) − f (x)) ≤
T∑

t=1

〈
∇ f (x̃(t)), x̃(t)

− x
〉
=

T∑
t=1

〈
∇ f (x̃(t)), x̃(t)

− x(t)
〉

︸ ︷︷ ︸
A

+

T∑
t=1

〈
∇ f (x̃(t)), x(t)

− x
〉

︸ ︷︷ ︸
B

. (A.2.1)

The term A can be bounded by Cauchy-Schwarz inequality and the invariant E∥x(t)
− x̃(t)

∥ ≤ δ:

A ≤

T∑
t=1

∥∆(t)
∥∥∇ f

(
x̃(t)

)
∥∗ ≤ δGT. (A.2.2)

Next, recall that Algorithm A.2.1 initializes x(1)
∈ argmin

X∩D
Φ(x) and z(1) satisfying ∇Φ(z(1)) = 0,

and repeats the following two steps:

∇Φ(z(t)) = ∇Φ(z(t−1)) − η∇ f (x(t))

x(t) = argmin
X∩D

DΦ(x, z(t)).

Now consider the potential function Ψ̃t(x) def
= Φ(x) + η

〈
x,

∑t
s=1 ∇ f (x̃(s))

〉
. Applying the recursive

definition of the gradient step, we can express x(t+1) = arg min
x∈X∩D

Ψ̃t (x). SinceΦ is α-strongly convex,

so is the potential functionΨt. We can express these two statements as follows:

Ψ̃t(x(t+1)) − Ψ̃t(x(t)) ≤
〈
∇Ψ̃t(x(t+1)), x(t+1)

− x(t)
〉

︸ ︷︷ ︸
≤ 0, by optimality of x(t+1)

−
α
2 ∥x

(t+1)
− x(t)

∥
2

≤ −
α
2 ∥x

(t+1)
− x(t)

∥
2. (A.2.3)

We can also write a lower bound for the left hand side of Inequality A.2.3 by evaluating the potential
function Ψ̃t at points x(t+1) and x(t):

Ψ̃t(x(t+1)) − Ψ̃t(x(t)) = Φ
(
x(t+1)

)
+ η

t∑
s=1

〈
∇ f (x̃(s)), x(t+1)

〉
−Φ(x(t)) − η

t∑
s=1

〈
∇ f (x̃(s)), x(t)

〉
= Ψ̃t−1(x(t+1)) − Ψ̃t−1(x(t))︸ ︷︷ ︸
≥ 0, since x(t) minimizes Ψ̃t−1 (x)

+η
〈
∇ f (x̃(t)), x(t+1)

− x(t)
〉

≥ η
〈
∇ f (x̃(t)), x(t+1)

− x(t)
〉
. (A.2.4)

Reverse and chain Inequality A.2.3 and Inequality A.2.4, and apply Cauchy-Schwarz inequality to

get
α
2
∥x(t+1)

− x(t)
∥

2
≤ η

〈
∇ f (x̃(t)), x(t)

− x(t+1)
〉
≤ ηG∥x(t)

− x(t+1)
∥. (A.2.5)

This shows that

∥x(t)
− x(t+1)

∥ ≤
2ηG
α
, (A.2.6)

and applying this to the second part of Inequality A.2.5 gives

〈
∇ f (x̃(t)), x(t)

− x(t+1)
〉
≤

2ηG2

α
. (A.2.7)

We now claim

T∑
t=1

〈
∇ f (x̃(t)), x(t)

− x
〉
≤

T∑
t=1

〈
∇ f (x̃(t)), x(t)

− x(t+1)
〉
+ 1
η (Φ(x) −Φ(x(1))). (A.2.8)

Note that this claim immediately gives the desired error bound; this can be seen as follows: the
left-hand side is exactly the term 2 in Inequality A.2.1; the first term of the right-hand side
is bounded in Inequality A.2.7, and the second one is bounded by the definition of set size D.
Therefore Inequality A.2.8 simplifies to

B ≤
2ηG2T
α

+
D
η
. (A.2.9)

Combine Inequality A.2.9 and Inequality A.2.2 with Inequality A.2.1, apply Jensen’s inequality, and
the fact that t∗ is picked uniformly at random from {1, 2, . . . ,T}, to get the desired error bound. We
now prove Inequality A.2.8. First, we rewrite it as

T∑
t=1

〈
∇ f (x̃(t)), x(t+1)

〉
+
Φ(x(1))
η

≤

T∑
t=1

〈
∇ f (x̃(t)), x

〉
+
Φ(x)
η
.

The claim is true for T = 0 for all x ∈ X, by the choice of x(1). Assume it holds for all x ∈ X at time

T = t′ − 1. Therefore in particular, it holds at the point x = x(t′+1). This implies

t′∑
t=1

〈
∇ f (x̃(t)), x(t+1)

〉
+
Φ(x(1))
η

=
〈
∇ f (x̃(t′)), x(t′+1)

〉
+

t′−1∑
t=1

〈
∇ f (x̃(t)), x(t+1)

〉
+
Φ(x(1))
η︸ ︷︷ ︸

Apply induction hypothesis at x(t′+1)

≤

〈
∇ f (x̃(t′)), x(t′+1)

〉
+

t′−1∑
t=1

〈
∇ f (x̃(t)), x(t′+1)

〉
+
Φ(x(t′+1))

η

=

t′∑
t=1

〈
∇ f (x̃(t)), x(t′+1)

〉
+
Φ

(
x(t′+1)

)
η

=
1
η
Ψ̃t′

(
x(t′+1)

)
≤

1
η
Ψ̃t′(x)

=

t′∑
t=1

〈
∇ f

(
x̃(t)

)
, x

〉
+
Φ(x)
η
,

where the last inequality is by optimality of x(t′+1) in minimizing Ψ̃t′ . This completes the induction,
and therefore proves Inequality A.2.8, thus completing the proof of the error bound. □

A.3 Analysis of the Arora-Kale Algorithm

In this section, we display Algorithm A.3.1 in the approximate mirror descent framework and
provide its analysis. In Section A.3.1, we derive the values of all parameters; in Section A.3.2, we
derive the computational costs of the main steps. We then conclude with the correctness and cost of
their algorithm. The main export of this section is the following theorem.

Theorem A.3.1 (Run Time [AK07]). Given C ∈ Rn×n with m ≥ n non-zero entries and 0 < ε ≤ 1
2 , we can

find, in time Õ
(
m/ε5

)
, a matrix Y ∈ Sn with O(m) non-zero entries and a diagonal matrix S ∈ Rn×n such

that X̃∗ = S · K exp(Y)
Tr exp(Y) · S satisfies X̃∗ ⪰ 0, X̃∗ii ≤ 1 for all i ∈ [n], and E(C • X̃∗) ≥ C • X∗ − ε ·

∑
i, j |C|i j.

A.3.1 Parameters

As can be seen in Algorithm A.2.1, approximate lazy mirror descent requires five parameters: the
set diameter, Lipschitz constant of the objective, strong convexity of the mirror map, step size, and
number of iterations. The first three depend on our choice of mirror map Φ and objective f . The
last two can be chosen based on these parameters and Inequality 2.1.6.

Lemma A.3.2 (Set Diameter). Given Φ (X) = X • log X and the domain {X : X ⪰ 0,Tr X = n}, the set
diameter measured by Φ is given by D = n log n.

Lemma A.3.3 (Lipschitz constant). The problem objective f̂ (X) = −Ĉ • X +
∑n

i=1(Xii − ρi)+ (recall that
ρi =

∑n
j=1

∣∣∣Ci j
∣∣∣) is 2-Lipschitz in the nuclear norm. Recall that nuclear norm of a matrix is the sum of its

singular values.

Algorithm A.3.1 Reinterpreting [AK07]
Input: Cost matrix C ∈ Rn×n, accuracy parameter ε.
Parameters: T = 256 log n/ε2, T′ = 10240 log n/ε2, T′′ = (1/ε) · 64 log n, η = ε/64. Set Ĉ and ρ as
defined in Lemma 2.1.4.

1: Initialize Y(1)
← 0.

2: Define ∇ f (M) def
= diag(1)M≥ρ − Ĉ.

3: for t = 1→ T do
4: ẽxp

(
1
2 Y(t)

)
← TaylorExp

(
1
2 Y(t),T′′

)
. ▷ Approximate matrix exponential

5: êxpY(t)
← RandProj

(
ẽxp

(
1
2 Y(t)

)
,T′

)
. ▷ Approximate projection

6: X̃(t)
← n

êxp(Y(t))
Tr êxpY(t) ▷ Scaling due to the trace constraint

7: Y(t+1)
← Y(t)

− η∇ f (X̃(t)). ▷ Gradient update.
8: end for
9: For t∗ unif.

∼ {1, 2, . . . ,T}, return Y(t∗) and S, where S is from Lemma 2.1.4.

Proof. The gradient of the objective at point X is ∇ f̂ (X) = diag(1
{X≥ρ}) − Ĉ. By the Gershgorin Disk

Theorem, we have

∥diag(()) 1
ρC∥op ≤ max

i∈[n]

 1
ρi
· |Cii| +

1
ρi
·

∑
j,i

∣∣∣Ci j
∣∣∣ = max

i∈[n]

 1
ρi
·

n∑
j=1

∣∣∣Ci j
∣∣∣ = 1, (A.3.1)

where in the last equality we use the choice of ρi =
∑n

j=1

∣∣∣Ci j
∣∣∣. Since the matrices diag(1/ρ) · C and

Ĉ = diag(1/√ρ) · C · diag(1/√ρ) are similar, they have the same set of eigenvalues (and therefore, the
same operator norm). Therefore

∥diag(1
{X≥ρ}) − Ĉ∥op ≤ ∥diag(1

{X≥ρ})∥op + ∥Ĉ∥op = 1 + 1 = 2.

When we have ∥∇ f̂ ∥ ≤ G for some G, it implies f is G-Lipschitz in ∥ · ∥∗ (the dual norm). Therefore,
in our case, we have that f̂ is 2-Lipschitz in the nuclear norm (dual of the operator norm). □

Lemma A.3.4 (Strong Convexity). ([KST09]) The mirror map Φ (X) = X • log X is 1/(2n)-strongly
convex with respect to the nuclear norm on the domain {X ∈ Sn : X ⪰ 0,Tr (X) = n}.

Lemma A.3.5. Choosing η = ε/64 and T = 256 log n/ε2 in Algorithm A.3.1 gives an accuracy of εn.

Proof. We show in Lemma A.3.11 that Algorithm A.3.1 maintains the invariant E|||X(t)
− X̃(t)

||| ≤ δ =
εn/4. Therefore we are in the framework of approximate lazy mirror descent and can use its error
bound from Inequality 2.1.6 and bound it by εK. We plug in the parameters from Lemma A.3.2,
Lemma A.3.3, and Lemma A.3.4 in the bound and get

E f (x̃(t∗)) − f (x∗) ≤
n log n

Tη
+

2η · 22

1/2n
+

(
εn
4

)
· 2.

We optimize for η by setting the first two terms equal, and get

η = 1
4

√
log n

T
. (A.3.2)

With this expression for η, setting the bound for the right-hand side above to be εn gives T ≥
256 log n/ε2; plug this back in Equation (A.3.2) to get η = ε/64. □

A.3.2 Computational Cost

From Algorithm A.3.1, we see that there are three main parts to be computed to get the overall cost
of the Arora-Kale algorithm: the number of iterations, the number of JL projections per iteration,
and the cost of approximating a matrix exponential and multiplying it with a vector. We derive
these values in this section.

Taylor Approximation for Matrix Exponential

In Algorithm A.3.1, before we do the randomized projection to get the diagonal entries, we
approximate the matrix exponential ẽxp

(
Y(t)/2

)
= TaylorExp

(
Y(t)/2,T′′

)
. Here we show a bound

on
∣∣∣∣∣ exp(Y(t))ii
Tr exp(Y(t)) −

ẽxp(Y(t))ii
Tr ẽxp(Y(t))

∣∣∣∣∣ for any 1 ≤ i ≤ n. We do so by first proving a bound on
∣∣∣ Aii
Tr A −

Bii
Tr B

∣∣∣ for a

matrix B approximating the general matrix A; then we prove a general result on the number of
terms required to approximate a matrix exponential using Taylor series; finally, we combine these
results to get an appropriate choice of Tpoly for approximating exp

(
Y(t)/2

)
.

Lemma A.3.6. Given positive definite matrices A and B such that ∥A − B∥op ≤ ε, where ε ≤ 1
2n Tr A, we

have
∣∣∣ Aii
Tr A −

Bii
Tr B

∣∣∣ ≤ 2 ε(Tr A+nAii)
(Tr A)2 .

Proof. We have the following chain of inequalities.

∣∣∣∣∣ Bii

Tr B
−

Aii

Tr A

∣∣∣∣∣ 1
≤

∣∣∣∣∣ Aii + ε
Tr A − nε

−
Aii

Tr A

∣∣∣∣∣ = ε (Tr A + nAii)
(Tr A) (Tr A − εn)

2
≤ 2

ε (Tr A + nAii)

(Tr A)2 ,

where 1 is by the worst case values for Bii from the operator norm bound, and 2 is by the bound
on ε. □

Lemma A.3.7. For T ≥ e2
∥Y∥op, we have ∥ exp (Y) −

T∑
j=0

Y j

j! ∥op ≤ exp (−T).

Proof. We have the following chain:

∥ exp (Y) −
T∑

j=0

1
j! Y

j
∥op

1
= ∥

∞∑
j=T+1

1
j! Y

j
∥op

2
≤

∞∑
j=T+1

∥
1
j! Y

j
∥op =

∞∑
j=T+1

1
j!∥Y∥

j
op

3
≤

∞∑
j=T+1

e j

j j ∥Y∥
j
op, (A.3.3)

where 1 is by the Taylor series expansion of the matrix exponential, 2 is by triangle inequality of
norms, and 3 is by Stirling’s approximation, j! ≥

(
j/e

) j. Since the right hand side of the above

inequality is indexed over j ≥ T ≥ e2
∥Y∥op, we can bound it further to get

∥ exp Y −
T∑

j=0

1
j! Y

j
∥op ≤

∞∑
j=T+1

e− j =
(e−1)T+1

1 − e−1
≤ e−T.

□

Lemma A.3.8. In Algorithm A.3.1, for n ≥ 2 and ε ≤ 1
2 , set Tpoly =

64 log n
ε , and let ẽxp

(
Y(t)/2

)
:=

TaylorExp
(
Y(t)/2,Tpoly

)
. Then for each coordinate i, we have

∣∣∣∣∣ exp(Y(t))ii
Tr exp Y(t) −

(ẽxpY(t))ii
Tr ẽxpY(t)

∣∣∣∣∣ ≤ ε
8n .

Proof. Let ẽxp
(
Y(t)/2

)
= exp

(
Y(t)/2

)
+ ∆, and ∥∆∥op = ε1. Then

∥ exp Y(t)
− ẽxpY(t)

∥op = ∥(exp
(
Y(t)/2

)
)2
− (ẽxp(Y(t)/2))2

∥op

= ∥∆2 + ∆ exp
(
Y(t)/2

)
+ exp

(
Y(t)/2

)
∆∥op

≤ ε2
1 + 2ε1∥ exp

(
Y(t)/2

)
∥op. (A.3.4)

Observe that in each iteration of Algorithm A.3.1, we add −η∇ f (X̃(t)) to the current Y(t) in the
gradient step; therefore at the end of all the T iterations, ∥Y(t)

∥op ≤
∣∣∣ηT

∣∣∣∥∇ f (X̃(t))∥op. From the values
of η and T as set in Algorithm A.3.1 (and explained in Section A.3), the worst-case value is

∥Y(t)/2∥op ≤
1
2
·
ε

64
·

256 log n
ε2 · 2 =

4 log n
ε

. (A.3.5)

Next, from Lemma A.3.7, we require the first max
{
e2
∥Y(t)/2∥op, log (1/ε1)

}
terms of the Taylor series

of exp
(
Y(t)/2

)
to get an ε1 accuracy in approximation. Since Tpoly = 64 log n/ε ≥ e2

∥Y(t)/2∥op (from
Inequality A.3.5), this choice of number of Taylor series terms corresponds to an accuracy of
ε1 = n−64/ε. From Inequality A.3.5, we get that

∥ exp
(
Y(t)/2

)
∥op ≤ e4 log n/ε = n4/ε. (A.3.6)

Then we have

ε2
1 + 2ε1∥ exp

(
Y(t)/2

)
∥op ≤ n−128/ε + 2n−64/εn4/ε

≤ 4n−60/ε

≤
n−4/ε

2
≤

1
2n

Tr exp
(
Y(t)/2

)
, (A.3.7)

where the last inequality is by Inequality A.3.6. Chaining Inequality A.3.4 and Inequality A.3.7, the

condition in Lemma A.3.6 is satisfied. Applying the result of Lemma A.3.6,∣∣∣∣∣∣∣∣
(
exp

(
Y(t)

))
ii

Tr exp
(
Y(t)

) −
(
ẽxp

(
Y(t)

))
ii

Tr ẽxp
(
Y(t)

)
∣∣∣∣∣∣∣∣ ≤ 2

(
ε2

1 + 2ε1∥ exp (Y) ∥op

) Tr exp
(
Y(t)

)
+ n exp

(
Y(t)

)
ii(

Tr exp
(
Y(t)

))2 .

≤ 2

(
ε2

1 + 2ε1n4/ε
) (

2n1+8/ε
)

(
n−8/ε)2

≤ 4
(

ε2

10000n41/ε
+

ε

50n4/ε

)
≤
ε

8n

□

Randomized Projections

Suppose we approximate each entry of a vector using randomized projections. Then we can state
the following result about the accuracy of the function g(x) = xi/∥x∥1.

Lemma A.3.9. For 0 , X ∈ Sn, let X̃ = RandProj(X, 10240 log n/ε2). Then
∣∣∣∣∣ X̃ii

Tr X̃
−

X2
ii

Tr X2

∣∣∣∣∣ ≤ ε
8 .

To prove this result, we need the Johnson-Lindenstrauss lemma.

Lemma A.3.10 ([JL84]). For any 0 < ε < 1, and any integer n, let k be a positive integer such that
k ≥ 20 log n/ε2. Then for any set V of n points in Rd and random matrix A ∈ Rk×d, with high probability,
for all x ∈ V,

(1 − ε)∥x∥22 ≤ ∥(1/
√

k)Ax∥22 ≤ (1 + ε)∥x∥22.

Proof of Lemma A.3.9. Applying Lemma A.3.10 to X̃ = RandProj
(
X, 10240 log n

ε2

)
, we have that with

high probability,
∣∣∣X2

ii − X̃ii
∣∣∣ ≤ ε

32

∣∣∣X2
ii

∣∣∣. Therefore, Tr X2
(
1 − ε

32

)
≤ Tr X̃2

≤ Tr X2
(
1 + ε

32

)
. Therefore

X2
ii(1−ε/32)

Tr X2(1+ε/32) ≤
X̃ii

Tr X̃
≤

X2
ii(1+ε/32)

Tr X2(1−ε/32) which can be simplified to
X2

ii
Tr X2 (1 − ε/16) ≤ X̃ii

Tr X̃
≤

X2
ii

Tr X2 (1 + ε/8),

where the last simplification is by the inequalities 1−x
1+x ≥ 1 − 2x and 1+x

1−x ≤ 1 + 4x for x ∈
(
0, 1

2

)
.

Therefore we have that
∣∣∣∣∣ X̃ii

Tr X̃
−

X2
ii

Tr X2

∣∣∣∣∣ ≤ (ε/8)
X2

ii
Tr X2 ≤ ε/8. □

Number of Iterations

From Lemma A.3.8 and Lemma A.3.9 proved above, we can infer that the choice of T′′ and T′ in
Algorithm A.3.1 gives us the following overall error in approximating the true primal iterate.

Lemma A.3.11. In Algorithm A.3.1, we have that |||X̃(t)
− X(t)

||| ≤
εn
4 .

Proof. The quantity we want to bound is |||
n exp(Y(t))
Tr exp(Y(t)) −

X̃(t)

Tr X̃(t)
|||. Each term is bounded as:∣∣∣∣∣∣∣∣

n exp
(
Y(t)

)
ii

Tr exp
(
Y(t)

) − X̃(t)
ii

Tr X̃(t)

∣∣∣∣∣∣∣∣ ≤ n

∣∣∣∣∣∣∣∣
exp

(
Y(t)

)
ii

Tr exp
(
Y(t)

) − ẽxp
(
Y(t)

)
ii

Tr ẽxp (Yt)

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
TaylorExp error

+

∣∣∣∣∣∣∣∣
nẽxp

(
Y(t)

)
ii

Tr ẽxp
(
Y(t)

) − nêxp
(
Y(t)

)
ii

Tr êxp
(
Y(t)

)
∣∣∣∣∣∣∣∣︸ ︷︷ ︸

RandProj error

.

Apply the results of Lemma A.3.8 and Lemma A.3.9 to the right hand side terms. □

Corollary A.3.12. The number of iterations for convergence of the Arora-Kale algorithm is O(1/ε2).

Proof. Since the Arora-Kale algorithm only depends on the diagonal entries of X, we can assume
that X̃ and X match on the off-diagonal entries. Then, |||X̃(t)

− X(t)
||| ≤

εn
4 is exactly equivalent to

∥X̃(t)
− X(t)

∥nuc ≤
εn
4 . Therefore the algorithm meets the conditions of Algorithm A.2.1 with δ = εn

4 .
Therefore by Theorem 2.1.3, the number of outer iterations required for convergence is O(1/ε2). □

Combining All the Costs

Recall from Algorithm A.3.1 that T′ = O(1/ε2), T′′ = O(1/ε), and the number of iterations is O(1/ε2).
The cost of a matrix-vector product is O(m). Therefore, multiplying these costs gives O(m/ε5), the
claimed cost of Arora-Kale algorithm. This completes the analysis.

A.4 Analysis of our Proposed Algorithm

We now analyze Algorithm 2.2.1, organizing this section as follows. In Section A.4.1 we derive the
values of parameters that appear in the error bounds. Next, in Section A.4.2, we show how we
construct a polynomial to approximate the matrix exponential. In Section A.4.3, we prove properties
of the constructed estimators. We derive the number of inner iterations we have in Section A.4.4.
In Section A.4.5, we establish the crucial distance invariance between true and estimated iterates,
which ensures that our error is always under control. We next show in Section A.4.6 why we do not
need to normalize our projection step, which enables us to have a simple projection. Finally, we
derive the error bound in Section A.4.7.

A.4.1 Parameters of Mirror Map

As before, there are two parameters of the mirror map that we need to use in Theorem 2.1.3: the
diameter of the constraint set as measured by it, and its strong convexity parameter.

Lemma A.4.1 (Set Diameter). GivenΦ(X) = X• log X−Tr X and the domainD = {X : X ⪰ 0,Tr X ≤ K},
where K ≥ n, the set diameter measured by Φ is given by D = K log K.

Lemma 2.2.9. The function Φ(X) = X • log X − Tr X is 1
4K -strongly convex with respect to the nuclear

norm over the domainD = {X : X ⪰ 0,Tr X ≤ K}.

To prove the claimed strong convexity, we need the following tools.

Definition A.4.2. A function f : Rn
→ R is L-smooth in norm ∥ · ∥ if it is continuously differentiable and

satisfies ∥∇ f (x) − ∇ f (y)∥∗ ≤ L∥x − y∥ for all x and y in dom f .

For functions on symmetric matrices, we use the following equivalent definition of smoothness.

Definition A.4.3. A function f : Sn
→ R is L-smooth in ∥ · ∥ if and only if for h : R → R defined as

h (t) = f (X + tH) for H ∈ Sn such that X + tH ∈ dom(f), we have h′′ (0) ≤ L∥H∥2.

Theorem A.4.4 ([KST09]). Assume that f is a closed and convex function. Then f is β-strongly convex
with respect to a norm ∥ · ∥ if and only if its Fenchel dual, f ∗, is 1

β -smooth with respect to the dual norm ∥ · ∥∗.

Theorem A.4.5 ([JN08]). Let ∆ be an open interval on the real axis, and f be a twice differentiable function
on ∆ satisfying, for a certain θ ∈ R, for all a < b, where a, b ∈ ∆, f ′(b)− f ′(a)

b−a ≤ θ
f ′′(a)+ f ′′(b)

2 . Let Xn(∆) be
the set of all n × n symmetric matrices with eigenvalues belonging to ∆. Then for X ∈ Xn(∆), the function
F(X) = Tr f (X) is twice differentiable, and for every H ∈ Sn, we have D2F(X)[H,H] ≤ θTr

(
H f ′′(X)H

)
.

Theorem A.4.6 ([Lew95]). Suppose that the function f : Rn
→ R is symmetric (that is, f (σx) = f (x) for

all x ∈ dom f and all permutations σ). Then if f is convex and lower semicontinuous, the corresponding
unitarily invariant function f ◦ λ is convex and lower semicontinuous on Rn×n

For our proof, we use definitions from Definition 2.2.10 in the following way. We first show thatΨ
satisfies

Ψ∗(Y) = Φ(Y), on {Y : Y ⪰ 0,Tr Y ≤ K}, (A.4.1)

where Φ(Y) = Y • log Y − Tr Y is the mirror map, as defined in the statement of the lemma. We then
prove that Ψ is β-smooth with respect to the operator norm for a certain β > 0. Theorem A.4.4
then immediately implies 1/β-strong convexity of Ψ∗ with respect to the nuclear norm. Then
Equation (A.4.1) implies that Φ is 1/β-strongly convex with respect to the nuclear norm on the
domain {Y : Y ⪰ 0,Tr Y ≤ K}, which is to be proved. We accomplish our first goal (Equation (A.4.1))
in the following sequence of steps.

Claim A.4.7 proves that the functionψ and its matrix version,Ψ, are both continuously differentiable
at the boundary of definition of the two pieces. Claim A.4.8 then proves that ψ1 and ψ2 are convex;
in conjuncation with Claim A.4.7, this implies ψ is convex. Applying Theorem A.4.6 extends the
property of convexity toΨ. Claim A.4.9 proves that the vector functions ψ and ϕ satisfy ψ∗1(x) = ϕ(x)
for x ∈ Rn

+. Claim A.4.10 proves that given an input point x ∈ {x : xi ≥ 0,
∑n

i=1 xi ≤ K}, the point
y which attains the optimum in computing ψ∗1(x) lies in the interior of the set {y : ψ1(y) ≤ 2K}.
Claim A.4.11 shows that ψ∗(x) = ψ∗1(x) for x ∈ {x : xi ≥ 0,

∑n
i=1 xi ≤ K}. This is obtained by combining

the results of Claim A.4.8 and Claim A.4.10.

We then use these results as follows: since on the set {x : xi ≥ 0,
∑n

i=1 xi ≤ K}, we have ψ∗ = ϕ, this
implies Ψ∗ = Φ on the corresponding set, {X : X ⪰ 0,Tr X ≤ K}. Next, to show smoothness of Ψ,
we use Theorem A.4.5 to compute the smoothness constants of each part of Ψ (in Claim A.4.12
and Claim A.4.13), and then combine with continuous differentiability at the boundary (from
Claim A.4.7) to get the overall smoothness constant ofΨ. By the argument at the start of this proof,
this immediately proves the desired strong convexity parameter. We now proceed to prove all the
claims aluded to above.

Claim A.4.7. The functionsΨ and ψ are both continuously differentiable at the boundary.

Proof of Claim. One can check that ψ1(y) = ψ2(y) at the boundary. This implies continuity of the
function ψ. The derivatives of the two functions are also the same at the boundary. The i-th
component of the gradient is given by ∇iψ2(y) = 2K∇iψ1(y)

ψ1(y) . At the boundary of the two parts of the
function, we have ψ1(y) = 2K. Substituting this into the above gradient gives ∇ψ2(y) = ∇ψ1(y).
This shows that ψ is continuously differentiable at the boundary. We only used chain rule of
derivatives here, which applies to matrices as well, so the exactly same reasoning also gives thatΨ
is continuously differentiable at the boundary. □

Claim A.4.8. The functions ψ andΨ are convex on their domains.

Proof. The function ψ is a piecewise function, each piece composed of a standard convex function
(see [BV04b]). Combine with continuous differentiability from Claim A.4.7 gives convexity of ψ.
Applying Theorem A.4.6 implies convexity ofΨ. □

Claim A.4.9. For any input x ∈ Rn
+, we have ψ∗1(x) = ϕ(x).

Proof of Claim. By definition, we have ψ∗1(x) = supy(x⊤y −
∑n

i=1 exp
(
yi
)
). Observe that the domain

of ψ∗1 is Rn
+ (because if there exists an input with a negative coordinate, then the corresponding

coordinate of the maximizer y∗ can be made to go to −∞). Therefore, given an input x ∈ Rn
+,

the supremum is attained at y∗ satisfying xi = exp
(
y∗i

)
. This means the maximizer is y∗i = log xi.

Therefore the conjugate is ψ∗1(x) =
∑n

i=1 xi log xi −
∑n

i=1 xi = ϕ(x). □

Claim A.4.10. For any x in the set
{
x : xi ≥ 0,

∑n
i=1 xi ≤ K

}
, the point y∗ = argmax

(
xT y − ψ1(y)

)
lies in

int
{
y : ψ1(y) ≤ 2K

}
, where int denotes the interior of the set.

Proof of Claim. From the proof of Claim A.4.9, for any x ∈ Rn
+, we have that y∗ = argmax

(
xT y − ψ1(y)

)
satisfies y∗i = log xi for 1 ≤ i ≤ n. In addition to this, the statement of the lemma also requires the
input x to satisfy xi ≥ 0,

∑n
i=1 xi ≤ K. Plug in the values of x in terms of y in the above inequality to

get
∑n

i=1 exp y∗i ≤ K, which is the same as saying ψ1(y∗) ≤ K < 2K. This shows that the optimum, y∗,
lies in int

{
y : ψ1(y) ≤ 2K

}
. □

Claim A.4.11. We have ψ∗(x) = ψ∗1(x) on all x ∈
{
x : xi ≥ 0,

∑n
i=1 xi ≤ K

}
.

Proof of Claim. By definition of conjugate and ψ,

ψ∗(x) = sup
y

xT y − ψ(y) (A.4.2)

= sup
y

xT y −
{
ψ1(y) if ψ1(y) ≤ 2K
ψ2(y) otherwise

From Claim A.4.8, ψ is convex. Therefore the function to be maximized in Equation (A.4.2)
is concave. From Claim A.4.10, for input x in the set

{
x : xi ≥ 0,

∑n
i=1 xi ≤ K

}
, we have that the

maximizer argmaxy

(
xT y − ψ1(y)

)
lies in the interior of {y : ψ1(y) ≤ 2K}. Therefore for input

x ∈
{
x : xi ≥ 0,

∑n
i=1 xi ≤ K

}
, the maximizer of Equation (A.4.2) is also the same as that of ψ∗1(x). This

gives ψ∗(x) = ψ∗1(x). □

Claim A.4.12. The functionΨ1(Y) defined over
{
Y : Tr exp Y ≤ 2K

}
is 4K-smooth.

Proof of Claim. Let g (u) def
= exp(u). The function g is convex and differentiable (any number of

times). In particular, g′′ is convex. For any a, b, applying the Mean Value theorem to some point
ζ ∈ (a, b), convexity of g′′, and g′′ ≥ 0 (due to convexity of g) gives

g′ (b) − g′ (a)
b − a

= g′′ (ζ) ≤ max
(
g′′ (a) , g′′ (b)

)
≤ 2

g′′ (a) + g′′ (b)
2

.

This satisfies the right-hand side condition for Theorem A.4.5 with θ = 2; so Theorem A.4.5 implies

that on the domain
{
Y : Tr exp Y ≤ K

}
, for h (t) def

=
∑n

i=1 g (λi (Y + tH)) = Tr exp(Y + tH), we have,

h′′ (0) = D2Ψ1(Y)[H,H] ≤ 2 Tr
(
Hg′′(Y)H

)
= 2 Tr

(
exp(Y)H2

)
≤ 2 Tr exp(Y) · ∥H∥2op

≤ 2 · 2K · ∥H∥2op

= 4K∥H∥2op, (A.4.3)

where we used the domain constraint for Ψ1 in the last inequality, and the fact that matrix
exponential is positive semidefinite in the first (Hölder’s) inequality. By Definition A.4.3 then, we
have the lemma. □

Claim A.4.13. The smoothness constant ofΨ2(Y) over the set {Y : Tr exp Y ≥ 2K} is 4K.

Proof. For ease of exposition, let a def
= 2K. Consider the same scalar function from Claim A.4.12,

h (t) = Tr exp(Y + tH) and ℓ (t) def
= a log (h (t)) + 2K − 2K log(2K). Then ℓ′ (t) = a h′(t)

h(t) and ℓ′′ (t) =

a
(

h′′(t)
h(t) −

(
h′(t)
h(t)

)2
)
≤ a h′′(t)

h(t) . In particular,

ℓ′′ (0) ≤ a
h′′(0)
h(0)

. (A.4.4)

We already showed in Inequality A.4.3 that h′′ (0) = D2Ψ1(Y)[H,H] ≤ 4K∥H∥2op. We also have that
h(0) = Tr exp(Y) ≥ 2K (by assumption of the lemma). Plugging these along with the value of a into
Equation (A.4.4) gives us ℓ′′ (0) ≤ 2K 4K

2K · ∥H∥
2
op = 4K∥H∥2op. This implies the claimed smoothness

constant. □

Proof of Lemma 2.2.9. For the functions defined in Definition 2.2.10, we can combine Claim A.4.9
and Claim A.4.11 to get that ψ∗(x) = ϕ(x) for x ∈ {x : xi ≥ 0,

∑n
i=1 xi ≤ K}. This implies the matrix

version of this statement,Ψ∗(X) = Φ(X) for X ∈ {X : X ⪰ 0,Tr X ≤ K}. Next, applying Claim A.4.7,
Claim A.4.12, and Claim A.4.13, we get that the function Ψ is continuously differentiable with
smoothness constant 4K. Invoking Theorem A.4.4, we immediately obtain that Ψ∗ is strongly
convex with parameter 1

4K . This implies that Φ is strongly convex with the same parameter over
the set {X : X ⪰ 0,Tr X ≤ K}. □

A.4.2 Chebyshev Approximation of the Matrix Exponential

In this section, we show how to construct a polynomial approximation of our matrix exponential.
The standard technique to do so involves truncating the Taylor series of the matrix exponential;
however, a quadratically improved bound on the number of terms required for the computation
is provided by Sachdeva and Vishnoi [SV+14] using Chebyshev polynomials. We follow their
notation and summarize their main results below for the sake of completeness.

A Brief Summary of Chebyshev Approximation

For a non-negative integer d, we denote by Td(x) the Chebyshev polynomials of degree d, defined
recursively as follows:

T0(x) = 1,
T1(x) = x,
Td(x) = 2xTd−1(x) − Td−2(x).

Let Yi be i.i.d. variables taking values 1 and −1 each with probability 1/2. Let Ds =
∑s

i=1 Yi, D0
def
= 0,

and
ps,d(x) def

= EY1,Y2,...,Ys

(
TDs(x)1|Ds|≤d

)
. (A.4.5)

We can use these to construct a polynomial with degree roughly
√

s that can well approximate xs.
The formal statement follows.

Theorem A.4.14 (Theorem 3.3 in [SV+14]). For any positive integers s and d, the degree d polynomial ps,d
defined by Equation (A.4.5) satisfies

sup
x∈[−1,1]

∣∣∣ps,d(x) − xs
∣∣∣ ≤ 2 exp

(
−d2/(2s)

)
.

Using this result, define the polynomial:

qλ,t,d(x) def
= exp(−λ)

t∑
i=0

(−λ)i

i!
pi,d(x). (A.4.6)

Then we can use q to approximate an exponential with the following error guarantee.

Lemma A.4.15 (Lemma 4.2 of [SV+14]). For every λ > 0 and δ ∈ (0, 1/2], we can choose t =
max(λ, log(1/δ)) and d =

√
t log(1/δ) such that

sup
x∈[−1,1]

∣∣∣exp(−λ − λx) − qλ,t,d(x)
∣∣∣ ≤ δ.

This is a quadratic improvement over the standard cost (degree) of approximating an exponential
using truncated Taylor series. Finally, this lemma can be used to generalize the approximation from
the [−1, 1] interval to the interval [0, b], as stated below.

Theorem A.4.16 (Theorem 4.1 of [SV+14]). For every b > 0, and 0 < δ ≤ 1, there exists a polynomial rb,δ
that satisfies

sup
x∈[0,b]

∣∣∣exp(−x) − rb,δ(x)
∣∣∣ ≤ δ

and has degree O(
√

max(b, log(1/δ)) · log(1/δ)).

The proof of this theorem uses λ def
= b/2, and t and d from Lemma A.4.15 and the polynomial

rb,δ(x) def
= qλ,t,d

(1
λ

(x − λ)
)
. (A.4.7)

Corollary A.4.17 (Our Chebyshev Approximation). For every b > 0, a < b, 0 < δ ≤ 1, and

d =
√

max
(

1
2 (b − a), log

(
1
δ

))
log

(
1
δ

)
, there exists a degree-d polynomial ChebyExp(u, d, δ) such that

sup
u∈[a,b]

∣∣∣exp(u) − ChebyExp(u, d, δ)
∣∣∣ ≤ δ exp(b). (A.4.8)

Proof. Using a simple linear transformation, Theorem A.4.16 generalizes to:

sup
z∈[a,b]

∣∣∣∣∣∣∣exp
(
−

1
2

(b − a)
) t∑

i=0

(− 1
2 (b − a))i

i!
pi,d(

z − (b + a)/2
(b − a)/2

) − exp(−(z − a))

∣∣∣∣∣∣∣ ≤ δ.
By choosing λ = 1

2 (b − a), and transforming −z + a = u − b, we get

sup
u∈[a,b]

∣∣∣∣∣∣q 1
2 (b−a),t,d

(
−u + (b + a)/2

(b − a)/2

)
− exp(u − b)

∣∣∣∣∣∣ ≤ δ.
Using Equation (A.4.7) above gives

sup
u∈[a,b]

∣∣∣exp(b)rb−a,δ(b − u) − exp(u)
∣∣∣ ≤ δ exp(b).

Therefore, let d =
√

max
(

1
2 (b − a), log

(
1
δ

))
log

(
1
δ

)
and ChebyExp(u, d, δ) = exp(b)rb−a,δ(b − u). Sub-

stitute these into the last inequality to get the statement of the lemma. □

Chebyshev Approximation in Our Algorithm

We can use the above results to approximate a matrix exponential as follows. Observe that

∥ exp(Y) − ChebyExp(Y, d, δ)∥op = max
i∈[n]

∣∣∣exp(λi) − ChebyExp(λi, d, δ)
∣∣∣,

where λi are the eigenvalues of Y and ChebyExp is the subroutine described in Corollary A.4.17.
We only need the spectrum of Y in order to complete the approximation, and that is what we
proceed to derive below. Once we have the spectrum, we simply combine it with the above results
to get Lemma A.4.19.

Lemma A.4.18. The spectrum of Y lies in the range
[
−

1
ε60 log n, log K

]
.

Proof. Recall that Y = −η∇ f (X). Since we start Algorithm 2.2.1 with Y(1) = 0, at the t-th iteration,
we have Y(t) = −

∑t
i=1 η∇ f

(
X(t)

)
. Plugging in the parameters displayed in Table 2.1, we get that

the total number of iterations of the algorithm is Tinner × Touter =
1
ε3 24 × 105 (

log(n/ε)
)11 log n, the

Lipschitz constant of the objective function is ∥∇ f ∥op ≤ 2, and the step size is η = ε2

8×104(log(n/ε))11 .

Multiplying these gives

∥Y(t)
∥op ≤ 2 ·

ε2

8 × 104 ×
(
log(n/ε)

)11
·

24 × 105
×

(
log(n/ε)

)11 log n
ε3 =

1
ε

60 log n.

Therefore, the spectrum of Y(t) lies in

λ(Y(t)) ∈
[
−

1
ε

60 log n,
1
ε

60 log n
]
. (A.4.9)

We now show a better upper bound on the spectrum. Since our algorithm maintains Tr X(t)
≤ K

(see Lemma 2.2.8), and X(t) = exp
(
Y(t)

)
, it implies Tr exp

(
Y(t)

)
≤ K. Since the matrix exponential is

positive definite, this implies ∥ exp
(
Y(t)

)
∥op ≤ K, and therefore,

λmax(Y(t)) ≤ log K. (A.4.10)

Combining the inclusion Equation (A.4.9) and Equation (A.4.10) gives the claimed bound on the
spectrum. □

Lemma A.4.19. In Algorithm A.3.1, for n ≥ 2 and ε ≤ 1
2 , set TCheby =

150
√
ε

log(n/ε), δCheby = (ε/n)401,

and let ẽxp
(
Y(t)/2

)
:= ChebyExp

(
Y(t)/2,TCheby, δCheby

)
. Then for all 1 ≤ i ≤ n,∣∣∣∣exp

(
Y(t)

)
ii
−

(
ẽxpY(t)

)
ii

∣∣∣∣ ≤ δexp
def
= 4800ε401

n390 .

Proof. We plug into Equation (A.4.8) the following bounds obtained from Lemma A.4.18:

a = − 60 log n
ε , b = log K

u = λ = 1
2 (b − a) = log K

2 +
30 log n

ε

Applying Equation (A.4.8), we then get

sup

λ∈

[
−

30 log n
ε ,12 log K

]
∣∣∣∣∣∣Kr 1

2 log K+
30 log n

ε ,δ

(
1
2 log K − 1

2λ
)
− exp

(
1
2λ

)∣∣∣∣∣∣ ≤ δK

We have K = 40n
(
log n

)10; therefore, if we want the error bound to be roughly ε
n , then we need to

pick δ = polylog(ε,n). Because of technical details in Lemma A.4.24, we choose

δCheby =
(
ε
n

)401
. (A.4.11)

This gives us the following result.

∥ exp
(
Y(t)/2

)
− ChebyExp(Y(t)/2,TCheby, δCheby)∥op ≤ 40

ε401

n396 .

From Lemma A.4.15, we get that the degree of polynomial required to achieve this guarantee is

Required Degree =

√
2 × 104

ε
log n log(n/ε) ≤

150
√
ε

log(n/ε).

This is the value of TCheby that we choose. We now bound the quantity we actually care about. We
can write ẽxp

(
1
2 Y(t)

)
= exp

(
1
2 Y(t)

)
+ ∆, where ∥∆∥op = 40 ε

401

n396 , the error guarantee obtained above.

Simplifying with the application of ∥ exp
(
Y(t)

)
∥op ≤ K obtained from Lemma 2.2.8 gives

∥ exp
(
Y(t)

)
− ẽxp

(
Y(t)

)
∥op = ∥

(
exp

(
1
2 Y(t)

))2
−

(
ẽxp

(
1
2 Y(t)

))2
∥op

= ∥∆2 + ∆ exp
(

1
2 Y(t)

)
+ exp

(
1
2 Y(t)

)
∆∥op

≤ (40
ε401

n396)2 + 2(40
ε401

n396)∥ exp
(

1
2 Y(t)

)
∥op

≤ (40
ε401

n396)2 + 2(40
ε401

n396)K

≤ 3(40
ε401

n396)K

≤ 3 ·
40ε401

n396 · 40n
(
log n

)10

≤
4800ε401

n390 .

Substituting our assumption n ≥ 4 above gives the claimed bound. □

In conclusion, we showed that we can approximate our matrix exponential to ε-accuracy using
O(1/

√
ε) terms in the polynomial approximation.

A.4.3 Properties of Estimators

Since we have an inner loop in Algorithm 2.2.1 with estimated quantities, it is crucial for the
convergence that these estimators have a small bias and variance. In this section we show that this
is indeed the case. We first prove two technical results about the functions InvSqrt and RandProj
which are “building blocks” of our estimators. We then apply these results in proving properties of
θ̂1 and θ̂2, and subsequently those of the overall estimator θ̂.

Two Technical Results about Estimators

Lemma 2.2.6. Consider a positive random variable x sampled from a distribution X with mean µ and variance
σ2. For some integer k > 0, construct the distribution G(X) = InvSqrt (X, k) defined in Equation (2.2.2).
Then the random variable g ∼ G(X) satisfies

(1) |Eg − µ−1/2
| ≤ E

(
|x−µ|k

min(µ,x)k+1/2

)
(2) E|g|2 ≤ k

∑k−1
j=0 E

(
σ2+(µ−x)2

) j

x2 j+1

.

Proof. Recall that given a distribution X̃ with a positive support, and integer N > 0, we define
InvSqrt as the approximation for g (u) = u−1/2 at x0 sampled from X̃:

InvSqrt(X̃,N) =
N−1∑
k=0

1
k!

g(k)(x0)
k∏

j=1

(xk, j − x0), where x0, xk, j
i.i.d.
∼ X̃,

where g(k) (u) = (−1)k

2k u− j−1/2 ∏ j
ℓ=1 (2ℓ − 1) denotes the k-th derivative of g evaluated at u. Then the

expected value of g with respect to the distribution G(X) is

Eg = E
k−1∑
j=0

1
j!

g(j)(x)
j∏

ℓ=1

(
x j,ℓ − x

)
= E

k−1∑
j=0

1
j!

g(j)(x)
j∏

ℓ=1

(
Ex j,ℓ − x

)
= E

k−1∑
j=0

1
j!

g(j)(x)
(
µ − x

) j . (A.4.12)

To see how the term on the right hand side of Equation (A.4.12) differs from the true quantity to be
estimated, we apply Taylor’s remainder theorem: for some point ζ lying between µ and x, we have∣∣∣∣∣∣∣∣

k−1∑
j=0

1
j!

g(j)(x)
(
µ − x

) j
− µ−

1/2

∣∣∣∣∣∣∣∣ ≤ g(k) (ζ)
k!

∣∣∣x − µ∣∣∣k
≤

∣∣∣x − µ∣∣∣k
min

(
x, µ

)k+1/2
,

where the second inequality follows from∣∣∣∣∣∣ g(k) (u)
k!

∣∣∣∣∣∣ ≤ u−k− 1
2 , (A.4.13)

and the fact that ζ lies between x and µ. Combining this with Jensen’s inequality gives us the final
bound on the first moment,

∣∣∣Eg − µ−1/2
∣∣∣ ≤ E ∣∣∣g − µ−1/2

∣∣∣ ≤ E ∣∣∣x − µ∣∣∣k
min

(
x, µ

)k+1/2
. (A.4.14)

To prove the bound on the second moment, we again start with the definition of InvSqrt,

E
∣∣∣g∣∣∣2 = E k−1∑

j=0

1
j!

g(j)(x)
j∏

ℓ=1

(
x j,ℓ − x

)
2

1
≤ kE

k−1∑
j=0

 g(j)(x)
j!

j∏
ℓ=1

(
x j,ℓ − x

)
2

2
= k

k−1∑
j=0

E

 g(j)(x)

j!

2 (
σ2 +

(
x − µ

)2
) j

3
≤ k

k−1∑
j=0

E

(
σ2 +

(
x − µ

)2
) j

x2 j+1

 . (A.4.15)

Here 1 is by Cauchy-Schwarz inequality; 2 is by using the fact that each x j,ℓ is sampled
independently and adding and subtracting µ from the term inside the square and using the
definition of σ2; 3 uses Inequality A.4.13. □

Lemma 2.2.7. Given u ∈ Rn such that µ
def
= ∥u∥22 , 0, and positive integers k > 1 and N ≥ 4k + 6, the

following are true for x sampled from X = RandProj (u,N).

(1) Ex = µ

(2) σ2 def
= E

(
x − µ

)2 =
2µ2

N

(3) E

(
σ2+(x−µ)2

)k

min(x,µ)2k+1

 ≤ 1
µ

(
eN/2

2N−17k +
213kk2k

Nk

)
Before diving into this proof, we state below a tool we need about logconcave distributions.

Theorem A.4.20 (Theorem 5.22 in [LV07]). If X ∈ Rn is a random point sampled from a logconcave
distribution, then (E|X|k)1/k

≤ 2kE|X|.

Proof of Lemma 2.2.7. By linearity of the Gaussian distribution, given a ζ ∼ N(0, In) and for some
u ∈ Rn, we have ζTu ∼ N(0, ∥u∥22). Therefore RandProj(u,N) gives us a scaled chi-squared
distribution, X = µ

Nχ
2
N. For a point x ∼ X, using the parameters of a standard chi-squared

distribution gives us the following properties.

Ex =
µ

N
·N = µ, and Var x =

(µ
N

)2
N (N + 2) − µ2 = 2

µ2

N
, (A.4.16)

which proves (1) and (2). To prove (3), we first scale the random variable x by N/µ to make it of a
standard chi-squared distribution; this makes our computations easier, since we later need to use
the closed-form expression of the probability density function of x. After the scaling, we have

Ex∼χ2
N

x = N Var
x∼χ2

N

= 2N. (A.4.17)

Therefore,

Ex∼X

(
σ2 +

(
µ − x

)2
)k

min
(
x, µ

)2k+1

 1
≤ 2kEx∼X

σ2k +
(
µ − x

)2k

min
(
x, µ

)2k+1

2
= 2k N

µ
Ex∼χ2

N

(
(2N)k + (N − x)2k

min (x,N)2k+1

)
︸ ︷︷ ︸

A

. (A.4.18)

Here 1 follows from Jensen’s inequality applied to the function g(x) = xk for k > 1 and x > 0;
the equation 2 follows from Equation (A.4.16). We now bound A by considering the random

variable in two disjoint intervals as follows.

A = Ex∼χ2
N

(
(2N)k + (N − x)2k

min (x,N)2k+1
1
{x<N

4 }

)
+ Ex∼χ2

N

(
(2N)k + (N − x)2k

min (x,N)2k+1
1
{x≥N

4 }

)
.

≤ Ex∼χ2
N

(
(2N)k + (N − x)2k

x2k+1
1
{x<N

4 }

)
︸ ︷︷ ︸

B

+
1

(N/4)2k+1
Ex∼χ2

N

(
(2N)k + (N − x)2k

)
︸ ︷︷ ︸

C

. (A.4.19)

To bound B , we divide the region {x < N/4} into intervals of geometrically-varying lengths as
follows.

B =
∞∑
j=2

Ex∼χ2
N

(
(2N)k + (N − x)2k

x2k+1
1{

N
2 j+1 ≤x< N

2 j

})

≤

∞∑
j=2

N2k5k(
N/2 j+1)2k+1

Prob
(
x < N/2 j

)
︸ ︷︷ ︸

D

, (A.4.20)

where the inequality follows from the worst case upper bounds for the numerator and 1+2k
≤ 5k for

k ≥ 1 and the worst case lower bounds for the denominator over each interval {N/2 j+1
≤ x < N/2 j

}.
For a > 0 and a random variable x ∼ χ2

N, we have the following cumulative distribution function:

Prob (x ≤ a) =
∫ a

0

e−x/2xN/2−1

2(N/2)Γ (N/2)
dx

≤

∫ a

0

e−x/2xN/2−1

2N/2(N/2e)(N−1)/2
dx

≤
2aN/2−1eN/2

N(N−1)/2
,

where we used the Sterling approximation of Gamma function in the second inequality. Substituting
a = 2− jN above and simplifying gives the following bound on the quantity from Equation (A.4.20).

D ≤
2 j+1
√

N

(e
2 j

)N
2
. (A.4.21)

Substitute into Equation (A.4.20) to get

B ≤
∞∑
j=2

N2k5k
(

2 j+1

N

)2k+1 2 j+1
√

N

(e
2 j

)N/2

=
5k22k+2eN/2

N3/2

∞∑
j=2

1
2 j(N/2−2k−2)

≤
25k+2eN/2

N3/2

2
2N−4k−4

≤
eN/2

N3/22N−9k−7
, (A.4.22)

where we used the condition that N ≥ 4k + 6 in the first two inequalities. Next, we bound C .

C = (2N)k

E
∣∣∣∣∣∣x −N
√

2N

∣∣∣∣∣∣2k

+ 1

1
≤ (2N)k

22k (2k)2k
(
E
|x −N|
√

2N

)2k

+ 1

2
≤ (2N)k

22k (2k)2k

√
E|x −N|2
√

2N

2k

+ 1

= (2N)k

(
22k (2k)2k + 1

)
≤ (2N)k

(
32k2

)k
, (A.4.23)

where 1 is by invoking Theorem A.4.20, which is valid by logconcavity of chi-squared distri-
bution, and 2 is by Jensen’s inequality. Plugging Inequality A.4.22 and Inequality A.4.23 into
Equation (A.4.18) gives:

Ex∼X

(
σ2 +

(
x − µ

)2
)k

min
(
x, µ

)2k+1

 ≤ 2k N
µ

(
eN/2

N3/22N−9k−7
+

42k+1

N2k+1
(2N)k

(
32k2

)k
)

≤
1
µ

(
eN/2

2N−17k
+

213kk2k

Nk

)
,

which is what is to be proved. □

Properties of θ̂1

We prove the bounds on first and second moments of θ̂1. Note that this is where we make our choice
of Testisq and Testjl for the modules InvSqrt and RandProj used in estimating θ1 in the subroutine
Estimator1.

Lemma 2.2.4. Given Testisq = 1600 log(n/ε), Testjl = 214T2
estisq

, Z ∈ Sn, and ε ∈ (0, 1/2), let Z̃2 =

RandProj(Z,Testjl) and θ̂1i ∼ InvSqrt((Z̃2)ii + 1,Testisq) for i ∈ [n]. Then,

(1) The first moment satisfies
∣∣∣∣∣Eθ̂1i −

1√
(Z2)ii+1

∣∣∣∣∣ ≤ √2(ε/n)400
√

(Z2)ii+1
.

(2) The second moment satisfies E|θ̂1i |
2
≤

1
(Z2)ii

1630 log(n/ε).

Proof. Consider a random variable x sampled from the distribution (Z̃2)ii. Because of Lemma 2.2.7,
we have Ex = (Z2)ii. Then x+ 1 satisfies the required bias condition of Lemma 2.2.6 for constructing
a polynomial approximation for 1/

√
1 + (Z2)ii. Then θ̂1i satisfies∣∣∣∣∣∣∣Eθ̂1i −

1√
1 + (Z2)ii

∣∣∣∣∣∣∣ 1
≤ E

∣∣∣x − (Z2)ii

∣∣∣Testisq

min(x + 1, (Z2)ii + 1)Testisq+
1/2

2
≤

√√
E

(x − (Z2)ii)
2Testisq

min (x + 1, (Z2)ii + 1)2Testisq+1

3
≤

√√√√
1

(Z2)ii + 1

 eTestjl/2

2Testjl−17Testisq
+

213Testisq Testisq
2Testisq

Testjl

Testisq

.
where 1 is by Lemma 2.2.6, 2 is by Jensen’s inequality, and 3 is by a slight modification of
the proof of (3) in Lemma 2.2.7 (instead of scaling by N/µ, we scale by Nµ/(µ + 1) in the proof).
Finally, set Testisq = 1600 log

(
n
ε

)
and Testjl = 214T2

estisq
to get the claimed bias. Next, we can bound the

variance as follows.

E|θ̂1i |
2

1
≤ Testisq

Testisq−1∑
k=0

E

(
σ2 +

(
x − (Z2)ii

)2
)k

(x + 1)2k+1

≤ Testisq

Testisq−1∑
k=0

E

(
σ2 +

(
x − (Z2)ii

)2
)k

min (x + 1, (Z2)ii + 1)2k+1

2
≤

Testisq

(Z2)ii

Testisq−1∑
k=0

 eTestjl/2

2Testjl−17k
+

213kk2k

Tk
estjl

3
=

Testisq

(Z2)ii

Testisq−1∑
k=0

217k
(√

e
2

)214T2
estisq

+
k2k

2kT2k
estisq

where 1 is by (2) in Lemma 2.2.6, 2 is by (3) in Lemma 2.2.7, and 3 is by writing Testjl in terms

of Testisq . We have the simplications,
∑Testisq−1

k=0 217k
(√

e
2

)214T2
estisq
≤

2
17Testisq

1.2
214Testisq 216

and

Testisq−1∑
k=0

 k2

2T2
estisq

k

≤ 1 +
1

2T2
estisq

+
4

T4
estisq

+

Testisq/2∑
k=3

 k2

2T2
estisq

k

+
∑

k>Testisq/2

 k2

2T2
estisq

k

.

Finally, plug in the values of Testisq to get the desired bound. □

In Algorithm 2.2.1, we construct the matrix Z as an approximation to exp
(

1
2

(
Y(t) + s∆

))
by the

subroutine ChebyExp
(

1
2

(
Y(t) + s∆

)
,TCheby, δCheby

)
, with details as provided in Lemma A.4.19. With

this value of Z and the same rest of the notation as in the above lemma, we therefore wish to
compare Eθ̂1i with 1√

exp(Y(t−1)+s∆)ii+1
. Note that the above lemma only tells us that we are close to

1√
(Z2)ii+1

, but Z, as defined above in Lemma A.4.19, is only an approximation to exp
(

1
2

(
Y(t−1) + s∆

))
.

We therefore obtain the following corollary which gives us a precise bound on the bias we care
about.

Corollary A.4.21 (Bias of θ̂1i). The estimator θ̂1i described in Algorithm 2.2.2 satisfies∣∣∣∣∣∣∣Eθ̂1i −
1√

exp
(
Y(t−1) + s∆

)
ii + 1

∣∣∣∣∣∣∣ ≤ b1i

def
=

(1 + 2δexp)
√

2(εn)400 + 2δexp√
exp

(
Y(t−1) + s∆

)
ii + 1

,

where δexp = 4800 ε
401

n390 .

Proof. From Lemma A.4.19, we know that Z = ChebyExp
(

1
2

(
Y(t−1) + s∆

)
,TCheby, δCheby

)
satisfies

∣∣∣∣(exp
(
Y(t−1)+s∆

)
− Z2

)
ii

∣∣∣∣ ≤ 4800ε401

n390 .

For ease of notation, let δexp
def
= 4800ε401

n390 . Given a−δ ≤ b ≤ a+δ, we use the Taylor series approximation
to compute the error 1

√
a
−

1
√

b
. We have:∣∣∣∣∣∣ 1

√
a
−

1
√

b

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1
√

a
−

1
√
−δ + a

∣∣∣∣∣∣
=

1
√

a

∣∣∣∣∣∣1 − 1
√

1 − δ/a

∣∣∣∣∣∣
≤

1
√

a
2δ
a
=

2δ
a3/2

,

where we used the Taylor approximation of 1
√

1−x
for small x. Thus, we have, from the above and

Lemma 2.2.4,∣∣∣∣∣∣∣Eθ̂1i −
1√

exp
(
Y(t−1) + s∆

)
ii + 1

∣∣∣∣∣∣∣ ≤
√

2(ε/n)400√
Z2

ii + 1
+

2δ√
exp

(
Y(t−1) + s∆

)
ii + 1

≤
(1 + 2δ)

√
2(ε/n)400 + 2δ√

exp
(
Y(t−1) + s∆

)
ii + 1

,

which proves the claim. □

Properties of θ̂2

Lemma 2.2.5. Consider Z1,Z2,Z, and ∆ all in Sn. Sample ζ ∼ N(0, In), and define θ̂2 ∈ Rn as

θ̂2i = (Z1∆Z2ζ)i (Zζ)i. Define θ2i

def
= (Z1∆Z2Z)ii. Then for i ∈ [n]:

(1) The first moment satisfies Eθ̂2i = θ2i

(2) The second moment satisfies E|θ̂2i |
2
≤ 3

(
Z1∆Z2

2∆Z1

)
ii

(
Z2

)
ii
.

Proof. The bias is defined as

Eθ̂2i = 1T
i Z1∆Z2

(
EζζT

)
Z1i

= (Z1∆Z2Z)ii = θ2i ,

where the second step is from the fact that ζ ∼ N(0, In) and linearity of expectation, and the last is
by definition of θ2. Next, from Lemma A.5.1, given a, b ∈ Rn and ζ ∼ N(0, In), we conclude that
E((ζTa)2(ζTb)2) ≤ 3∥a∥22∥b∥

2
2. Therefore,

E
∣∣∣∣θ̂2i

∣∣∣∣2 = E(1T
i Z1∆Z2ζ)2)(ζTZ1i)2

≤ 3∥Z2∆Z11i∥
2
∥Z1i∥

2

= 3(Z1∆Z2
2∆Z1)ii(Z2)ii.

This proves the bound on the second moment. □

As before, we can obtain, as a corollary of this result, a comparison of the mean of our estimator
with the quantity we actually are trying to compute.

Corollary A.4.22 (Bias of θ̂2i). The estimator θ̂2i described in Algorithm 2.2.2 satisfies∣∣∣∣Eθ̂2i −

(
exp

(
τ̄(Y(t−1) + s∆)

)
∆ exp

(
(τ − 1

2)(Y(t−1) + s∆)
)

exp
(

1
2 (Y(t−1) + s∆)

))
ii

∣∣∣∣ ≤ 15δexpηK

where δexp =
4800ε401

n390 .

Proof. This proof simply involves writing out some matrix products and bounds on the diagonal
entries of the products (using the operator norm of the individual matrices). We show this below. Let
Z1 = exp

(
τ̄
(
Y(t−1) + s∆

))
+U1, Z2 = exp

(
(τ − 1/2)

(
Y(t−1) + s∆

))
+U2, and Z = exp

(
1
2

(
Y(t−1) + s∆

))
+

U. From Lemma 2.2.5, we have that Eθ̂2i = θ2i . We now express θ2i in terms of the matrix
exponentials we care about. For ease of notation, we use Ys = Y(t−1) + s∆.

Eθ̂2i −

(
exp (τ̄Ys)∆ exp ((τ − 1/2)Ys) exp

(
1
2 Ys

))
ii
=

(
exp (τ̄Ys)∆ exp ((τ − 1/2)Ys) U

)
ii

+
(
exp (τ̄Ys)∆U2 exp

(
1
2 Ys

))
ii
+

(
exp (τ̄Ys)∆U2U

)
ii

+
(
U1∆ exp ((τ − 1/2)Ys) exp

(
1
2 Ys

))
ii

+
(
U1∆ exp ((τ − 1/2)Ys) U

)
ii

+
(
U1∆U2 exp

(
1
2 Ys

))
ii
+ (U1∆U2U)ii .

We can bound this by bounding the operator norm of each of the terms. Matrix norm is sub-
multiplicative, so this in turn is bounded by the operator norm of the individual terms in the
matrices. From Equation (A.4.10), we know that ∥ exp (αYs) ∥op ≤ Kα, ∥∆∥op ≤ ηG, ∥U1∥op ≤ δexp,
∥U2∥op ≤ δexp, and ∥U∥op ≤ δexp, where δexp =

4800ε401

n390 . Substituting these values here and bounding
each term by the largest of all terms gives us the bound to be proved. □

Properties of the Overall Estimator, θ̂

Lemma 2.2.3. The estimator θ̂(t) has the following bounds on its first and second moments.

(1) |Eθ̂i −
∫ 1

s=0

∫ 1
τ=0 θ1iθ2idsdτ| ≤ b1iθ2i + b2iθ1i + b1ib2i for i ∈ [n].

(2) E∥θ̂∥22 ≤ 19600 log(n/ε)Kη2 + 147000K2η2δexp.

Proof. We can get the bound on the bias by applying the results of Corollary A.4.21 and Corol-
lary A.4.22 in Eθ̂i = Eθ̂1iEθ̂2i . We need the following definition to concisely write out expressions
in this proof.

Definition A.4.23. Let θ1i =
1√

exp(Ys)ii+1
, θ2i =

1
2

(
exp (τ̄Ys)∆ exp

(
(τ − 1

2)Ys
)

exp
(

1
2 Ys

))
ii
, b1i =

θ1i(2δexp + (1 + 2δexp)
√

2(ε/n)400), and b2i = 15δexpηK for Ys = Y(t−1) + s∆.

We have the following error bound.∣∣∣∣∣∣Eθ̂i −

∫ 1

s=0
θ1i

∫ 1

τ=0
θ2idτds

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫ 1

s=0
Eθ̂1i

∫ 1

τ=0
Eθ̂2idτds −

∫ 1

s=0
θ1i

∫ 1

τ=0
θ2idτds

∣∣∣∣∣∣
≤

∫ 1

s=0

∫ 1

τ=0

∣∣∣∣Eθ̂1iEθ̂2i − θ1iθ2i

∣∣∣∣dτds

≤

∣∣∣∣Eθ̂1iEθ̂2i − θ1iθ2i

∣∣∣∣.
From Corollary A.4.21, we have Eθ̂1i ∈ [θ1i ± b1i]. From Corollary A.4.22, we have Eθ̂2i ∈ [θ2i ± b2i].
Therefore, the right hand side above is bounded by:∣∣∣∣∣∣Eθ̂i −

∫ 1

s=0
θ1i

∫ 1

τ=0
θ2idsdτ

∣∣∣∣∣∣ ≤ b1iθ2i + b2iθ1i + b1ib2i .

We now compute a quantity which will be useful later:

n∑
i=1

(
Eθ̂i −

∫ 1

s=0
θ1i

∫ 1

τ=0
θ2idsdτ

)2

≤ b2
1i

n∑
i=1

θ2
2i
+ (2b1ib2i)(1 + b1i)

n∑
i=1

θ2i + nb2
2i

(1 + b1i)
2. (A.4.24)

Here we used the fact that θ1i =
1√

exp(Ys)ii+1
≤ 1. We compute each of these terms separately.

n∑
i=1

θ2
2i
=

n∑
i=1

((
exp (τ̄Ys)∆ exp ((τ − 1/2)Ys) exp

(
1
2 Ys

))
ii

)2

A
≤

n∑
i=1

(
exp (τ̄Ys)∆ exp ((τ − 1/2)Ys) exp

(
1
2 Ys

)
exp (τ̄Ys)∆ exp ((τ − 1/2)Ys) exp

(
1
2 Ys

))
ii

= Tr
(
exp (τ̄Ys)∆ exp (Ys)∆ exp (τYs)

)
= Tr

(
exp (Ys)∆ exp (Ys)∆

)
≤ K2η2G2. (A.4.25)

Here, A was because
∑n

i=1(Aii)2
≤

∑n
i=1(A2)ii, which can be checked by a simple computation.

Similarly, the sum in the cross-term can be computed as follows.

n∑
i=1

θ2i =

n∑
i=1

(
exp (τ̄Ys)∆ exp ((τ − 1/2)Ys) exp

(
1
2 Ys

))
ii

= Tr
(
exp (τ̄Ys)∆ exp ((τ − 1/2)Ys) exp

(
1
2 Ys

))
= Tr

(
exp (τ̄Ys)∆ exp (τYs)

)
= Tr

(
exp (Ys)∆

)
≤ KηG. (A.4.26)

Substituting Equation (A.4.25) and Equation (A.4.26) into Equation (A.4.24), and using 1√
exp(Ys)ii+1

≤

1 gives us:

n∑
i=1

(
Eθ̂i −

∫ 1

s=0
a1

∫ 1

τ=0
a2dsdτ

)2

≤ (2δexp + (1 + 2δexp)
√

2(ε/n)400)2K2η2G2

+ 900nδ2η2K2

+ 60ηδK(2δexp + (1 + 2δexp)
√

2(ε/n)400)KηG

≤ 6K2η2(
√

2(ε/n)400 + 2δexp)

≤ 400nK2η2(
√

2(ε/n)400 + 2δexp). (A.4.27)

We now prove the final variance bound.

Es,τ,ζ1,ζ2∥θ̂∥
2
2 = Es,τ,ζ1,ζ2

n∑
i=1

|θ̂i|
2

=

∫ 1

s=0

∫ 1

τ=0

n∑
i=1

Eζ1 |θ̂1i |
2Eζ2 |θ̂2i |

2dsdτ.

Combining Lemma 2.2.4 and Lemma 2.2.5, we get:

Es,τ,ζ1,ζ2∥θ̂∥
2
2 =

∫ 1

s=0

∫ 1

τ=0

n∑
i=1

1630 log(n/ε)
(Z2)ii︸ ︷︷ ︸

1

·3
(
Z2∆Z2

1∆Z2

)
ii

(
Z2

)
ii︸ ︷︷ ︸

2

dsdτ,

A
=

n∑
i=1

∫ 1

s=0

∫ 1

τ=0
4890 log(n/ε)(Z2∆Z2

1∆Z2)iidsdτ

= 4890 log(n/ε)
∫ 1

s=0

∫ 1

τ=0
Tr

(
Z2

2∆Z2
1∆

)
dsdτ, (A.4.28)

where Z1 = exp
(
(τ − 1/2)

(
Y(t−1) + s∆

))
+ U1 and Z2 = exp

(
τ̄
(
Y(t−1) + s∆

))
+ U2 as defined in

Corollary A.4.22. The term A shows the significance of carefully choosing the split in the estimator
θ̂2, which enabled the cancellation of 1

(Z2)ii
and (Z2)ii. We now bound Tr

(
Z2

2∆Z2
1∆

)
. In Lemma A.4.19

we showed how to construct Z1 and Z2 as δexp = 4800ε401/n390 approximations to the respective
matrix exponentials. Thus, writing ∥U1∥op = ∥U2∥op = δexp and expanding out the product Z2

2∆Z2
1∆

in terms of the true matrix exponentials and the error matrices, we get the following:

Tr
(
Z2

2∆Z2
1∆

)
≤ Tr

(
exp

(
2τ̄(Y(t−1) + s∆)

)
∆ exp

(
(2τ − 1)(Y(t−1) + s∆)

)
∆
)
+ 30η2δexpK2.

Choosing A = exp
(
Y(t−1) + s∆

)
and B = ∆ and combining with the fact that matrix exponential is

positive semidefinite, and ∆ is a symmetric matrix since the gradient of the objective is symmetric,
invoking Fact 2.1.1 gives:

Tr
(
Z2

2∆Z2
1∆

)
≤ Tr

(
exp

(
Y(t−1) + s∆

)
∆2

)
+ 30η2δexpK2

≤ 4Kη2 + 30η2δexpK2,

where the last inequality follows from applying Holder’s inequality with the nuclear norm and
operator norm. Plugging this back into Equation (A.4.28) and completing the integration gives

Es,τ,ζ1,ζ2∥θ̂∥
2
2 ≤ 4890 log(n/ε)

(
4Kη2 + 30K2η2δexp

)
≤ 19600 log(n/ε)Kη2 + 147000K2η2δexp.

□

A.4.4 Number of Inner Iterations

We can use the general expression for overall running time to choose a value for number of
‘low-accuracy’ iterations. The total computational cost of the algorithm is

Touter ×
105 (

log n
)21

ε2 Texp + Touter × Tinner × 230
(
log

(1
ε

))4
Texp, (A.4.29)

where the first term is the total cost of exact computations, and the second term is the total cost
of approximate computations (done inside the inner loop); Texp is the cost of approximating the
products of matrix exponentials with a vector. This is optimal (ignoring polylogarithmic terms)
when setting Tinner = O(1/ε2). We set Tinner = 1/ε2 due to technical reasons arising in Lemma A.4.24.

A.4.5 Distance Bound Between Estimated and True Iterates

Since the estimators in the inner loop iterations are constructed to have a low variance, the estimated
and true iterates aren’t far apart, as we show now. This is also where we choose the step size η.

Lemma A.4.24. In Algorithm 2.2.1, after t ≤ Tinner iterations, we have E∥X(t)
− X̃(t)

∥nuc ≤ 1.132nε. Recall,
X̃(t) is the approximate primal iterate, while X(t) is the exact iterate.

Proof. By the definition of ||| · ||| and some algebra, we have

E|||X(t)
− X̃(t)

||| = E
n∑

i=1

∣∣∣∣X(t)
ii − X̃(t)

ii

∣∣∣∣
= E

n∑
i=1

∣∣∣∣∣∣∣
(√

X(t)
ii + 1

)2

−

(√
X̃(t)

ii + 1
)2

∣∣∣∣∣∣∣
= E

n∑
i=1

2
√

X(t)
ii + 1

∣∣∣∣∣√X(t)
ii + 1 −

√
X̃(t)

ii + 1
∣∣∣∣∣ + E n∑

i=1

∣∣∣∣∣ √X(t)
ii + 1 −

√
X̃(t)

ii + 1
∣∣∣∣∣2.

Next, apply Cauchy-Schwarz inequality and Lemma 2.2.8 to get

E|||X(t)
− X̃(t)

||| ≤ 2E
√

Tr X(t) + n

√√
n∑

i=1

(√
X(t)

ii + 1 −
√

X̃(t)
ii + 1

)2

+ E
n∑

i=1

(√
X(t)

ii + 1 −
√

X̃(t)
ii + 1

)2

≤ 2
√

K + nE

√√
n∑

i=1

(√
X(t)

ii + 1 −
√

X̃(t)
ii + 1

)2

︸ ︷︷ ︸
A

+E
n∑

i=1

(√
X(t)

ii + 1 −
√

X̃(t)
ii + 1

)2

︸ ︷︷ ︸
B

.

(A.4.30)

We first bound B . We can write a recursive formulation for as follows.√
X̃(t)

ii + 1 −
√

X(t)
ii + 1 =

(√
X̃(0)

ii + 1 −
√

X(0)
ii + 1

)
︸ ︷︷ ︸

C

+

t∑
s=1

(
θ̂(s)

i −

√
X(s)

ii + 1 +
√

X(s−1)
ii + 1

)
︸ ︷︷ ︸

D

.

We invoke Johnson-Lindenstrauss lemma (restated in Lemma A.3.10 for completeness) and choose

the accuracy parameter for it to be such that
∣∣∣∣X(0)

ii − X̃(0)
ii

∣∣∣∣ ≤ ε̃X(0)
ii =

ε

100(log n)10 X(0)
ii . Therefore,

C ≤ ε̃
2

√
X(0)

ii + 1 = ε

200(log n)10

√
X(0)

ii + 1. Summing over all indices and taking expectations gives

B ≤ E
n∑

i=1

 ε

200
(
log n

)10

√
X(0)

ii + 1 +
t∑

s=1

(
θ̂(s)

i −

√
X(s)

ii + 1 +
√

X(s−1)
ii + 1

)
2

1
≤ 2

ε2

40000
(
log n

)20 (Tr X(0) + n) + 2E∥
t∑

s=1

(
θ̂(s)
−

√
diag(()) X(s) + 1 +

√
diag(()) X(s−1) + 1

)
∥

2
2

2
≤

Kε2

10000
(
log n

)20 + 2E∥
t∑

s=1

(
θ̂(s)
−

√
diag(()) X(s) + 1 +

√
diag(()) X(s−1) + 1

)
∥

2
2︸ ︷︷ ︸

E

,

where 1 is by Cauchy-Schwarz inequality, and 2 by Lemma 2.2.8. A subtle point here is
that even though the very first iterate in the algorithm satisfies a stronger inequality, namely,
Tr X(0)

≤ n, we cannot use this stronger bound because we care about all iterations, and this
stronger bound doesn’t hold later on. We now bound E below. Note that since the random

variable θ̂(s) is not entirely unbiased, the term E is not the variance. Let θ(s) def
= Eθ̂(s) and

d(s) =
√

diag(()) X(s) + 1 −
√

diag(()) X(s−1) + 1. Then,

E = E∥
t∑

s=1

(
θ̂(s)
−

(√
diag(()) X(s) + 1 −

√
diag(()) X(s−1) + 1

))
∥

2
2

= E∥
t∑

s=1

(
θ̂(s)
− θ(s) + θ(s)

− d(s)
)
∥

2
2

= E
n∑

i=1

 t∑
s=1

(
θ̂(s)

i − θ
(s)
i

)2
+

t∑
s=1

(
θ(s)

i − d(s)
i

)2
+ 2

∑
s,ℓ

(
θ̂(s)

i − θ
(s)
i

) (
θ(ℓ)

i − d(ℓ)
i

)
=

t∑
s=1

E∥θ̂(s)
− θ(s)

∥
2
2 +

t∑
s=1

n∑
i=1

(
θ(s)

i − d(s)
i

)2

︸ ︷︷ ︸
F

+0

≤

t∑
s=1

(
E∥θ̂(s)

∥
2 + F

)
,

where the last step is by the bound on variance by its second moment. Recall that we already have
from Equation (A.4.27), F ≤ 400nK2η2(

√
2(ε/n)400 + 2δexp). Substitute this into the bound for E

and B , and apply the result of Lemma 2.2.3 to bound E∥θ̂(s)
∥

2
2; we choose t = Tinner =

1
ε2 and get

B ≤
Kε2

10000
(
log n

)20 +
1
ε2

19600 log(n/ε)Kη2 + 147000K2η2δexp︸ ︷︷ ︸
second-moment bound from LemmaLemma 2.2.3

+ 400nK2η2
(√

2(ε/n)400 + 2δ
)

︸ ︷︷ ︸
squared error in bias

︸ ︷︷ ︸
G

.

(A.4.31)

Next, we bound A using Jensen’s inequality, and use Inequality A.4.31 in Inequality A.4.30 to get

E|||X(t)
− X̃(t)

||| ≤ 2
√

K + n
√

G + G . (A.4.32)

Note that to bound G , we only need to take care of the second term in Inequality A.4.31, because
the first term is already fixed, and the remaining can be fixed by appropriate choices of δexp. We
choose the step size to be

η = ε2 1
8 × 104(log(n/ε))11

. (A.4.33)

Substituting this in Inequality A.4.31 gives

G ≤
Kε2

104 (
log n

)20 +
Kε2

6 × 105 (
log(n/ε)

)21
+

Kε2nδexp

2500
(
log(n/ε)

)12
+

Kε2n2
(√

2(ε/n)400 + 2δexp

)
4 × 105 ×

(
log(n/ε)

)12
.

Plugging this back into Inequality A.4.32 with the value of δexp from Definition 2.2.2 gives:

G ≤
Kε2

104 (
log n

)20 +
Kε2

6 × 105 (
log n

)21
+

2Kε403(
log(n/ε)

)12 n389
+

3Kε402

41
(
log(n/ε)

)12 n388

≤ Kε2

 1

104 (
log n

)20 +
1

6 × 105 (
log(n/ε)

)21
+

2ε401(
log(n/ε)

)12 n389
+

3ε402

41n388 (
log(n/ε)

)12

≤ Kε2

 1

5 × 103 (
log n

)20 +
6ε401(

log n
)20 n380

≤

Kε2

4999
(
log n

)20

Plugging this back into Inequality A.4.32 and using K = 40n
(
log n

)10 gives E|||X(t)
− X̃(t)

||| ≤ 1.132nε.
Since Algorithm 2.2.1 only uses the diagonal entries of X̃(t) at any iteration t, we can assume the
off-diagonal entries exactly equal those in X(t). Therefore X̃(t)

− X(t) is a diagonal matrix. For a
diagonal matrix A, we can see that |||A||| = ∥A∥nuc. Therefore, we have E∥X(t)

− X̃(t)
∥nuc ≤ 1.132nε. □

A.4.6 The Expanded Domain Trick for Projection

The goal of this section is two-fold: first, we show that if the trace constraint is inactive, the
projection step is simple and requires no trace normalization; second, we prove that the trace

constraint remains inactive throughout the run of our algorithm. We remark that this is also the
lemma where we choose the optimal number of iterations in the outer loop of Algorithm 2.2.1.

Lemma A.4.25. Consider the mirror map Φ(X) = X • log X − Tr X over the domain {X : X ⪰ 0,Tr X ≤ K}.
Assuming that the trace inequality is never active, we have that exp Y = argminX⪰0,Tr X≤KΦ(X) − Y • X.

Proof. We wish to solve

min X • log X − Tr X − X • Y, subject to X ⪰ 0,Tr X ≤ K. (A.4.34)

By diagonalizing X as X = UΛU⊤ and Y as Y = VΣV⊤, we can rewrite this problem as

min
n∑

i=1

λi logλi −

n∑
i=1

λi −

n∑
i=1

λi ỹi, subject to λi ≥ 0,
n∑

i=1

λi ≤ K, (A.4.35)

where ỹi is the i’th diagonal entry of the matrix U⊤YU. The Lagrangian is given by L(λi, ν) =∑n
i=1 λi logλi −

∑n
i=1 λi −

∑n
i=1 λi ỹi + ν

(∑n
i=1 λi − K

)
. Setting the gradient to zero gives ∇ΛL =

1 + logλ∗ − 1 − ỹ + ν1 = 0, which gives λ∗i = exp
(
ỹi − ν

)
for all i. Since we assumed that the trace

constraint is not active, it means, by complementary slackness, ν = 0 (note that this assumption
is justified because we prove it in Lemma 2.2.8). This gives λ∗i = exp

(
ỹi
)

which translates to
X∗ = exp(Y), as claimed. □

Before we start the second proof, we need the following result.

Lemma A.4.26. Fix a norm ∥ · ∥. Given an α-strongly convex mirror mapΦ : D→ R, a convex, G-Lipschitz

objective f : X → R, the diameter of X ∩D denoted by D
def
= supx∈X∩DΦ(X) − infx∈X∩DΦ (x), step size η,

and parameter δ′ where E∥x(t)
− x̃(t)

∥ ≤ δ′, running mirror descent for T iterations gives iterates {x̃(t)
}
T
t=1

that satisfy the inequality

f

 1
T − 1

T−1∑
t=1

x̃(t)

 − f (x∗) ≤
ηG2

2α
+

1
η (T − 1)

(DΦ(x∗, x̃(1)) −DΦ(x∗, x̃(T))) + δ′G.

This can be derived the same way as Theorem 4.2 in [B+15], by incorporating the error in iterate,
just as we did in the proof of Theorem 2.1.3.

Lemma 2.2.8. For any iteration t of Algorithm 2.2.1, X̃(t) satisfies Tr X̃(t) < K for K = 40n(log n)10.

Proof. We prove this by induction on the iteration count.

Induction Hypothesis. We assume that for any iteration t, the primal iterate is not too far from the
optimal point, satisfying |||X̃(t)

− X∗||| ≤ 38n
(
log n

)10.

Base Case. Since Y(1) = 0, the primal iterate X̃(1) = I. We also know that the optimal point satisfies
Tr X∗ = n. Therefore, |||X̃(1)

− X∗||| ≤ 2n ≤ 38n
(
log n

)10. The hypothesis is thus true for the base case,
t = 1.

Induction. Suppose that the hypothesis is true for some t = t′. We prove that this would make it
true for t = t′ + 1 as well. Our technique is to first prove a weak bound for |||X̃(t)

− X∗||| using triangle
inequality of norms; then we boost our bound (and obtain the stronger guarantee of the induction

hypothesis) by invoking strong convexity of Bregman Divergence. We now show the details.

|||X̃(t′+1)
− X∗||| ≤ |||X̃(t′+1)

− X̃(t′)
||| + |||X̃(t′)

− X∗|||

≤ ∥X̃(t′+1)
− X̃(t′)

∥nuc︸ ︷︷ ︸
Equation (A.2.6)

+ |||X̃(t′)
− X∗|||︸ ︷︷ ︸

induction hypothesis

.

≤
2ηG
α︸︷︷︸
A

+38n
(
log n

)10 . (A.4.36)

The first step here used the fact that |||M||| ≤ ∥M∥nuc(We can show this by Hölder’s Inequality,
⟨X,Y⟩ ≤ ∥Y∥op∥X∥nuc. Select Y = diag(()) sgn

(
diag(X)

)
, that is, Y is a diagonal matrix with

Yii = sgn (Xii)). We can plug in parameters of the mirror map and the step size, as displayed in
Table 2.1, to obtain:

A = 2 ·
ε2

80000(log(n/ε))11
· 2 · 4(40n(log n)10) ≤

nε2

125
.

Plugging this back into Inequality A.4.36 while using ε < 1/2 and K = 40n(log n)10 gives
|||X̃(t′+1)

− X∗||| ≤ nε2

125 + 38n
(
log n

)10, which implies that Tr
(
X̃(t′)

)
< (n(ε2/125 + 38(log n)10) + n) <

40n(log n)10 = K, which says that the trace constraint on the iterates is not active on the first t′

iterations.

Since the trace constraint is not active on the first t′ iterations, the projection step does not require a
normalization. This implies that Algorithm A.2.1 now is identical to Approximate Mirror Descent
with this mirror map and objective. We now recall Lemma A.4.26 for T = t′ + 1:

f

 1
t′

t′∑
t=1

X̃(t)

 − f (X∗) ≤
ηG2

2α
+

1
ηt′

(DΦ(X∗, X̃(1)) −DΦ(X∗, X̃(t′+1))) + δ′G.

Multiplying throughout by ηt′ and rearranging the terms gives

DΦ(X∗, X̃(t′+1)) ≤
η2G2t′

2α
+DΦ(X∗, X̃(1)) − ηt′

 f

 1
t′

t′∑
t=1

X̃(t)

 − f (X∗)

︸ ︷︷ ︸
positive

+ηt′δ′G (A.4.37)

Since Φ is α-strongly convex in the nuclear norm, we have DΦ(X∗, X̃) ≥ α
2 ∥X

∗
− X̃∥2nuc. Since this is

at least α2 |||X
∗
− X̃|||

2
. Chaining this with Inequality A.4.37 gives

|||X̃(t′+1)
− X∗|||

2
≤
η2G2t′

α2︸ ︷︷ ︸
B

+
2DΦ(X∗, X̃(1))

α︸ ︷︷ ︸
C

+
2
α
ηt′δ′G︸ ︷︷ ︸

D

, (A.4.38)

We now bound each of the terms on the right-hand side. We remark that this is actually where we

choose the appropriate value of Touter.

B =
η2G2TinnerTouter

α2

=
ε4

64 × 108 (
log(n/ε)

)22 · 4 ·
1
ε2 ·

1
ε

24 × 105 (
log(n/ε)

)11 log n · 16
(
40n

(
log n

)10
)2

≤ 40εn2 (
log n

)10

To bound the second term C = 2DΦ(X̃(1),X∗)
α , we need to compute DΦ(X̃(1),X∗). Recall that X̃(1) = I

by our algorithm. Therefore, Φ(X̃(1)) = −n and ∇Φ(X̃(1)) = 0. Applying Hölder’s inequality gives
Φ(X∗) ≤ Tr X∗ log ∥X∗∥op ≤ n log n. Therefore DΦ(X∗, X̃(1)) ≤ n log n. Now we go back to the quantity
we were trying to bound:

C ≤ 2 · n log n · 4(40n(log n)10) ≤ 320n2 (
log n

)11 .

Finally, the last term is:

D =
2
α
ηTinnerTouterδ

′G ≤ 2 · 4K ·
30 log n

ε
· 1.132nε · 2 = 21735n2 (

log n
)11

Summing these terms and plugging back into Equation (A.4.38) gives

|||X̃(t′+1)
− X∗|||

2
≤ n2(40ε(log n)10 + 320(log n)11 + 21735(log n)11).

< n2(0.77(log n)20 + 17(log n)20 + 1150(log n)20)

≤ 1168n2 (
log n

)20
≤ 35n

(
log n

)10 ,

which completes the induction. Therefore we have |||X̃(t)
− X∗||| ≤ 38n

(
log n

)10 for all t. Since
Tr X∗ = n, this proves Tr X̃(t) < 40n

(
log n

)10 = K. □

A.4.7 Error bound

Finally, we put together all the parameters derived above to obtain our claimed error bound.

Lemma A.4.27. Running Algorithm 2.2.1 gives an output for (2.1.2) that has an error bound of Kε.

Our algorithm is in the framework of approximate lazy mirror descent, with error bound given by
Theorem 2.1.3, restated below.

Theorem 2.1.3 (Convergence of Lazy Mirror Descent). Fix a norm ∥ · ∥. Given an α-strongly convex
mirror map Φ : D → R and a convex, G-Lipschitz objective f : X → R, run Algorithm A.2.1 with step

size η and E∥x(t)
− x̃(t)

∥ ≤ δ. Let D
def
= supx∈X∩DΦ (x) − infx∈X∩DΦ (x) and x∗ = arg minX f (x). Then,

Algorithm A.2.1, after T iterations, returns x̃t∗ , satisfying

E f (x̃(t∗)) − f (x∗) ≤
D
Tη
+

2ηG2

α
+ δG. (2.1.6)

Proof. Our proof involves plugging in the values of the parameters (from Table 2.1) in the above

bound. Since we assume n ≥ 4, we use log n ≤
√

n in one of the calculations below.

D
Tη
= Kε

log K
30 log n

≤ Kε
log 40 + 6 log n

30 log n
≤ 0.29Kε.

2ηG2

α
=

32ε2K

8 × 104 (
log n

)11
=

Kε

2500
(
log n

)11
≤ 2 × 10−5Kε

δG = 1.132nε ≤
Kε

35
(
log n

)10
≤ 11 × 10−4Kε

Summing these quantities gives the upper bound on the error to be εK, as claimed. □

A.5 General Technical Results

Lemma A.5.1. Given a, b ∈ Rn , we have that Eζ∼N(0,I)

(
(ζTa)2(ζTb)2

)
≤ 3∥a∥22∥b∥

2
2.

Proof. By Cauchy-Schwarz inequality, the functions f1 and f2 satisfy Eζ∼N(0,I)(f1 (ζ) f2 (ζ)) ≤√
Eζ(f1 (ζ))2Eζ(f2 (ζ))2. Choose f1 (ζ) = (ζTa)2 and f2 (ζ) = (ζTb)2. Since ζ ∼N(0, I) and all the coor-

dinates of ζ are independent, Var(ζTa) =
∑n

i=1 Var(ζiai) =
∑n

i=1 a2
i = ∥a∥

2
2. Therefore ζTa ∼N(0, ∥a∥22).

For X ∼N(0, σ2), we haveEX4 = 3σ4. Applying this to ζTa and ζTb proves the desired inequality. □

Appendix B

Appendix for Chapter 3

This chapter contains details and proofs from Chapter 3.

B.1 Notation and Preliminaries

For any integer d, we use [d] to denote the set {1, 2, · · · , d}. We use Sn×n to denote the set of symmetric
n × n matrices, Sn×n

≥0 for the set of n × n positive semidefinite matrices, and Sn×n
>0 for the set of n × n

positive definite matrices. For two matrices A,B ∈ Sn×n, the notation A ⪯ B means that B−A ∈ Sn×n
≥0 .

When clear from the context, we use 0 to denote the all-zeroes matrix (e.g. A ⪰ 0). For a vector v ∈ Rn,
we use diag(v) to denote the diagonal n × n matrix with diag(v)i,i = vi. For A,B ∈ Sn×n, we define
the inner product to be the trace product of A and B, defined as ⟨A,B⟩ := tr

[
A⊤B

]
=

∑
i, j∈[n] Ai, jBi, j.

For two matrices A ∈ Rm×n and B ∈ Rk×ℓ, the Kronecker product of A and B, denoted as A ⊗ B, is
defined as the mk × nℓ block matrix whose (i, j) block is Ai, jB, for all (i, j) ∈ [m] × [n].

Throughout this chapter, unless otherwise specified, m denotes the number of constraints for the
primal SDP (3.1.1), and the variable matrix X is of size n × n. The number of non-zero entries in all
the Ai and C of (3.1.1) is denoted by nnz(A).

B.1.1 Useful Facts

Linear algebra. Some matrix norms we frequently use in this chapter are the Frobenius and
operator norms, defined as follows. The Frobenius norm of a matrix A ∈ Rn×n is defined to be
∥A∥F :=

√
tr[A⊤A]. The operator (or spectral) norm ∥A∥op of A ∈ Rn×n is defined to be the largest

singular value of A. In the case of symmetric matrices (which is what we encounter in this chapter),
this can be shown to equal the largest absolute eigenvalue of the matrix. A property of trace we
frequently use is the following: given matrices A1 ∈ R

m×n1 ,A2 ∈ Rn1×n2 , . . . ,Ak ∈ R
nk−1×nk , the trace

of their product is invariant under cyclic permutation tr[A1A2 . . .Ak] = tr[A2A3 . . .AkA1] = · · · =
tr[AkA1 . . .Ak−2Ak−1]. A matrix A ∈ Rn×n is called normal if A commutes with its transpose, i.e.
AA⊤ = A⊤A. We note that all symmetric n × n matrices are normal. Two matrices A,B ∈ Rn×n are
said to be similar if there exists a nonsingular matrix S ∈ Rn×n such that A = S−1BS. In particular, if
matrices A and B are similar, then they have the same set of eigenvalues. We use the following
simple fact involving Loewner ordering: given two positive definite matrices A and B satisfying
1
αB ⪯ A ⪯ αB for some α > 0, we have 1

αB−1
⪯ A−1

⪯ αB−1. We further need the following facts.

Fact B.1.1 (Generalized Lieb-Thirring Inequality [Eld13, ALO16b, JLL+20b]). Given a symmetric
matrix B, a positive semi-definite matrix A and α ∈ [0, 1], we have

tr
[
AαBA1−αB

]
≤ tr

[
AB2

]
.

174

Fact B.1.2 (Hoffman-Wielandt Theorem, [AH53, HJ12]). Let A,E ∈ Rn×n such that A and A + E are
both normal matrices. Let λ1, λ2, . . . , λn be the eigenvalues of A, and let λ̂1, λ̂2, . . . , λ̂n be the eigenvalues of
A + E in any order. There is a permutation σ of the integers 1, . . . ,n such that

∑
i∈[n] |̂λσ(i) − λi|

2
≤ ∥E∥2F.

Fact B.1.3 (Corollary of Fact B.1.2, [HJ12]). Let A,E ∈ Rn×n such that A is Hermitian and A + E is
normal. Let λ1, . . . , λn be the eigenvalues of A arranged in increasing order λ1 ≤ . . . ≤ λn. Let λ̂1, . . . , λ̂n

be the eigenvalues of A + E, ordered so that Re(̂λ1) ≤ . . . ≤ Re(̂λn). Then,
∑

i∈[n] |̂λi − λi|
2
≤ ∥E∥2F.

Fact B.1.4 (Woodbury matrix identity, [Woo49, Woo50]). Given matrices A ∈ Rn×n, U ∈ Rn×k,
C ∈ Rk×k, and V ∈ Rk×n, such that A, C, and A +UCV are invertible, we have

(A +UCV)−1 = A−1
− A−1U(C−1 + VA−1U)−1VA−1.

B.2 Matrix Multiplication

The main goal of this section is to derive upper bounds on the time to perform the following two
rectangular matrix multiplication tasks (Lemma B.2.9, Lemma B.2.10, and Lemma B.2.11):

• Multiplying a matrix of dimensions m × n2 with one of dimensions n2
×m,

• Multiplying a matrix of dimensions n ×mn with one of dimensions mn × n.

Besides being crucial to the runtime analysis of our interior point method in Section B.6, these
results (as well as several intermediate results) might be of independent interest.

B.2.1 Exponent of Matrix Multiplication

We need the following definitions.

Definition B.2.1. Define Tmat(n, r,m) to be the number of operations needed to compute the product of
matrices of dimensions n × r and r ×m.

Definition B.2.2. We define the function ω(k) to be the minimum value such that Tmat(n,nk,n) = nω(k)+o(1).
We overload notation and useω to denote the cost of multiplying two n×n matrices. Thus, we haveω(1) = ω.

The following is a basic property of Tmat that we frequently use.

Lemma B.2.3 ([BCS97, Blä13]). For any three positive integers n,m, r, we have

Tmat(n, r,m) = O(Tmat(n,m, r)) = O(Tmat(m,n, r)).

We refer to Table 3 in [GU18] for the latest upper bounds on ω(k) for different values of k. In
particular, we need the following upper bounds in our paper.

Lemma B.2.4 ([GU18]). We have ω = ω(1) ≤ 2.372927, ω(1.5) ≤ 2.79654, ω(1.75) ≤ 3.02159, and
ω(2) ≤ 3.251640.

B.2.2 Technical Results for Matrix Multiplication

In this section, we derive some technical results on Tmat and ω that we extensively use.

Lemma B.2.5 (Sub-linearity). For any p ≥ q ≥ 1, we have

ω(p) ≤ p − q + ω(q).

Proof. We assume that np and nq are integers for notational simplicity. Consider multiplying an
n × np matrix with an np

× n matrix. One can cut the n × np matrix into np−q rectangular blocks
of size n × nq and the np

× n matrix into np−q rectangular blocks of size nq
× n, and compute the

multiplication of the corresponding blocks. This approach takes time np−q+ω(q)+o(1), from which the
desired inequality immediately follows. □

Key to our analysis is the following lemma, which establishes the convexity of ω(k).

Lemma B.2.6 (Convexity). The fast rectangular matrix multiplication time exponent ω(k) as defined in
Definition B.2.2 is convex in k.

Proof. Let k = α · p + (1 − α) · q for α ∈ (0, 1). For notational simplicity, we assume that np, nq and nk

are all integers. Consider a rectangular matrix of dimensions n × nk. Since αp ≤ k, we can tile this
rectangular matrix with matrices of dimensions nα × nαp. Then, the product of this tiled matrix with
another similarly tiled matrix of dimensions nk

× n can be obtained by viewing it as a multiplication
of a matrix of dimensions n/nα ×nk/nαp with one of dimensions nk/nαp

×n1/α, where each “element”
of these two matrices is itself a matrix of dimensions nα × nαp. With this recursion in tow, we obtain
the following upper bound.

Tmat(n,nk,n) ≤Tmat(nα,nαp,nα) · Tmat(n/nα,nk/nαp,n/nα)

=Tmat(nα,nαp,nα) · Tmat(n(1−α),n(1−α)q,n(1−α))

≤nα·ω(p)+o(1)
· n(1−α)·ω(q)+o(1).

The final step above follows from denoting m = nα and observing that multiplying matrices of
dimensions nα × nα·p costs, by Definition B.2.2, mω(p)+o(1), which is exactly nα(ω(p)+o(1)). Applying
Definition B.2.2 and comparing exponents, this implies that

ω(k) ≤ α · ω(p) + (1 − α) · ω(q),

which proves the convexity of the function ω(k). □

Claim B.2.7. ω(1.68568) ≤ 2.96370.

Proof. We can upper bound ω(1.68568) in the following sense

ω(1.68568) = ω(0.25728 · 1.5 + (1 − 0.25728) · 1.75)
≤ 0.25728 · ω(1.5) + (1 − 0.25728) · ω(1.75)
≤ 0.25728 · 2.79654 + (1 − 0.25728) · 3.02159
≤ 2.96370,

where the first step follows from convexity of ω (Lemma B.2.6), the third step follows from
ω(1.5) ≤ 2.79654 and ω(1.75) ≤ 3.02159 (Lemma B.2.4). □

Lemma B.2.8. Let Tmat be defined as in Definition B.2.1. Then for any positive integers h, ℓ, and k, we have

Tmat(h, ℓk, h) ≤ O(Tmat(hk, ℓ, hk)).

Proof. Given any matrices A,B⊤ ∈ Rh,ℓk, by Definition B.2.1, the cost of computing the matrix
product AB is Tmat(h, ℓk, h). We now show how to compute this product in time O(Tmat(hk, ℓ, hk)).

We cut A and B⊤ into k sub-matrices each of size h × ℓ, i.e. A = (A1, · · · ,Ak) and B⊤ = (B⊤1 , · · · ,B
⊤

k),
where each Ai,B⊤i ∈ R

h×ℓ for all i ∈ [k]. By performing matrix multiplication blockwise, we can
write AB =

∑k
i=1 AiBi. Next, we stack the k matrices A1, · · · ,Ak vertically to form a matrix A′ ∈ Rhk,ℓ.

Similarly, we stack the k matrices B1, · · · ,Bk horizontally to form a matrix B′ = (B1, · · · ,Bk) ∈ Rℓ,hk.
By Definition B.2.1, we can compute A′B′ ∈ Rhk,hk in time Tmat(hk, ℓ, hk). To complete the proof, we
note that we can derive AB from A′B′ as follows: for each j ∈ [k], the jth diagonal block of A′B′ of
size h × h is exactly A jB j, and summing up the k diagonal h × h blocks of A′B′ gives AB. □

B.2.3 General Upper Bound on Tmat(n,mn,n) and Tmat(m,n2,m)

Lemma B.2.9. Let Tmat be defined as in Definition B.2.1. If m ≥ n, then we have Tmat(n,mn,n) ≤
O(Tmat(m,n2,m)). If m ≤ n, then we have Tmat(m,n2,m) ≤ O(Tmat(n,mn,n)).

Proof. We only prove the case of m ≥ n, as the proof of the other case is similar. This is an immediate
consequence of Lemma B.2.8 by taking h = n, ℓ = n2, and k = ⌊m/n⌋, where k is a positive integer
because m ≥ n. □

In the next lemma, we derive upper bounds on the termTmat(m,n2,m) when m ≥ n andTmat(n,mn,n)
when m < n, which is crucial to our runtime analysis.

Lemma B.2.10. Let Tmat be defined as in Definition B.2.1 and ω be defined as in Definition B.2.2. Then we
have Tmat(n,mn,n) ≤ O(mnω+o(1)) and Tmat(m,n2,m) ≤ O

(√
n
(
mn2 +mω

))
.

Proof. Recall from Definition B.2.1 that Tmat(n,mn,n) is the cost of multiplying a matrix of size
n ×mn with one of size mn × n. We can cut each of the matrices into m sub-matrices of size n × n
each. The product in question then can be obtained by multiplying these sub-matrices. Since there
are m of them, and each product of an n × n submatrix with another n × n submatrix costs, by
definition, nω+o(1), we get Tmat(n,mn,n) ≤ O(mnω+o(1)), as claimed.

Let m = na, where a ∈ (0,∞). By definition, Tmat(m,n2,m) is the cost of multiplying a matrix of size
m × n2 with one of size n2

×m. Expressing n2 as m2/a then gives, by Definition B.2.2, that

Tmat(m,n2,m) = mω(2/a)+o(1) = na·ω(2/a)+o(1). (B.2.1)

The claimed inequality follows immediately from the following, which we prove next:

ω(2/a) < max(1 + 2.5/a, ω(1) + 0.5/a) ∀a ∈ (0,∞). (B.2.2)

Define b = 2/a ∈ (0,∞). Then the desired inequality in Equation (B.2.2) can be expressed as

ω(b) < max(1 + 5b/4, ω(1) + b/4) ∀b ∈ (0,∞). (B.2.3)

Notice that the RHS of Inequality B.2.3 is a maximum of two linear functions of b and these
intersect at b∗ = ω(1) − 1. By the convexity of ω(·) as proved in Lemma B.2.6, it suffices to verify
Inequality B.2.3 at the endpoints b→ 0, b→ ∞ and b = b∗. In the case where b = δ for any δ < 1,
Inequality B.2.3 follows immediately from the observation thatω(δ) < ω(1). We next argue about the
case b→∞. By Lemma B.2.4 we have ω(2) ≤ 3.252. Using Lemma B.2.5, we have ω(b) ≤ b− 2+ω(2).
Combining these two facts implies that for any b > 2, we have

ω(b) ≤ b − 2 + ω(2) ≤ 1 + 5b/4,

which again satisfies Inequality B.2.3. The final case is b = b∗ = ω(1) − 1, for which Inequality B.2.3
is equivalent to

ω(ω(1) − 1) < 5ω(1)/4 − 1/4. (B.2.4)

By Lemma B.2.4, we have that ω(1)− 2 ∈ [0, 0.372927]. Then to prove Inequality B.2.4, it is sufficient
to show that

ω(t + 1) < 5t/4 + 9/4 ∀t ∈ [0, 0.372927]. (B.2.5)

By the convexity of ω(·) as proved in Lemma B.2.6, the upper bound of ω(2) ≤ 3.251640 in
Lemma B.2.4, and recalling that ω(1) = t + 2 for t ∈ [0, 0.372927], we have for k ∈ [1, 2],

ω(k) ≤ ω(1) + (k − 1) · (3.251640 − (t + 2)) = t + 2 + (k − 1) · (1.251640 − t).

In particular, using this inequality for k = t + 1, we have

ω(t + 1) − 5t/4 − 9/4 ≤ (t + 2) + t · (1.251640 − t) − 5t/4 − 9/4 = −t2 + 1.00164t − 1/4,

which is negative on t ∈ [0, 0.372927]. This establishes Inequality B.2.5 and finishes the proof. □

B.2.4 Improved Upper Bound on Tmat(m,n2,m)

Lemma B.2.11. For any two positive integers n and m, we have Tmat(m,n2,m) = o(m3 +mn2.37).

Proof. Let m = na where a ∈ (0,∞). Recall from Equation (B.2.1) that Tmat(m,n2,m) = mω(2/a)+o(1) =
naω(2/a)+o(1). We consider the following two cases according to the range of a.

Case 1: a ∈ [1.18647,∞). In this case, we have ω(2/a) ≤ ω(2/1.18647) ≤ ω(1.68568) < 3, where the
last inequality follows from Claim B.2.7. This implies that

Tmat(m,n2,m) = o(n3a) = o(m3). (B.2.6)

Case 2: a ∈ (0, 1.18647]. In this case, we have 2/a ∈ [1.68567,∞). Consider the linear function

y(t) = 1 + 2.37 ·
t
2
. (B.2.7)

By Claim B.2.7, we have

ω(1.68567) < 2.997 ≤ y(1.68567). (B.2.8)

By Lemma B.2.4, we have

ω(2) < 3.37 = y(2). (B.2.9)

An application of Lemma B.2.5 then gives, for any t ≥ 2, the inequality

ω(t) ≤ t − 2 + ω(2) < t − 2 + y(2) ≤ y(t), (B.2.10)

where the last inequality is by definition of y(t) from Equation (B.2.7). Therefore, combining
the convexity of ω(·), as proved in Lemma B.2.6, with Inequality B.2.8, Inequality B.2.9, and

Inequality B.2.10, we conclude that for any t ∈ [1.68567,∞), the function ω is bounded from above
by the affine function y, expressed as follows.

ω(t) < y(t) = 1 + 2.37 ·
t
2
.

This implies that

Tmat(m,n2,m) = na·ω(2/a)+o(1) = o(na+2.37) = o(mn3.27). (B.2.11)

Combining Equation (B.2.6) and Equation (B.2.11) finishes the proof of the lemma. □

B.3 Our Main Theorem

In this section, we give the formal statement of our main result.

Theorem B.3.1 (Main Result). Consider a semidefinite program with variable size n × n and m constraints
(assume there are no redundant constraints):

max C • X subject to X ⪰ 0,Ai • X = bi for all i ∈ [m]. (B.3.1)

Assume that any feasible solution X ∈ Sn×n
≥0 satisfies ∥X∥op ≤ R. Then for any error parameter 0 < δ ≤ 0.01,

there is an interior point method that outputs in time O∗(
√

n(mn2+mω+nω) log(n/δ)) a positive semidefinite
matrix X ∈ Rn×n

≥0 such that

C • X ≥ C • X∗ − δ · ∥C∥op · R and
∑
i∈[m]

∣∣∣∣Ai • X̂ − bi

∣∣∣∣ ≤ 4nδ · (R
∑
i∈[m]

∥Ai∥1 + ∥b∥1),

where ω is the exponent of matrix multiplication, X∗ is any optimal solution to the semidefinite program in
Equation (B.3.1), and ∥Ai∥1 is the Schatten 1-norm of matrix Ai.

The proof of Theorem B.3.1 is given in the subsequent sections.

B.4 Approximate Central Path via Approximate Hessian

Our main result of this section is the following statement about the dual variable y following the
approximate central path (in the sense that the objective value is additively close to the optimal
values on the central path). We also show, importantly, that our step size is small enough that the
next slack matrix Snew is not too far (in Frobenius norm) from the current slack matrix S.

Theorem B.4.1 (Approximate Central Path). Consider a semidefinite program as in (3.1.1) with no
redundant constraints. Assume that any feasible solution X ∈ Sn×n

≥0 satisfies ∥X∥op ≤ R. Then for any error
parameter 0 < δ ≤ 0.01 and Newton step size ϵN satisfying

√
δ < ϵN ≤ 0.1, Algorithm 3.2.1 outputs, in

T = 40
ϵN

√
n log(n/δ) iterations, a positive semidefinite matrix X ∈ Rn×n

≥0 that satisfies

C • X ≥ C • X∗ − δ · ∥C∥op · R and
∑
i∈[m]

∣∣∣∣Ai • X̂ − bi

∣∣∣∣ ≤ 4nδ · (R
∑
i∈[m]

∥Ai∥1 + ∥b∥1), (B.4.1)

where X∗ is any optimal solution to the semidefinite program in (3.1.1), and ∥Ai∥1 is the Schatten 1-norm of
matrix Ai. Further, in each iteration of Algorithm 3.2.1, the following invariant holds for αH = 1.03:

∥S−1/2SnewS−1/2
− I∥F ≤ αH · ϵN. (B.4.2)

Proof. At the start of Algorithm 3.2.1, Lemma B.8.1 is called to modify the semidefinite program
to obtain an initial dual solution y for the modified SDP that is close to the dual central path
at η = 1/(n + 2). This ensures that the invariant gη(y)⊤H(y)−1gη(y) ≤ ϵ2

N holds at the start of
the algorithm. Therefore, by Lemma B.4.4 and Lemma B.4.5, this invariant continues to hold
throughout the run of the algorithm. Therefore, after T = 40

ϵN

√
n log

(
n
δ

)
iterations, the step size η in

Algorithm 3.2.1 grows to η = (1 + ϵN
20
√

n
)T/(n + 2) ≥ 2n/δ2. It then follows from Lemma B.4.6 that

b⊤y ≤ b⊤y∗ +
n
η
· (1 + 2ϵN) ≤ b⊤y∗ + δ2.

Thus when the algorithm stops, the dual solution y has duality gap at most δ2 for the modified SDP.
Lemma B.8.1 then shows how to obtain an approximate solution to the original SDP that satisfies
the guarantees in Equation (B.4.1).

To prove Inequality B.4.2, define ∆S = Snew − S ∈ Rn×n and δy = ynew − y ∈ Rm. For each i ∈ [n], we
use δy,i to denote the i-th coordinate of vector δy. Then ∆S =

∑m
i=1 δy,iAi by definition. We rewrite

∥S−1/2SnewS−1/2
− I∥2F as

∥S−1/2SnewS−1/2
− I∥2F = tr

[
(S−1/2(∆S)S−1/2)2

]
=

m∑
i, j=1

δy,iδy, j tr
[
S−1AiS−1A j

]
= (δy)⊤H(y)δy. (B.4.3)

Now using δy = H̃(y)−1gη(y) simplifies the above expression to gη(y)⊤H̃(y)−1H(y)H̃(y)−1gη(y). It
then follows from Lemma B.4.4 and the invariant gη(y)⊤H(y)−1gη(y) ≤ ϵ2

N on the Newton decrement
that

gη(y)⊤H̃(y)−1H(y)H̃(y)−1gη(y) ≤ α2
H · ϵ

2
N, (B.4.4)

where αH = 1.03. Combining Equation (B.4.3) with Inequality B.4.4 finishes the proof. □

Table B.1: Summary of parameters in approximate central path.

Notation Choice Appearance Meaning

αH 1.03 Lemma B.4.4 Spectral approximation factor α−1
H ·H ⪯ H̃ ⪯ αH ·H

ϵN 0.1 Lemma B.4.5 Upper bound on the Newton step size (g⊤η H−1gη)1/2

ϵS 0.01 Lemma B.4.2 Spectral approximation error (1 − ϵS) · S ⪯ S̃ ⪯ (1 + ϵS) · S

B.4.1 Approximate Slack Update

In this section, we show that the approximate slack matrix S̃ we maintain is in the operator norm
close enough to the true slack matrix S.

Lemma B.4.2. Given positive definite matrices Snew, S̃ ∈ Sn×n
>0 and any parameter 0 < ϵS < 0.01, there is an

algorithm that takes O(nω+o(1)) time to output a positive definite matrix S̃new ∈ Sn×n
>0 such that

∥S−1/2
new S̃newS−1/2

new − I∥op ≤ ϵS. (B.4.5)

Proof. The operator norm bound of Inequality B.4.5 is achieved by design in Algorithm 3.2.2.
Specifically, we notice that λnew are the eigenvalues of S−1/2

new S̃newS−1/2
new − I and by the algorithm

description (lines 6 - 13), the upper bound (λnew)i ≤ ϵS holds for each i ∈ [n]. The claimed runtime
of O(nω+o(1)) is by the spectral decomposition Z = U ·Λ ·U⊤, the costliest step in the algorithm. □

B.4.2 Tracking the True Slack Implies Tracking the True Hessian

In this section we show that the spectral closeness of the true and approximate slack matrices, as
shown in Section B.4.1, implies that the true and approximate Hessian matrices are also spectrally
close. We show this in Lemma B.4.3 and apply it in Lemma B.4.4.

Lemma B.4.3. Given symmetric matrices A1, · · · ,Am ∈ Sn×n, and positive definite matrices S̃,S ∈ Sn×n
>0 ,

define matrices H̃ ∈ Rm×m and H ∈ Rm×m as H̃ j,k = tr
[
S̃−1A jS̃−1Ak

]
and H j,k = tr

[
S−1A jS−1Ak

]
. Then H̃

and H are positive semidefinite. For accuracy parameter αS ≥ 1, if α−1
S · S ⪯ S̃ ⪯ αS · S, then

α−2
S ·H ⪯ H̃ ⪯ α2

S ·H.

Proof. For any vector v ∈ Rn, we define A(v) =
∑m

i=1 viAi. We can rewrite v⊤Hv as follows.

v⊤Hv =
m∑

i=1

m∑
j=1

viv jHi, j =

m∑
i=1

m∑
j=1

viv j tr
[
S−1AiS−1A j

]
= tr

[
S−1/2A(v)S−1A(v)S−1/2

]
. (B.4.6)

Similarly, we have

v⊤H̃v = tr
[
S̃−1/2A(v)S̃−1A(v)S̃−1/2

]
. (B.4.7)

As the RHS of Equation (B.4.6) and Equation (B.4.7) are non-negative, both H̃ and H are positive
semidefinite. Since S̃ ⪯ αS · S, we have S−1

⪯ αS · S̃−1 (see Section B.1.1), which gives the following
inequalities

tr
[
S−1/2A(v)S−1A(v)S−1/2

]
≤ αS · tr

[
S−1/2A(v)S̃−1A(v)S−1/2

]
≤ α2

S · tr
[
S̃−1/2A(v)S̃−1A(v)S̃−1/2

]
, (B.4.8)

where the first inequality follows from viewing tr
[
S−1/2A(v)S−1A(v)S−1/2

]
as

∑n
i=1 u⊤i S−1ui for

ui = A(v)S−1/2ei and the second inequality follows similarly, after using the cyclic permutation
property of trace. Similarly, using α−1

S · S ⪯ S̃, we have

tr
[
S−1/2A(v)S−1A(v)S−1/2

]
≥ α−2

S · tr
[
S̃−1/2A(v)S̃−1A(v)S̃−1/2

]
. (B.4.9)

Combining Equation (B.4.8) and Equation (B.4.9) with Equation (B.4.6) and Equation (B.4.7) along
with the fact that v can be any arbitrary n-dimensional vector finishes the proof of the lemma. □

Lemma B.4.4. Throughout Algorithm 3.2.1, for αH = 1.03, the approximate Hessian H̃(y) satisfies

α−1
H H(y) ⪯ H̃(y) ⪯ αH ·H(y).

Proof. By Lemma B.4.2, given as input two positive definite matrices Snew and S̃, Algorithm 3.2.2
outputs a matrix S̃new such that ∥S−1/2

new S̃newS−1/2
new − I∥op ≤ ϵS, where ϵS = 0.01. By definition of

operator norm, this implies that in each iteration of Algorithm 3.2.1, we have, for αS = 1.011,

that −ϵSI ⪯ S−1/2S̃S−1/2
− I ⪯ ϵSI, and by pre-multiplying and post-multiplying throughout by

the positive definite matrix S, we get −ϵSS ⪯ S̃ − S ⪯ ϵSS, and by rearranging the terms, we get
α−1

S · S ⪯ S̃ ⪯ αS · S. The statement of this lemma then follows from Lemma B.4.3. □

B.4.3 Standard Results from Interior-Point Methods

The following results are standard in the theory of interior point methods (e.g. see [Ren01b]).

Lemma B.4.5 (Invariance of the Newton Decrement [Ren01b]). Given any parameters 1 ≤ αH ≤ 1.03
and 0 < ϵN ≤ 1/10, suppose that gη(y)⊤H(y)−1gη(y) ≤ ϵ2

N holds for some feasible dual solution y ∈ Rm

and parameter η > 0, and positive definite matrix H̃ ∈ Sn×n
>0 satisfies α−1

H H(y) ⪯ H̃ ⪯ αHH(y). Then
ηnew = η(1 + ϵN

20
√

n
) and ynew = y − H̃−1gηnew(y) satisfy

gηnew(ynew)⊤H(ynew)−1gηnew(ynew) ≤ ϵ2
N.

Lemma B.4.6 (Approximate Optimality [Ren01b]). Suppose 0 < ϵN ≤ 1/10, dual feasible solution
y ∈ Rm, and parameter η ≥ 1 satisfy the following bound on the Newton decrement:

gη(y)⊤H(y)−1gη(y) ≤ ϵ2
N.

Let y∗ be an optimal solution to the dual formulation (3.2.1). Then we have

b⊤y ≤ b⊤y∗ +
n
η
· (1 + 2ϵN).

B.5 Low-Rank Update

Crucial to being able to efficiently approximate the Hessian in each iteration is the condition that
the rank of the update be not too large. We formalize this idea in the following theorem, essential
to the runtime analysis in Section B.6.

Theorem B.5.1 (Rank inequality). Let r0 = n and ri be the rank of the update to the approximate slack matrix
S̃ when calling Lemma B.4.2 in iteration i of Algorithm 3.2.1. Then, over T iterations of Algorithm 3.2.1, the
ranks ri satisfy the inequality

T∑
i=0

√
ri ≤ O(T log1.5 n).

The rest of this section is devoted to proving Theorem B.5.1. To this end, we define the “error”
matrix Z ∈ Rn×n as follows

Z = S−1/2S̃S−1/2
− I (B.5.1)

and the potential function Φ : Rn×n
→ R

Φ(Z) =
n∑

i=1

|λ(Z)|[i]
√

i
, (B.5.2)

where |λ(Z)|[i] denotes the i’th entry in the list of absolute eigenvalues of Z sorted in descending

order. We show a certain maximum limit in the change in the above potential when S is updated to
Snew and a certain minimum potential change when S̃ is changed to S̃new. We combine these two
bounds and sum over all iterations to claim the above bound on total rank change. The following
lemma give the potential change when S is updated to Snew.

Lemma B.5.2 (Potential change when S changes). Suppose matrices S, Snew and S̃ satisfy the inequalities

∥S−1/2SnewS−1/2
− I∥F ≤ 0.02 and ∥S−1/2S̃S−1/2

− I∥op ≤ 0.01. (B.5.3)

Define matrices Z = S−1/2S̃S−1/2
− I and Zmid = (Snew)−1/2S̃(Snew)−1/2

− I. Then we have

Φ(Zmid) −Φ(Z) ≤
√

log n.

Proof. As an intermediate goal, we first prove

n∑
i=1

(λ(Z)[i] − λ(Zmid)[i])2
≤ 10−3. (B.5.4)

We first show that the lemma statement is implied by Inequality B.5.4.

First, we arrange the eigenvalues of Zmid and Z in descending order of value. Let λ(Zmid)i and λ(Z)i
be the ith largest eigenvalues of Zmid and Z, respectively. For each i ∈ [n], denote∆i = λ(Zmid)i−λ(Z)i.
Then Inequality B.5.4 is equivalent to ∥∆∥22 ≤ 10−3. Let τ be the descending order of the magnitudes
of eigenvalues of Zmid, i.e.

∣∣∣λ(Zmid)τ(1)

∣∣∣ ≥ · · · ≥ ∣∣∣λ(Zmid)τ(n)

∣∣∣. Then the potential Φ(Zmid) can be
upper bounded as

Φ(Zmid) =
n∑

i=1

1
√

i

∣∣∣λ(Zmid)τ(i)
∣∣∣

≤

n∑
i=1

(
1
√

i

∣∣∣λ(Z)τ(i)
∣∣∣ + 1
√

i
|∆τ(i)|

)

≤ Φ(Z) +

 n∑
i=1

1
i

1/2 n∑

i=1

|∆i|
2

1/2

≤ Φ(Z) +
√

log n,

where the third line follows from the “rearrangement inequality”,

n∑
i=1

1
√

i

∣∣∣λ(Z)τ(i)
∣∣∣ ≤ n∑

i=1

1
√

i
|λ(Z)|[i]

and Cauchy-Schwarz inequality, and the final step uses Inequality B.5.4. This proves the lemma.

The remaining part of this proof is therefore devoted to proving Inequality B.5.4. Define W =

S−1/2
new S1/2. Then, we can express Zmid in terms of Z and W in the following way.

Zmid = (Snew)−1/2S̃(Snew)−1/2
− I

= (Snew)−1/2S1/2S−1/2S̃S−1/2S1/2(Snew)−1/2
− I

=WZW⊤ +WW⊤ − I. (B.5.5)

Let λ(M)[i] denote the i’th (ordered) eigenvalue of a matrix M. We then have

n∑
i=1

(λ(Zmid)[i] − λ(WZW⊤)[i])2
≤ ∥Zmid −WZW⊤∥2F = ∥W

⊤W − I∥2F, (B.5.6)

where the first inequality is by Fact B.1.3 (which is applicable here because Zmid and WZW⊤ are both
normal matrices) and the second step is by Equation (B.5.5). Denote the eigenvalues of S−1/2SnewS−1/2

by {νi}
n
i=1. Then the first assumption in Inequality B.5.3 implies that

∑
i∈[n](νi − 1)2

≤ 4 × 10−4. It
follows that

∥W⊤W − I∥2F = ∥S
1/2S−1

newS1/2
− I∥2F =

∑
i∈[n]

(1/νi − 1)2
≤ 5 × 10−4, (B.5.7)

where the last inequality is because the first assumption from Inequality B.5.3 implies νi ≥ 0.98 for
all i ∈ [n]. Plugging Equation (B.5.7) into the right hand side of Inequality B.5.6, we have

n∑
i=1

(λ(Zmid)[i] − λ(WZW⊤)[i])2
≤ 5 × 10−4. (B.5.8)

Let W = UΣV⊤ be the singular value decomposition of W, with U and V being n×n unitary matrices.
Because of the invariance of the Frobenius norm under unitary transformation, Equation (B.5.7) is
then equivalent to

∥Σ2
− I∥F =

n∑
i=1

(σ2
i − 1)2

≤ 5 × 10−4. (B.5.9)

Since U and V are unitary, the matrix WZW⊤ = UΣV⊤ZVΣU⊤ is similar to ΣV⊤ZVΣ, and the
matrix Z′ = V⊤ZV is similar to Z. Therefore,

n∑
i=1

(λ(WZW⊤)[i] − λ(Z)[i])2 =

n∑
i=1

(λ(ΣZ′Σ)[i] − λ(Z′)[i])2

≤ ∥ΣZ′Σ − Z′∥2F, (B.5.10)

where the last inequality is by Fact B.1.3. We rewrite the Frobenius norm as

∥ΣZ′Σ − Z′∥F = ∥(Σ − I)Z′(Σ − I) + (Σ − I)Z′ + Z′(Σ − I)∥F ≤ ∥(Σ − I)Z′(Σ − I)∥F + 2∥(Σ − I)Z′∥F.
(B.5.11)

The first term can be bounded as:

∥(Σ − I)Z′(Σ − I)∥2F = tr
[
(Σ − I)Z′(Σ − I)2Z′(Σ − I)

]
≤ tr

[
(Σ − I)4

· (Z′)2
]

≤ 0.012
· tr

[
(Σ − I)4

]
=

n∑
i=1

(σi − 1)4
≤ 5 × 10−8. (B.5.12)

The first inequality above uses Fact B.1.1, the second used the observation that ∥Z′∥op = ∥Z∥op ≤ 0.01,
and the last inequality follows from Inequality B.5.9 and the fact that

∑n
i=1(σi − 1)4

≤
∑n

i=1(σ2
i − 1)2.

Similarly, we can bound the second term as

∥(Σ − I)Z′∥2F = tr
[
(Σ − I)(Z′)2(Σ − I)

]
≤ tr

[
(Σ − I)2(Z′)2

]
≤ 0.012

· tr
[
(Σ − I)2

]
≤ 10−7. (B.5.13)

It follows from Inequality B.5.10, Inequality B.5.11 and Inequality B.5.13 that

n∑
i=1

(λ(WZW⊤)[i] − λ(Z)[i])2
≤ 10−6. (B.5.14)

Combining Inequality B.5.8 and Inequality B.5.14, we get that
∑n

i=1(λ(Z)[i] − λ(Zmid)[i])2
≤ 10−3

which establishes Inequality B.5.4. This completes the proof of the lemma. □

Lemma B.5.3 (Potential change when S̃ changes). Given positive definite matrices Snew, S̃ ∈ Sn
>0, let

S̃new and r be generated during the run of Lemma B.4.2 when the inputs are Snew and S̃. Define the matrices
Zmid = (Snew)−1/2S̃(Snew)−1/2

− I and Znew = (Snew)−1/2S̃new(Snew)−1/2
− I. Then we have

Φ(Zmid) −Φ(Znew) ≥
10−4

log n
√

r.

Proof. The setup of the lemma considers the eigenvalues of Z when S̃ changes. For the sake of
notational convenience, we define y = |λ(Zmid)|, the vector of absolute values of eigenvalues of
Zmid = S−1/2

new S̃S−1/2
new − I. Recall from Table B.1 that ϵS = 0.01. We consider two cases below.

Case 1. There does not exist an i ≤ n/2 that satisfies the two conditions y[2i] < ϵS and y[2i] <
(1 − 1/10 log n)y[i]. In this case, we have r = n/2. We consider two sub-cases.

• Case (a). For all i ∈ [n], we have y[i] ≥ ϵS. In this case, we change all n coordinates of y, and
the change in each coordinate contributes to a potential decrease of at least ϵS/

√
n. Therefore,

we have Φ(Zmid) −Φ(Znew) ≥ ϵS
√

n ≥ 10−4

log n
√

r.

• Case (b). There exists a minimum index i ≤ n/2 such that y[2 j] < ϵS holds for all j in the range
i ≤ j ≤ n/2. In this case, for all j in the above range, we have that y[2 j] ≥ (1 − 1/10 log n)y[j]. In
particular, picking j = i, 2i, · · · gives

y[n] ≥ y[i] · (1 − 1/(10 log n))⌈log n⌉
≥ ϵS/10.

Recalling that our notation y[i] denotes the i’th absolute eigenvalue in decreasing order, we
use the above inequality and repeat the argument from the previous sub-case to conclude
that Φ(Zmid) −Φ(Znew) ≥ ϵS/10 ·

√
n ≥ 10−4

log n ·
√

r.

Case 2. There exists an index i for which both the conditions y[2i] < ϵS and y[2i] < (1 − 1/10 log n)y[i]
are satisfied. By definition, r ≤ n/2 is the smallest such index. Consider the index j such that for all
j′ < j, we have y[j′] ≥ ϵS and for all j′ ≥ j, we have y[j] < ϵS. By the same argument as in Case 1(b),
we can prove y[r] ≥ ϵS/10. Moreover, y[2r] < (1 − 1/10 log n)y[r] by definition of r. Denote by ynew

the vector of magnitudes of the eigenvalues of Znew. Since ynew
[i] is set to 0 for each i ∈ [2r], we have

ynew
[i] = y[i+2r] ≤ y[i]. Further, y[2r] < (1 − 1/10 log n)y[r] implies that for each i ∈ [r], we have

y[i] − ynew
[i] ≥

1
10 log n

· y[r] ≥
10−2ϵS

log n
=

10−4

log n
,

where ϵS = 0.01 by Table B.1. Therefore, we can bound, from below, the decrease in potential
function as

Φ(Zmid) −Φ(Znew) ≥
r∑

i=1

y[i] − ynew
[i]

√
i

≥
10−4

log n
√

r.

This finishes the proof of the lemma. □

Proof of Theorem B.5.1. Recall the definition of the potential function in Equation (B.5.2) for an error
matrix Z ∈ Sn×n:

Φ(Z) =
n∑

i=1

|λ(Z)|[i]
√

i
.

Let S(i) and S̃(i) be the true and approximate slack matrices in the ith iteration of Algorithm 3.2.1.
Define Z(i) = (S(i))−1/2S̃(i)(S(i))−1/2

− I and Z(i)
mid = (S(i+1))−1/2S̃(i)(S(i+1))−1/2

− I. First, throughout
Algorithm 3.2.1, we satisfy Inequality B.4.2 (as stated in Theorem B.4.1) and Inequality B.4.5 (as
stated in Lemma B.4.2). As a result, the assumptions in Lemma B.5.2 are satisfied, and we have that

Φ(Z(i)
mid) −Φ(Z(i)) ≤

√
log n.

From Lemma B.5.3, we have the following potential decrease:

Φ(Z(i)
mid) −Φ(Z(i+1)) ≥

10−4

log n
√

ri.

These together imply that

Φ(Z(i+1)) −Φ(Z(i)) ≤
√

log n −
10−4

log n
√

ri. (B.5.15)

We note that Φ(Z(0)) = 0 as we initialized S̃ = S in the beginning of the algorithm, and that
the potential function Φ(Z) is always non-negative. The theorem then follows by summing up
Equation (B.5.15) over all T iterations. □

B.6 Runtime Analysis

Our main result of this section is the following bound on the runtime of Algorithm 3.2.1.

Theorem B.6.1 (Runtime bound). The total runtime of Algorithm 3.2.1 for solving an SDP with variable
size n × n and m constraints is at most O∗

(√
n
(
mn2 +max(m,n)ω

))
, where ω is the matrix multiplication

exponent as defined in Definition B.2.2.

To prove Theorem B.6.1, we first upper bound the runtime in terms of fast rectangular matrix
multiplication times. The iteration complexity of Algorithm 3.2.1 is T = Õ(

√
n).

Lemma B.6.2 (Total cost). The total runtime of Algorithm 3.2.1 over T iterations is upper bounded as

TTotal ≤ O∗
min

(
n · nnz(A),mn2.5

)
+
√

n max(m,n)ω +
T∑

i=0

(Tmat(n,mri,n) + Tmat(m,nri,m))

 ,
(B.6.1)

where nnz(A) is the total number of non-zero entries in all the constraint matrices, ri, as defined in
Theorem B.5.1, is the rank of the update to the approximation slack matrix S̃ in iteration i, and ω and Tmat
are defined in Definition B.2.2 and Definition B.2.1, respectively.

Remark B.6.3. A more careful analysis can improve the first term in the RHS of Lemma B.6.2 to
√

n · nnz(A)1−γ
· (mn2)γ for γ = 1

2(3−ω(1)) . For the purpose of this chapter, however, we will only need the
simpler bound given in Lemma B.6.2.

Proof. The total runtime of Algorithm 3.2.1 consists of two parts:

• Part 1. The time to compute the approximate Hessian H̃(y) (which we abbreviate as H̃) in
Line 6.

• Part 2. The total cost of operations other than computing the approximate Hessian.

Part 1.

We analyze the cost of computing the approximate Hessian H̃.

Part 1a. Initialization.

We start with computing H̃ in the first iteration of the algorithm. Each entry of H̃ involves the
computation

H̃ j,k = tr
[
(S̃−1/2A jS̃−1/2)(S̃−1/2AkS̃−1/2)

]
.

It first costs O∗(nω) to invert S̃. Then the cost of computing the key module of the approximate
Hessian, S̃−1/2A jS̃−1/2 for all j ∈ [m], is obtained by stacking the matrices A j together:

TS̃−1/2A jS̃−1/2 for all j∈[m] ≤ O(Tmat(n,mn,n)). (B.6.2)

Vectorizing the matrices S̃−1/2A jS̃−1/2 into row vectors of length n2, for each j ∈ [m], and stacking
these rows vertically to form a matrix B of dimensions m × n2, one observes that H̃ = BB⊤. We
therefore have,

Tcomputing H̃ from B ≤ O(Tmat(m,n2,m)). (B.6.3)

Combining Equation (B.6.2), Equation (B.6.3), and the initial cost of inverting S̃ gives the following
cost for computing H̃ for the first iteration:

Tpart 1a ≤ O∗(Tmat(m,n2,m) + Tmat(n,mn,n) + nω). (B.6.4)

Part 1b. Accumulating low-rank changes over all the iterations

Once the approximate Hessian in the first iteration has been computed, every next iteration has
the approximate Hessian computed using a rank ri update to the approximate slack matrix S̃ (see
Line 11 of Lemma B.4.2). If the update from S̃ to S̃new has rank ri, Fact B.1.4 implies that we can
compute, in time O(nω+o(1)), the n × ri matrices V+ and V− satisfying S̃−1

new = S̃−1 + V+V⊤+ − V−V⊤
−

.
The cost of updating H̃ is then dominated by the computation of tr

[
S̃−1/2A jVV⊤AkS̃−1/2

]
, where

V ∈ Rn×ri is either V+ or V−. We note that

TA jV for all j∈[m] ≤ O∗
(
min

(
ri · nnz(A),mn2rω−2+o(1)

i

))
, (B.6.5)

where nnz(A) is the total number of non-zero entries in all the constraint matrices, and the second
term in the minimum is obtained by stacking the matrices A j together and splitting it and V into
matrices of dimensions ri × ri. Further, pre-multiplying S̃−1/2 with A jV for all j ∈ [m] essentially
involves computing the matrix product of an n × n matrix and an n × mri matrix, which, by
Definition B.2.1, costs Tmat(n,mri,n). This, together with Equation (B.6.5), gives

TS̃−1/2A jV for all j ∈ [m] ≤ O∗
(
Tmat(n,mri,n) +min

(
ri · nnz(A),mn2rω−2+o(1)

i

))
. (B.6.6)

The final step is to vectorize all the matrices S̃−1/2A jV, for each j ∈ [m], and stack these vertically to
get an m × nri matrix B, which gives the update to Hessian to be computed as BB⊤. This costs, by
definition, Tmat(m,nri,m). Combining this with Equation (B.6.6) gives the following run time for
one update to the approximate Hessian:

Trank ri Hessian update ≤ O∗
(
Tmat(n,mri,n) +min

(
ri · nnz(A),mn2rω−2

i

)
+ Tmat(m,nri,m) + nω

)
.

(B.6.7)

Applying this over all T = Õ(
√

n) iterations and
∑T

i=0
√

ri ≤ Õ(
√

n) from Theorem B.5.1, gives

Tpart 1b ≤ O∗
min(n · nnz(A),mn2.5) +

√
n · nω +

T∑
i=1

(Tmat(n,mri,n) + Tmat(m,nri,m))

 . (B.6.8)

Combining Part 1a and 1b.

Combining Equation (B.6.4) and Equation (B.6.8), we have

Tpart 1 ≤ Tpart 1a + Tpart 1b

≤ O∗
min(n · nnz(A),mn2.5) +

√
n · nω +

T∑
i=0

(Tmat(n,mri,n) + Tmat(m,nri,m))

 , (B.6.9)

where we incorporated the bound from Equation (B.6.4) into the i = 0 case.

Part 2.

Observe that there are four operations performed in Algorithm 3.2.1 other than computing H̃:

• Part 2a. computing the gradient gη(y)

• Part 2b. inverting the approximate Hessian H̃
• Part 2c. updating the dual variables ynew and S(ynew)

• Part 2d. computing the new approximate slack matrix S̃(ynew)

Part 2a. The i’th coordinate of the gradient is expressed as gη(y)i = ηbi − tr
[
S−1Ai

]
. The cost per

iteration of computing this quantity equals O(nnz(A) + nω+o(1)), where the second term comes from
inverting the matrix S.

Part 2b. The cost of inverting the approximate Hessian H̃ is O(mω+o(1)) per iteration.

Part 2c. The cost of updating the dual variable ynew = y − H̃−1gηnew(y), given H̃−1 and gηnew(y),
is O(m2) per iteration. The cost of computing the new slack matrix Snew =

∑
i∈[m](ynew)iAi − C is

O(nnz(A)) per iteration.

Part 2d. The per iteration cost of updating the approximate slack matrix S̃new is O(nω+o(1)) by
Lemma B.4.2.

Combining Part 2a, 2b, 2c and 2d.

The total cost of operations other than computing the Hessian over the T = Õ(
√

n) iterations is
therefore bounded by

Tpart 2 ≤ Tpart 2a + Tpart 2b + Tpart 2c + Tpart 2d ≤ O∗(
√

n(nnz(A) +max(m,n)ω)). (B.6.10)

Combining Part 1 and Part 2.

Combining Inequality B.6.9 and Inequality B.6.10 and using r0 = n finishes the proof of the lemma.

Ttotal ≤ Tpart 1 + Tpart 2

≤ O∗
min

(
n · nnz(A),mn2.5

)
+
√

n max(m,n)ω +
T∑

i=0

(Tmat(n,mri,n) + Tmat(m,nri,m))

 .
□

Lemma B.6.4. Let Tmat be as defined in Definition B.2.1. Let T = Õ(
√

n) and {r1, · · · , rT} be a sequence
that satisfies

T∑
i=1

√
ri ≤ O(T log1.5 n)

Property I. We have

T∑
i=1

Tmat(m,nri,m) ≤ O∗(
√

n max(mω,nω) + Tmat(m,n2,m)),

Property II. We have

T∑
i=1

Tmat(n,mri,n) ≤ O∗(
√

n max(mω,nω) + Tmat(n,mn,n)).

Proof. We give only the proof of Property I, as the proof of Property II is similar. Let m = na. For
each i ∈ [T], let ri = nbi , where bi ∈ [0, 1]. Then

Tmat(m,nri,m) = Tmat(na,n1+bi ,na) = naω((1+bi)/a)+o(1). (B.6.11)

For each number k ∈ {0, 1, · · · , log n}, define the set of iterations

Ik = {i ∈ [T] : 2k
≤ ri ≤ 2k+1

}.

Then our assumption on the sequence {r1, · · · , rT} can be expressed as
∑log n

k=0 |Ik| · 2k/2
≤ O(T log1.5 n).

This implies that for each k{0, 1, · · · , log n}, we have |Ik| ≤ O(T log1.5 n/2k/2). Next, taking the
summation of Eq. Equation (B.6.11) over all i ∈ [T], we have

T∑
i=1

Tmat(m,nri,m) =
T∑

i=1

na·ω((1+bi)/a)

=

log n∑
k=0

∑
i∈Ik

na·ω((1+bi)/a)

≤ O(log n) ·max
k

max
i∈Ik

T log1.5 n
2k/2

· na·ω((1+bi)/a)

≤ Õ(1) ·max
k

max
2k≤nbi≤2k+1

√
n

2k/2
· na·ω((1+bi)/a)

≤ Õ(1) · max
bi∈[0,1]

n1/2−bi/2+a·ω((1+bi)/a),

where the fourth step follows from T = Õ(
√

n). To bound the exponent on n above, we define the
function g,

g(bi) = 1/2 − bi/2 + a · ω((1 + bi)/a). (B.6.12)

This function is convex in bi due to the convexity of the function ω (Lemma B.2.6). Therefore, over
the interval bi ∈ [0, 1], the maximum of g is attained at one of the end points. We simply evaluate
this function at the end points.

Case 1. Consider the case bi = 0. In this case, we have g(0) = 1/2 + aω(1/a). We consider the
following two subcases.

Case 1a. If a ≥ 1, then we have

g(0) = 1/2 + a · ω(1/a) ≤ 1/2 + aω(1) = 1/2 + aω

Case 1b. If a ∈ (0, 1), then we define k = 1/a > 1. It follows from Lemma Lemma B.2.5 and ω > 1,

that

g(0) = 1/2 + a · ω(1/a) = 1/2 + ω(k)/k ≤ 1/2 + (k − 1 + ω)/k ≤ 1/2 + ω.

Combining both Case 1a and Case 1b, we have that

ng(0)
≤ max(n1/2+aω,n1/2+ω) ≤

√
n ·max(mω,nω).

Case 2 Consider the other case of bi = 1. In this case, g(1) = 1/2 − 1/2 + aω(2/a) = aω(2/a).

We now finish the proof by combining Case 1 and Case 2 as follows.

max
bi∈[0,1]

n1/2−bi+a·ω((1+bi)/a)
≤
√

n max(mω,nω) + na·ω(2/a).

□

Proof of Theorem B.6.1. In light of Lemma B.6.4, the upper bound on runtime given in Lemma B.6.2
can be written as

TTotal ≤ O∗
(
min

{
n · nnz(A),mn2.5

}
+
√

n max(m,n)ω + Tmat(n,mn,n) + Tmat(m,n2,m)
)
. (B.6.13)

Combining this with Lemma B.2.10, we have the following upper bound on the total runtime of
Algorithm 3.2.1:

TTotal ≤ O∗
(
min

{
n · nnz(A),mn2.5

}
+
√

n max(m,n)ω +
√

n
(
mn2 +mω

))
≤ O∗

(√
n
(
mn2 +max(m,n)ω

))
.

This finishes the proof of the theorem. □

B.7 Comparison with Cutting Plane Method

In this section, we prove Theorem 3.1.3, restated below.

Theorem 3.1.3 (Comparison with Cutting Plane Method). When m ≥ n, there is an interior point
method that solves an SDP with n×n matrices, m constraints, and nnz(A) input size, faster than the current
best cutting plane method [LSW15], over all regimes of nnz(A).

Remark B.7.1. In the dense case with nnz(A) = Θ(mn2), Algorithm 3.2.1 is faster than the cutting plane
method whenever m ≥

√
n.

Proof of Theorem 3.1.3. Recall that the current best runtime of the cutting plane method for solving
an SDP (3.1.1) is TCP = O∗(m · nnz(A) +mn2.372927 +m3) [LSW15], where 2.372927 is the current best
upper bound on the exponent of matrix multiplication ω. By Lemma B.6.2 and Lemma B.6.4, we
have the following upper bound on the total runtime of Algorithm 3.2.1:

TTotal ≤ O∗
(
min

{
n · nnz(A),mn2.5

}
+
√

n max(m,n)ω + Tmat(n,mn,n) + Tmat(m,n2,m)
)

Since m ≥ n by assumption, Lemma B.2.9 and Lemma B.2.9 further simplify the runtime to

TTotal ≤ O∗
(
min

{
n · nnz(A),mn2.5

}
+
√

nmω + Tmat(m,n2,m)
)

(B.7.1)

Note that min
{
n · nnz(A),mn2.5

}
≤ m · nnz(A) ≤ O(TCP) and that

√
nmω = o(m3) ≤ o(TCP) since

m ≥ n. Furthermore, Lemma B.2.11 states that Tmat(m,n2,m) = o(m3 +mn2.37) ≤ o(TCP). Since each
term on the RHS of Equation (B.7.1) is upper bounded by TCP, we make the stated conclusion. □

B.8 Initialization

Lemma B.8.1 (Initialization). Consider a semidefinite program as in (3.1.1) of dimension n × n with m
constraints, and assume that it has the following properties.

1. Bounded diameter: for any X ⪰ 0 with ⟨Ai,X⟩ = bi for all i ∈ [m], we have ∥X∥op ≤ R.

2. Lipschitz objective: ∥C∥op ≤ L.

For any 0 < δ ≤ 1, the following modified semidefinite program

max
X⪰0

⟨C,X⟩

s.t. ⟨Ai,X⟩ = bi,∀i ∈ [m + 1],

where

Ai =

Ai 0n 0n
0⊤n 0 0
0⊤n 0 bi

R − tr[Ai]

 , ∀i ∈ [m],

Am+1 =

In 0n 0n
0⊤n 1 0
0⊤n 0 0

 , b =
[

1
R b

n + 1

]
, C =

C ·
δ
L 0n 0n

0⊤n 0 0
0⊤n 0 −1

 ,
satisfies the following statements.

1. The following are feasible primal and dual solutions:

X = In+2 , y =
[
0m
1

]
, S =

In − C · δL 0n 0
0⊤n 1 0
0⊤n 0 1

 .
2. For any feasible primal and dual solutions (X, y,S) with duality gap at most δ2, the matrix X̂ =

R · X[n]×[n], where X[n]×[n] is the top-left n × n block submatrix of X, is an approximate solution to the
original semidefinite program in the following sense:

⟨C, X̂⟩ ≥ ⟨C,X∗⟩ − LR · δ,

X̂ ⪰ 0,∑
i∈[m]

∣∣∣∣⟨Ai, X̂⟩ − bi

∣∣∣∣ ≤ 4nδ · (R
∑
i∈[m]

∥Ai∥1 + ∥b∥1),

where X∗ is any optimal solution to the original SDP and ∥A∥1 denotes the Schatten 1-norm of a matrix
A.

Proof. For the first result, straightforward calculations show that ⟨Ai,X⟩ = bi for all i ∈ [m + 1], and
that

∑
i∈[m+1] yiAi − S = C. Now we prove the second result. Denote OPT and OPT the optimal

values of the original and modified SDP respectively. Our first goal is to establish a lower bound for
OPT in terms of OPT. For any optimal solution X ∈ Sn×n of the original SDP, consider the following
matrix X ∈ R(n+2)×(n+2)

X =

1
R X 0n 0n
0⊤n n + 1 − 1

R tr[X] 0
0⊤n 0 0

 .
Notice that X is a feasible primal solution to the modified SDP, and that

OPT ≥ ⟨C,X⟩ =
δ

LR
· ⟨C,X⟩ =

δ
LR
·OPT,

where the first step follows because the modified SDP is a maximization problem, and the final step
is because X is an optimal solution to the original SDP.

Given a feasible primal solution X ∈ R(n+2)×(n+2) of the modified SDP with duality gap δ2, we could

assume X =

X[n]×[n] 0n 0n
0⊤n τ 0
0⊤n 0 θ

 without loss of generality, where τ, θ ≥ 0. This is because if the

entries of X other than the diagonal and the top-left n × n block are not 0, then we could zero these
entries out and the matrix remains feasible and positive semidefinite. We thus immediately have
X̂ ⪰ 0. Notice that

δ
L
· ⟨C,X[n]×[n]⟩ − θ = ⟨C,X⟩ ≥ OPT − δ2

≥
δ

LR
·OPT − δ2. (B.8.1)

Therefore, we can lower bound the objective value for X[n]×[n] in the original SDP as

⟨C, X̂⟩ = R · ⟨C,X[n]×[n]⟩ ≥ OPT − LR · δ,

where the last inequality follows from Equation (B.8.1). By matrix Hölder inequality, we have

δ
L
· ⟨C,X[n]×[n]⟩ ≤

δ
L
· ∥C∥op · tr

[
X[n]×[n]

]
≤
δ
L
· ∥C∥op · ⟨Am+1,X⟩

≤ (n + 1)δ,

where in the last step follows from ∥C∥op ≤ L and bm+1 = n + 1. We can thus upper bound θ as

θ ≤
δ
L
· ⟨C,X[n]×[n]⟩ + δ

2
−
δ

LR
·OPT ≤ (2n + 1)δ + δ2

≤ 4nδ, (B.8.2)

where the first step follows from Equation (B.8.1), the second step follows from OPT ≥ −∥C∥op ·

∥X∗∥1 ≥ −nLR where ∥ · ∥1 is the Schatten 1-norm, and the last step follows from δ ≤ 1 ≤ n. Notice

that by the feasiblity of X for the modified SDP, we have

⟨Ai,X[n]×[n]⟩ + (
1
R
· bi − tr[Ai])θ =

1
R
· bi.

This implies that ∣∣∣∣⟨Ai, X̂⟩ − bi

∣∣∣∣ = |(bi − R · tr[Ai])θ| ≤ 4nδ · (R∥Ai∥1 + |bi|),

where the final step follows from the upper bound of θ in Equation (B.8.2). Summing the above
inequality up over all i ∈ [m] finishes the proof of the lemma. □

Appendix C

Appendix for Chapter 4

This chapter contains the appendix of Chapter 4.

C.1 Decomposable submodular function minimization

C.1.1 Preliminaries

Throughout, V denotes the ground set of elements. A set function f : 2V
→ R is submodular if it

satisfies the following diminishing marginal differences property:

Definition C.1.1 (Submodularity). A function f : 2V
→ R is submodular if f (T ∪ {i}) − f (T) ≤

f (S ∪ {i}) − f (S), for any subsets S ⊆ T ⊆ V and i ∈ V \ T.

We may assume without loss of generality that f (∅) = 0 by replacing f (S) by f (S)− f (∅). We assume
that f is accessed by an evaluation oracle and use EO to denote the time to compute f (S) for a subset
S. Our algorithm for decomposable SFM is based on the Lovász extension [GLS88], a standard
convex extension of a submodular function.

Definition C.1.2 (Lovász extension [GLS88]). The Lovász extension f̂ : [0, 1]V
→ R of a submodular

function f is defined as

f̂ (x) = Et∼[0,1][f ({i ∈ V : xi ≥ t})],

where t ∼ [0, 1] is drawn uniformly at random from [0, 1].

The Lovász extension f̂ of a submodular function f has many desirable properties. In particular, f̂
is a convex relaxation of f and it can be evaluated efficiently.

Theorem C.1.3 (Properties of Lovász extension [GLS88]). Let f : 2V
→ R be a submodular function

and f̂ be its Lovász extension. Then,

(a) f̂ is convex and minx∈[0,1]V f̂ (x) = minS⊆V f (S);

(b) f (S) = f̂ (IS) for any subset S ⊆ V, where IS is the indicator vector for S;

(c) Suppose x ∈ [0, 1]V satisfies x1 ≥ · · · ≥ x|V|, then f̂ (x) =
∑
|V|
i=1(f ([i]) − f ([i − 1]))xi.

Property (c) in Theorem C.1.3 allows us to implement a sub-gradient oracle for f̂ by evaluating f .

Theorem C.1.4 (Sub-gradient oracle implementation for Lovász extension, Theorem 61 of [LSW15]).
Let f : 2V

→ R be a submodular function and f̂ be its Lovász extension. Then a sub-gradient for f̂ can be
implemented in time O(|V| · EO + |V|2).

195

C.1.2 Decomposable submodular function minimization proofs

In this subsection, we prove the following more general version of Theorem 4.1.3.

Theorem C.1.5 (Decomposable SFM). Let F : V → [−1, 1] be given by F(S) =
∑n

i=1 Fi(S∩Vi), where each
Fi : 2Vi → R is a submodular function on Vi ⊆ V with |Vi| = di. Let m =

∑n
i=1 di and dmax := maxi∈[n] di.

Then we can find an ϵ-approximate minimizer of f using at most O(dmaxm log(m/ϵ)) evaluation oracle calls.

Proof. Let f̂i be the Lovász extension of each fi, then f̂ =
∑n

i=1 f̂i is the Lovász extension of f . Note that
f̂ is 2-Lipschitz since the range of f is [−1, 1]. Also, the diameter of the range [0, 1]Vi for each Lovász
extension f̂i is at most

√
|Vi| ≤

√
dmax. Thus using Theorem 4.1.1, we can find a vector x ∈ [0, 1]V such

that f̂ (x) ≤ minx∗∈[0,1]V f̂ (x∗) + ϵ in poly(m log(1/ϵ)) time and O(m log
(
m
√

dmax/ϵ
)
) = O(m log(m/ϵ))

subgradients of the f̂i’s. By Theorem C.1.4, each sub-gradient of f̂i can be computed by making
at most di ≤ dmax queries to the evaluation oracle for fi. Thus the total number of evaluation
oracle calls we make in finding an ϵ-additive approximate minimizer x ∈ [0, 1]V of f̂ is at most
O(dmaxm log(m/ϵ)).

Next we turn the ϵ-additive approximate minimizer x of f̂ into an ϵ-additive approximate minimizer
S ⊆ V for f . Without loss of generality, assume that x1 ≥ · · · ≥ x|V|. Then by property (c) in
Theorem C.1.3, we have

f̂ (x) =
|V|∑
i=1

(f ([i]) − f ([i − 1]))xi = f (V) · x|V| +
|V|−1∑
i=1

f ([i]) · (xi − xi+1).

Since xi − xi+1 ≥ 0, the above implies that mini∈{1,...,|V|} f ([i]) ≤ f̂ (x). Thus we can find a subset S ⊆ V
among f ([i]) for all i ∈ {1, · · · , |V|} such that f (S) ≤ f̂ (x). Then by property (a) in Theorem C.1.3, the
set S is an ϵ-additive approximate minimizer of f . This proves the theorem. □

Appendix D

Appendix for Chapter 5

This chapter contains details and proofs from Chapter 5.

D.1 Missing Proofs

Theorem 5.2.5. Let {gk} be generated by MinNorm(x, δ, ϵ). Fix an index k ≥ 0, and define the stopping time

τ
def
= inf

{
k : f (x − δĝk) < f (x) − δ∥gk∥2/4 or ∥gk∥2 ≤ ϵ

}
. Then, we have

E
[
∥gk∥

2
21τ>k

]
≤

16L2

16 + k
.

Proof. Fix an index k, and let Ek[·] denote the conditional expectation on gk. Suppose we are in the
event {τ > k}. Taking into account the Lipschitz continuity of f and Lemma 5.2.4, we deduce that
almost surely, conditioned on gk, the following estimate holds:

1
4
∥gk∥2 ≥

f (x) − f
(
x − δĝk

)
δ

≥
f (x) − f (x − δ · ζ̂k)

δ
− L∥ĝk − ζ̂k∥2

=
1
δ

∫ δ

0
⟨∇ f (x − sζ̂k), ζ̂k⟩ ds − L∥ĝk − ζ̂k∥2

≥
1
δ

∫ δ

0
⟨∇ f (x − sζ̂k), ĝk⟩ ds − 2L∥ĝk − ζ̂k∥2

= Ek⟨∇ f (yk), ĝk⟩ − 2L∥ĝk − ζ̂k∥2.

Rearranging yields Ek⟨∇ f (yk), ĝk⟩ ≤
1
4∥gk∥2 + 2L∥ĝk − ζ̂k∥. Simple algebra shows ∥ĝk − ζ̂k∥

2
2 ≤

2(1 −
√

1 − r2/∥gk∥
2
2) ≤

∥gk∥
2
2

64L2 . Therefore, we infer that Ek⟨∇ f (yk), ĝk⟩ <
1
2∥gk∥2. Lemma 5.2.3 then

guarantees that

Ek[∥gk+1∥
2
21τ>k] ≤

∥gk∥
2
2 −
∥gk∥

4
2

16L2

 1τ>k.

Define bk := ∥gk∥
2
21τ>k for all k ≥ 0. Then the tower rule for expectations yields

Ebk+1 ≤ E[∥gk+1∥
2
21τ>k] ≤ E

[(
1 −

bk

16L2

)
bk

]
≤

(
1 −
Ebk

16L2

)
Ebk,

by Jensen’s inequality applied to the concave function t 7→ (1 − t/16L2)t. Setting ak = Ebk/L2, this
inequality becomes ak+1 ≤ ak − a2

k/16, which, upon rearranging, yields 1
ak+1
≥

1
ak(1−ak/16) ≥

1
ak
+ 1

16 .

197

Iterating the recursion and taking into account a0 ≤ 1 completes the proof. □

Corollary 12. MinNorm(x, δ, ϵ) terminates in at most
⌈

64L2

ϵ2

⌉
·
⌈
2 log

(
1/γ

)⌉
iterations with probability at

least 1 − γ, where we define the stopping time τ
def
= inf

{
k : f (x − δĝk) < f (x) − δ∥gk∥2/4 or ∥gk∥2 ≤ ϵ

}
.

Proof. Notice that when k ≥ 64L2

ε2 , we have, by Theorem 5.2.5, that

Pr(τ > k) ≤ Pr(∥gk∥21τ>k ≥ ϵ) ≤
16L2

(16 + k)ε2 ≤
1
4
.

Similarly, for all i ∈N, we have Pr(τ > ik | τ > (i − 1)k) ≤ 1/4. Therefore,

Pr(τ > ik) = Pr(τ > ik | τ > (i − 1)k)Pr(τ > (i − 1)k) ≤
1
4

Pr(τ > (i − 1)k) ≤
1
4i .

Consequently, we have Pr(τ > ik) ≤ 1
4i ≤ γ whenever i ≥ log

(
1/γ

)
/ log(4), as desired. □

D.2 Implementation of The Oracles

In this section, we show how to convert (5.3.2) into a deterministic guarantee.

Lemma 16. Fix a unit vector ĝ ∈ Rd and let z ∈ Rd be a random vector satisfying E⟨∇ f (z), ĝ⟩ ≤ ϵ
3 . Let

z1, . . . , zk be i.i.d realizations of z with k =
⌈

36L
ϵ

⌉
·

⌈
log(1/γ)

log(4)

⌉
. Then with probability at least 1 − γ, one of the

samples zi satisfies ⟨∇ f (zi), ĝ⟩ ≤ ϵ
2 .

Proof. Define the random variable Y def
= ⟨∇ f (z), ĝ⟩, and use p def

= Pr
[
Y ≤ ϵ

2

]
. We note that

E[Y] = p · E[Y | Y ≤
ϵ
2

] + (1 − p) · E[Y | Y >
ϵ
2

].

Rearranging the terms and using E[Y] ≤ ϵ/3 gives

p ·
(
E[Y | Y >

ϵ
2

] − E[Y | Y ≤
ϵ
2

]
)
≥
ϵ
6
.

Finally, taking into account that f is L-Lipschitz, we deduce |Y| ≤ L, which further implies p ≥ ϵ
12L .

The result follows immediately. □

Lemma 17. Let f : Rd
→ R be an L-Lipschitz continuous and ρ-weakly convex function. Fix a point x

and a unit vector ĝ ∈ Rd such that f is differentiable almost everywhere on the line segment [x, y], where

y
def
= x− δĝ. Suppose that a random vector z sampled uniformly from [x, y] satisfies Ez⟨∇ f (z), ĝ⟩ ≤ ϵ

3 . Then,
Algorithm D.2.1 finds z̄ ∈ Rd such that ⟨∇ f (z̄), ĝ⟩ ≤ ϵ

2 using 3 log
(
12δρ/ϵ

)
function evaluations of f .

Proof. Define the new function h : [0, 1]→ R by h(t) = ⟨∇ f (x + t(y − x)), ĝ⟩. Clearly, we have

ϵ
3
≥ E[h(t)] =

1
2
E[h(t) | t ≤ 0.5]︸ ︷︷ ︸

P≤

+
1
2
E[h(t) | t > 0.5]︸ ︷︷ ︸

P>

.

Algorithm D.2.1 Binary Search for z̄

Input. Line Segment [x, y = x − δĝ]
Let [a, b] = [0, 1]
while b − a > ϵ

6δρ do

if f (x − aδĝ) − f (x − a+b
2 δĝ) ≤ f (x − a+b

2 δĝ) − f (x − bδĝ) then
Let [a, b]← [a, a+b

2]
else

Let [a, b]← [a+b
2 , b]

end if
end while
Return x − aδĝ

Therefore, it cannot be the case that both P≤ and P> are larger than ϵ/3, and at least one of them
must be at most ϵ/3. The fundamental theorem of calculus directly implies that

P≤ = E[h(t)|t ≤ 0.5] = Et∼[0,1/2]⟨∇ f (x + t(y − x)), ĝ⟩ =
2(f (x) − f (x − δ

2 ĝ))
δ

and P> =
2(f (x− δ2 ĝ)− f (y))

δ . Therefore, with three function evaluations we may determine which of
the two alternatives holds. Repeating this procedure log

(
12δρ/ϵ

)
times, each time shrinking the

interval by half, we can find an interval [a, b] ⊂ [0, 1] such that b − a ≤ ϵ
6δρ and Et∈[a,b]h(t) ≤ ϵ

3 . We
then have

h(t̄) − Eh(t) =
1
δ
Et∈[a,b]⟨∇ f (x + t̄(y − x)) − ∇ f (x + t(y − x)), x − y⟩ ≤ Et∈[a,b]

t̄ − t
δ
ρ∥y − x∥2 ≤

ϵ
6
,

where the first step is by plugging in the definition of h and ĝ, the second step is by ρ-weak convexity
of f (which in turn implies ρ-weak monotonicity of ∇ f), and the final step is by plugging in the
bound b − a ≤ ϵ

δϵ . We thus conclude h(t̄) ≤ ϵ
3 +

ϵ
6 =

ϵ
2 as claimed. □

Appendix E

Appendix for Chapter 6

E.1 Appendix: Omitted Technical Details

In this section, we provide proofs for all the claims made in the main body of the chapter, additional
supporting propositions and lemmas, and also omitted details of the implementation of our
algorithm. The proofs are provided in the order in which the corresponding statement appears in
the main body. In Section E.1.1, we prove the properties of our problem. We again emphasize that
these properties are crucial to achieving our goal of a scale-invariant algorithm for (P). Section E.1.2
contains the proofs of all our results pertaining to the convergence analysis of Algorithm 6.3.1, with
proofs of the growth rate of the scalar sequences {ai}, {ak

i }, and Ak grouped separately in Section E.1.3,
owing to their more technical nature.

E.1.1 Omitted Proof from Section 6.2: Properties of Our Objective

Proposition 6.2.1. Given f : Rn
+ → R as defined in (6.2.2) and x⋆ ∈ argminx∈Rn

+
f (x), the following

statements all hold.

a) ∇ f (x⋆) ≥ 0.
b) f (x⋆) = − 1

2∥Ax⋆∥22 = −
1
2 1⊤x⋆.

c) for all j ∈ [n], we have x⋆j ∈
[
0, 1
∥A: j∥

2
2

]
.

d) − 1
2
∑

j∈[n]
1

∥A: j∥
2
2
≤ f (x⋆) ≤ − 1

2 min j∈[n] ∥A: j∥
2
2
.

Proof. We recall the first-order optimality condition stated in Inequality 6.2.1: for all x ≥ 0, we have
⟨∇ f (x⋆), x − x⋆⟩ ≥ 0; we repeatedly invoke this inequality in the proof below.

1. Suppose there exists a coordinate j at which Proposition 6.2.1 (a) does not hold and instead,
we have ∇ j f (x⋆) < 0. Consider x ≥ 0 such that xi = x⋆i for all i , j and let x j = x⋆j + ϵ for some
ϵ > 0. Then, Inequality 6.2.1 becomes ∇ j f (x⋆) · ϵ ≥ 0. Under the assumption ∇ j f (x⋆) < 0, this
is an invalid inequality, thus contradicting our assumption.

2. From Proposition 6.2.1 (a), we know that ∇ f (x⋆) ≥ 0. If ∇i f (x⋆) > 0, and if x⋆i > 0, then by
picking a vector x such that x j = x⋆j for j , i and xi = x⋆i − γ for any γ ∈ (0, x⋆i), we violate
Inequality 6.2.1. Therefore it must be the case that if ∇i f (x⋆) > 0, then x⋆i = 0. Thus we have

0 = ⟨x⋆,∇ f (x⋆)⟩ = ⟨x⋆,A⊤Ax⋆ − 1⟩.

Therefore, f (x⋆) = 1
2⟨x

⋆,A⊤Ax⋆⟩ − 1⊤x⋆ = − 1
2⟨x

⋆,A⊤Ax⋆⟩ = − 1
2 1⊤x⋆.

200

3. From the proof of Proposition 6.2.1 (b), we have ⟨x⋆,∇ f (x⋆)⟩ = 0. We also have x⋆ ≥ 0 and,
from Proposition 6.2.1 (a), that ∇ f (x⋆) ≥ 0. Therefore, if x⋆i > 0 for some coordinate i then it
must be that ∇i f (x⋆) = 0. That is, 1 = ⟨A:i,Ax⋆⟩. Combining this equality with the fact that A
and x⋆ are both coordinate-wise non-negative gives

1 = ⟨A:i,Ax⋆⟩ ≥ ⟨A:i,A:ix⋆i ⟩,

which implies x⋆i ≤
1
∥A:i∥

2
2

for all coordinates i.

4. The lower bound follows immediately by combining Proposition 6.2.1 (b) and Proposi-
tion 6.2.1 (c). For the upper bound, we need to find a feasible point x̂ and compute the function
value at x̂, since f (x⋆) = miny≥0 f (y) ≤ f (̂x). Let x̂ = γek for some γ > 0. Then,

f (̂x) =
1
2
γ2
∥A:k∥

2
2 − γ.

Let γ = 1
∥A:k∥

2
2
. Then, f (̂x) = − 1

2∥A:k∥
2
2
. We pick k = arg mini∈[n] ∥A:i∥2, therefore f (x⋆) ≤

−
1

2 mini∈[n] ∥A:i∥
2
2

as claimed.

□

E.1.2 Omitted Proofs from Section 6.3: Analysis of Algorithm

Proofs from Section 6.3.1: Results on Upper and Lower Estimates

We first show the results stating Uk and Lk are indeed valid upper and lower (respectively) estimates
of the Lagrangian.

Lemma 6.3.1. For Uk as defined in Equation (6.3.5), Lagrangian defined in Equation (6.2.3) and x̃k ∈ R
n
+ in

Equation (6.3.3), we have, for all y ∈ Rm, the upper bound Uk(y) ≥ L(̃xk,y).

Proof. By evaluating the Lagrangian described by Equation (6.2.3) at x = x̃k, and by definition of ψk
from Equation (6.3.4), we obtain the following upper bound on the Lagrangian at (̃xk,y).

L(̃xk,y) = ⟨Ax̃k,y⟩ −
1
2
∥y∥22 − 1⊤x̃k

=
1

Ak

∑
i∈[k]

ak
i

[
⟨Axi,y⟩ −

1
2
∥y∥2 − 1⊤xi

]
=

1
Ak
ψk(y)

≤
1

Ak
ψk(yk) −

1
2
∥y − yk∥

2
2 = Uk(y),

where the final steps are by strong convexity of ψk and by Equation (6.3.5). □

We emphasize that y here can be random since this is a deterministic statement.

Lemma 6.3.2. For Lk defined in Equation (6.3.12), for the Lagrangian in Equation (6.2.3) and ỹk in
Equation (6.3.3), we have, for a fixed u ∈ X, the lower bound EL(u, ỹk) ≥ ELk(u), where the expectation is
with respect to all the random choices of coordinates in Algorithm 6.3.1.

Proof. First, evaluating Equation (6.2.3) at ỹk gives

L(u, ỹk) = ⟨Au, ỹk⟩ − 1⊤u −
1
2
∥̃yk∥

2
2.

Taking the expectation on both sides, applying the definition of ỹk, convexity of 1
2∥ · ∥

2, and Jensen’s
inequality, and adding and subtracting 1

Ak
E

∑
i∈[k] ai⟨Ax,yi−1⟩ +

1
Ak
ϕ0(u) gives

EL(u, ỹk) ≥
1

Ak
E

∑
i∈[k]

ai

[
⟨Au,yi⟩ − 1⊤u −

1
2
∥yi∥

2
2

]
=

1
Ak
E

∑
i∈[k]

ai

[
⟨Au,yi−1⟩ − 1⊤u −

1
2
∥yi∥

2
2

] + 1
Ak
E

[
ϕ0(u)

]
−

1
Ak
E

[
ϕ0(u)

]
+

1
Ak
E

∑
i∈[k]

ai⟨Au,yi − yi−1⟩

 .
We continue the analysis as

EL(u, ỹk) ≥
1

Ak
E

[
ϕk(u)

]
−

1
Ak
E

[
ϕ0(u)

]
+

1
Ak

∑
i∈[k]

aiE⟨Au,yi − yi−1⟩ −
1

2Ak
E

∑
i∈[k]

ai∥yi∥
2
2

≥
1

Ak
E

[
ϕk(xk)

]
+ E

[
1

2Ak
∥u − xk∥

2
Λ

]
−

1
Ak
E[ϕ0(u)] +

1
Ak
E

∑
i∈[k]

ai⟨Au,yi − yi−1⟩

−

1
2Ak
E

∑
i∈[k]

ai∥yi∥
2
2

= ELk(u),

the first step comes from Equation (6.3.8), the second step comes from Equation (6.3.11), and the
final step comes from Equation (6.3.12). □

Proofs from Section 6.3.2

We now describe three technical propositions that bound terms that show up in the proof of our
result on bounding the scaled gap estimate.

Proposition E.1.1. For ψk defined in Equation (6.3.4), with {ak
i } defined in Equation (6.3.2), we have for all

k ≥ 1,

ψk(yk) − ψk−1(yk−1) ≤ ak
k

{
⟨yk,Axk⟩ −

1
2
∥yk∥

2
2 − 1⊤xk

}
+

k−1∑
i=1

(ak
i − ak−1

i)
[
⟨yk,Axi⟩ −

1
2
∥yk∥

2
2 − 1⊤xi

]
−

Ak−1

2
∥yk − yk−1∥

2
2.

Proof. Evaluating ψk and ψk−1 as defined in Equation (6.3.4) at yk and subtracting, we have

ψk(yk) − ψk−1(yk) = ak⟨A⊤yk − 1,nxk − (n − 1)xk−1⟩ −
ak

2
∥yk∥

2
2. (E.1.1)

Next, applying strong convexity of ψk−1 at yk and yk−1 while using the fact that yk−1 minimizes ψk−1
gives

ψk−1(yk) − ψk−1(yk−1) ≤ −
1
2

Ak−1∥yk − yk−1∥
2
2. (E.1.2)

To complete the proof, it remains to add Equation (E.1.1) and Inequality E.1.2. □

Proposition E.1.2. The random function ϕk : X → R, k ≥ 2, defined in Equation (6.3.10) satisfies the
following properties, with xk, yk, and yk evolving as per Algorithm 6.3.1.

a) It is separable in its coordinates: ϕk(x) =
∑

j∈[n] ϕk, j(x j), where, for each j ∈ [n], we define ϕ0, j(x j) =
∥A: j∥

2
2

2 (x j − [x0] j)2, ϕ1, j(x j) = a1x j(A⊤y0 − 1) j + ϕ0, j(x j), and for k ≥ 2,

ϕk, j(x j) = ϕk−1, j(x j) + nak1 j= jk⟨A
⊤yk−1 − 1, x jke jk⟩. (E.1.3)

b) The primal variable xk is updated only on the jthk coordinate in each iteration: xk = xk−1 + γe jk for
some γ, and [xk] j = [xk−1] j for j , jk.

c) For a fixed x ∈ X and for k ≥ 1, we have, over all the randomness in the algorithm,

E
[
ϕk(x)

]
= E

[
ϕ0(x)

]
+

∑
i∈[k]

aiE
[
⟨A⊤yi−1 − 1, x⟩

]
. (E.1.4)

Proof. In the statement of Proposition E.1.2 (a), the claim about separability of ϕ0 and ϕ1 can be
checked just from the definitions of ϕ0, j and ϕ1, j. We prove the claim of coordinate-wise separability
for k ≥ 2 by summing over j ∈ [n] both sides of Equation (E.1.3). We can compute this sum via
following observation, which concludes the proof of Proposition E.1.2 (a).∑

j∈[n]

ak1 j= jk⟨A
⊤yk−1 − 1, x jke jk⟩ = ak⟨A⊤yk−1 − 1, x jke jk⟩.

From Proposition E.1.2 (a), we may therefore define, for j , jk,

[xk] j = arg min
u∈R+

ϕk, j(u) = arg min
u∈R+

ϕk−1, j(u) = [xk−1] j.

Therefore, [xk] j = [xk−1] j for all j , jk, thus proving Proposition E.1.2 (b). To prove Proposi-
tion E.1.2 (c), we use induction on k. The base case holds for k = 1 by the definition of ϕ1(x). Let
Proposition E.1.2 (c) hold for k ≥ 1. Then, by the definition of ϕk as in Equation (6.3.10), we have

ϕk(x) = ϕk−1(x) + nak⟨A⊤yk−1 − 1, x jke jk⟩, for all k ≥ 2.

LetFk−1 be the natural filtration, containing all the randomness in the algorithm up to and including
iteration k− 1. Taking expectations with respect to all the randomness until iteration k and invoking
linearity of expectation, the inductive hypothesis, and the tower rule E[·] = E[E[· |Fk−1]], we have

E[ϕk(x)] = E[ϕk−1(x)] + nakE
[[
E⟨A⊤yk−1 − 1, x jke jk⟩|Fk−1

]]
= E

[
ϕ0(x)

]
+

∑
i∈[k−1]

aiE
[
⟨A⊤yi−1 − 1, x⟩

]
+ akE⟨A⊤yk−1 − 1, x⟩

= E
[
ϕ0(x)

]
+

∑
i∈[k]

aiE
[
⟨A⊤yi−1 − 1, x⟩

]
,

which finishes the proof of Proposition E.1.2 (c). □

Proposition E.1.3. For all k ≥ 2, the random function ϕk : X → R, k ≥ 2, defined in Equation (6.3.10)
satisfies the following inequality, where xk and yk evolve according to Algorithm 6.3.1.

ϕk(xk) − ϕk−1(xk−1) ≥ ak

(
n⟨A⊤yk−1 − 1, [xk] jke jk⟩

)
+

1
2
∥xk − xk−1∥

2
Λ.

Proof. We have, using x = xk in Equation (6.3.10), that

ϕk(xk) − ϕk−1(xk) = nak⟨A⊤yk−1 − 1, [xk] jke jk⟩.

Applying Equation (6.3.11) to ϕk−1 at xk gives

ϕk−1(xk) − ϕk−1(xk−1) ≥
1
2
∥xk − xk−1∥

2
Λ.

Adding these inequalities completes the proof of the claim. □

We now use the preceding technical results to bound the change in scaled gap.

Lemma 6.3.3. Consider the iterates {xk} and {yk} evolving according to Algorithm 6.3.1. Let n ≥ 2 and
assume that a1 =

1
√

2n1.5 and a1 ≥ (n − 1)a2, while for k ≥ 3,

ak ≤ min
(nak−1

n − 1
,

√
Ak−1

2n

)
. (6.3.13)

Then, for fixed u ∈ X, any v ∈ Rm, and all k ≥ 2, the gap estimate Gk = Uk − Lk satisfies

E(AkGk(x,y) − Ak−1Gk−1(x,y))

≤ −E
(Ak

2
∥y − yk∥

2
2 −

Ak−1

2
∥y − yk−1∥

2
2

)
−

1
2
E∥x − xk∥

2
Λ +

1
2
E∥x − xk−1∥

2
Λ

− akE⟨A(x − xk),yk − yk−1⟩ + ak−1E⟨A(x − xk−1),yk−1 − yk−2⟩

−
1
4

Ak−1E∥yk − yk−1∥
2
2 +

1
4

Ak−2E∥yk−1 − yk−2∥
2
2.

Proof. Using Gk = Uk − Lk, Uk from Equation (6.3.5), and Lk from Equation (6.3.12), we have

AkGk(u,v) = ψk(yk) − ϕk(xk) + ϕ0(u)

−
Ak

2
∥v − yk∥

2
2 −

1
2
∥u − xk∥

2
Λ −

∑
i∈[k]

ai⟨Au,yi − yi−1⟩ +
∑
i∈[k]

ai

2
∥yi∥

2
2.

Therefore, the difference in scaled gap between successive iterations is

AkGk(u,v) − Ak−1Gk−1(u,v) =
[
ψk(yk) − ψk−1(yk−1)

]
−

[
ϕk(xk) − ϕk−1(xk−1)

]
−

Ak

2
∥v − yk∥

2
2 +

Ak−1

2
∥v − yk−1∥

2
2

−
1
2
∥u − xk∥

2
Λ +

1
2
∥u − xk−1∥

2
Λ

− ak⟨Au,yk − yk−1⟩ +
ak

2
∥yk∥

2
2.

(E.1.5)

Based on the above expression, to prove the lemma, it suffices to bound the expectation of

Tk(u) def
=

[
ψk(yk) − ψk−1(yk−1)

]
−

[
ϕk(xk) − ϕk−1(xk−1)

]
− ak⟨Au,yk − yk−1⟩ +

ak

2
∥yk∥

2
2. (E.1.6)

First, we take expectations on both sides of the inequality in Proposition E.1.3 by invoking
E[·] = E[E[· |Fk−1]] as before, where Fk−1 denotes the natural filtration. By using the fact that xk−1
is updated only at coordinate jk (as stated in Proposition E.1.2 (b)), we observe the following for the
term from the right hand side of Proposition E.1.3.

E
[
⟨A⊤yk−1 − 1, [xk] jke jk⟩

]
=E

[
⟨A⊤yk−1 − 1, xk − xk−1⟩

]
+ E

[
E

[
⟨A⊤yk−1 − 1, [xk−1] jke jk⟩|Fk−1

]]
=E

[
⟨A⊤yk−1 − 1, xk − xk−1⟩

]
+

1
n
E

[
⟨A⊤yk−1 − 1, xk−1⟩

]
=E

[
⟨A⊤yk−1 − 1, xk − (1 − 1/n) xk−1⟩

]
. (E.1.7)

Therefore, we have from Proposition E.1.3 and scaling Equation (E.1.7) by −nak that

−E
[
ϕk(xk) − ϕk−1(xk−1)

]
≤ −

1
2
E

[
∥xk − xk−1∥

2
Λ

]
− akE

[
⟨A⊤yk−1 − 1,nxk − (n − 1)xk−1⟩

]
. (E.1.8)

We now bound the expectation of the term involving differences of ψk by taking expectations of
both sides of Proposition E.1.1.

E
[
ψk(yk) − ψk−1(yk−1)

]
≤ −

Ak−1

2
E

[
∥yk − yk−1∥

2
2

]
−

ak

2
E

[
∥yk∥

2
2

]
+ akE

[
⟨A⊤yk − 1,nxk − (n − 1)xk−1⟩

]
.

(E.1.9)

By taking expectations on both sides of Equation (E.1.6), we have

E[Tk(u)] = E
[
ψk(yk) − ψk−1(yk−1)

]
− E

[
ϕk(xk) − ϕk−1(xk−1)

]
− akE

[
⟨Au,yk − yk−1⟩

]
+

ak

2
E

[
∥yk∥

2
2

]
.

(E.1.10)

Combining Inequality E.1.8, Inequality E.1.9, and Equation (E.1.10) then gives

E[Tk(u)] ≤ −
Ak−1

2
E

[
∥yk − yk−1∥

2
2

]
−

1
2
E

[
∥xk − xk−1∥

2
Λ

]
+ akE

[
⟨A⊤(yk − yk−1),nxk − (n − 1)xk−1 − u⟩

]
.

(E.1.11)
Recall that by the assumption in the statement of the lemma,

yk−1 = yk−1 +
ak−1

ak
(yk−1 − yk−2).

Plugging into Equation (E.1.11) and rearranging, we have

E[Tk(u)] ≤ −
Ak−1

2
E

[
∥yk − yk−1∥

2
2

]
−

1
2
E

[
∥xk − xk−1∥

2
Λ

]
+ (n − 1)akE

[
⟨A⊤(yk − yk−1), xk − xk−1⟩

]
− nak−1E

[
⟨A⊤(yk−1 − yk−2), xk − xk−1⟩

]
+ akE

[
⟨A⊤(yk − yk−1), xk − u⟩

]
− ak−1E

[
⟨A⊤(yk−1 − yk−2), xk−1 − u⟩

]
.

(E.1.12)

To complete the proof, we need to bound the terms from the first two lines on the right-hand side of
Equation (E.1.12). First, observe that, by the coordinate update of xk and Young’s inequality, ∀β > 0,

⟨A⊤(yk − yk−1), xk − xk−1⟩ = ⟨yk − yk−1,A(xk − xk−1)⟩
= ⟨yk − yk−1,A: jk([xk] jk − [xk−1] jk)⟩

≤
β

2
∥yk − yk−1∥

2
2 +

1
2β
∥A: jk∥

2
2|[xk] jk − [xk−1] jk |

2

=
β

2
∥yk − yk−1∥

2
2 +

1
2β
∥xk − xk−1∥

2
Λ. (E.1.13)

By the same token, ∀γ > 0,

−⟨A⊤(yk−1 − yk−2), xk − xk−1⟩ ≤
γ

2
∥yk−1 − yk−2∥

2
2 +

1
2γ
∥xk − xk−1∥

2
Λ. (E.1.14)

Recalling that, by the choice of step sizes, (n − 1)ak ≤ nak−1 and ak ≤
√

Ak−1
2n , we can verify that for

β = 2(n − 1)ak and γ = 2nak−1, the following inequalities hold:

(n − 1)akβ − Ak−1 ≤ −
Ak−1

2
,

(n − 1)ak

β
+

nak−1

γ
≤ 1.

(E.1.15)

Combining Equations (E.1.12)–(E.1.15),

E[Tk(u)] ≤ −
Ak−1

4
E[∥yk − yk−1∥

2
2] + n2ak−1

2E[∥yk−1 − yk−2∥
2
2]

+ akE
[
⟨A⊤(yk − yk−1), xk − u⟩

]
− ak−1E

[
⟨A⊤(yk−1 − yk−2), xk−1 − u⟩

]
.

(E.1.16)

It remains to combine Equation (E.1.5), Equation (E.1.6), and Equation (E.1.16). □

Lemma 6.3.4. Given a fixed u ∈ X, any v ∈ Rm, ȳ0 = y0, and x1 and y1 from Algorithm 6.3.1, we have

A1G1(u,v) = a1⟨A⊤(y1 − y0), x1 − u⟩ + ϕ0(u) − ϕ0(x1) −
1
2
∥u − x1∥

2
Λ −

A1

2
∥v − y1∥

2
2.

Proof. Evaluating Equation (6.3.5) and Equation (6.3.12) at k = 1 gives

A1U1(v) = ψ1(y1) −
A1

2
∥v − y1∥

2
2, (E.1.17)

A1L1(u) = ϕ1(x1) +
1
2
∥u − x1∥

2
Λ − ϕ0(u) + a1⟨Au,y1 − y0⟩ −

a1

2
∥y1∥

2
2. (E.1.18)

By definition of ψ1 from Equation (6.3.4), ϕ1 from Equation (6.3.7), and the assignment a1
1 = a1, we

have

ψ1(y1) − ϕ1(x1) = −
a1

2
∥y1∥

2
2 + a1⟨y1,Ax1⟩ − a11⊤x1 − ϕ0(x1) − a1⟨A⊤y0 − 1, x1⟩

= −
a1

2
∥y1∥

2
2 + a1⟨A(y1 − y0), x1⟩ − ϕ0(x1),

where we have used that ȳ0 = y0, which holds by assumption. To complete the proof, it remains to
subtract Equation (E.1.18) from Equation (E.1.17) and combine with the last equality. □

Theorem 6.3.5. [Main Result] Assume that n ≥ 4. Given a matrix A ∈ Rm×n
+ , ϵ > 0, an arbitrary x0 ∈ X

and ȳ0 = y0 = Ax0, let xk and Ak evolve according to SI-NNLS+ (Algorithm 6.3.1) for k ≥ 1. For f defined
in (6.2.2), define x⋆ ∈ argminx≥0 f (x). Then, for all K ≥ 2, we have

E
[
⟨∇ f (̃xK), x̃K − x⋆⟩ +

1
2
∥A(̃xK − x⋆)∥2

]
≤

2ϕ0(x⋆)
AK

=
∥x0 − x⋆∥2

Λ

AK
.

When K ≥ 5
2 n log n, we have AK ≥

(K− 5
2 n log n)2

36n2 . If ϕ0(x⋆) ≤ | f (x⋆)|, then for K ≥ 5
2 n log n + 6n

√
ϵ
, we have

E[f (̃xK) − f (x⋆)] ≤ ε| f (x⋆)|. The total cost is O
(
nnz(A)

(
log n + 1

√
ϵ

))
.

Proof. Observe that, by the choice of step sizes, n2a2
k−1 ≤

Ak−2
4 , ∀k ≥ 3. Thus, telescoping the bound

in Lemma 6.3.3 and combining with Lemma 6.3.4, we have

E[AKGK(u,v)] ≤ϕ0(u) −
AK

2
E[∥v − yK∥

2
2] −

1
2
E[∥u − xK∥

2
Λ] − aKE[⟨A(u − xK),yK − yK−1⟩]

−
AK−1

4
E[∥yK − yK−1∥

2
2] + n2a1

2E[∥y1 − y0∥
2
2] − E[ϕ0(x1)].

(E.1.19)

We first show how to cancel out the inner product term with the negative quadratic terms. Observe
that, ∀β > 0,

−aK⟨A(u − xK),yK − yK−1⟩ = − aK

n∑
j=1

(yK − yK−1)⊤A: j(u j − [xK] j)

≤aK
(nβ

2
∥yK − yK−1∥

2
2 +

1
2β
∥u − xK∥

2
Λ

)
,

where the last line is by Young’s inequality. In particular, choosing β = 2aK, we have 1
2 aKnβ = na2

K,
which is at most AK−1

4 , by the choice of step sizes in SI-NNLS+. Thus, since ϕ0(x1) = 1
2∥x1 − x0∥

2
Λ
,

Equation (E.1.19) simplifies to

E[AKGK(u,v)] ≤ϕ0(u) −
AK

2
E[∥v − yK∥

2
2] −

1
4
E[∥u − xK∥

2
Λ] + n2a1

2E[∥y1 − y0∥
2
2] − E[ϕ0(x1)].

(E.1.20)
Since − 1

4E[∥u− xK∥
2
Λ

] ≤ 0,we can ignore it. Let us now bound n2a1
2
∥y1 −y0∥

2
2 −ϕ0(x1). By definition

of x1 and ϕ1,we have x1 = x0 − a1Λ
−1(A⊤y0 − 1). Further, from Equation (6.3.4) and Equation (6.3.1),

as we have y1 = Ax1 and y0 = Ax0, we can simplify the terms to bound as follows.

n2a2
1∥y1 − y0∥

2
2 − ϕ0(x1) =a1

2
(
n2a1

2
∥AΛ−1(A⊤y0 − 1)∥22 −

1
2
∥Λ−1(A⊤y0 − 1)∥2Λ

)
≤a1

2
(
n2a1

2
∥Λ−1/2A⊤AΛ−1/2

∥2∥Λ
−

1
2 (A⊤y0 − 1)∥22 −

1
2
∥Λ−

1
2 (A⊤y0 − 1)∥22

)
≤a1

2
∥Λ−

1
2 (A⊤y0 − 1)∥22

(
n3a1

2
−

1
2

)
,

where the reasoning behind the first inequality follows from the definition of spectral norm and

that ∥AΛ−1/2
∥

2
2 = λmax(Λ−1/2A⊤AΛ−1/2); the last inequality follows as the matrix Λ−1/2A⊤AΛ−1/2

has all ones on the main diagonal, and thus its trace is at most n, and since it is positive semidefinite,
its spectral norm is at most its trace. As a1 =

1
√

2n1.5 , we conclude that n2a1
2
∥y1 − y0∥

2
2 − ϕ0(x1) ≤ 0.

Thus, Equation (E.1.20) simplifies to

E[AKGK(u,v)] ≤ E[ϕ0(u)] −
AK

2
E[∥v − yK∥

2
2]. (E.1.21)

By construction, Gapu,v
L

(̃xK, ỹK) ≤ GK(u,v). Further, by Inequality 6.2.5, f (̃xK) − f (x⋆) + 1
2∥A(̃xK −

x⋆)∥2 ≤ Gapu,v
L

(̃xK, ỹK). Hence, we can conclude from Equation (E.1.21) that

E
[

f (̃xK) − f (x⋆) +
1
2
∥A(̃xK − x⋆)∥2

]
≤
ϕ0(x⋆)

AK
=
∥x0 − x⋆∥2

Λ

2AK
. (E.1.22)

On the other hand, for u = x⋆ and v = y⋆ = Ax⋆, Gapu,v
L

(̃xK, ỹK) ≥ 0, and, recalling from
Equation (6.3.1), Equation (6.3.3), and Equation (6.3.4) that yK = Ax̃K, we can also conclude from
Equation (E.1.21) that

E
[1
2
∥A(̃xK − x⋆)∥22

]
≤
ϕ0(x⋆)

AK
=
∥x0 − x⋆∥2

Λ

2AK
. (E.1.23)

By Proposition 6.2.1 (b), f (x⋆) = − 1
2 1⊤x⋆ = −1

2∥Ax⋆∥22. Using this identity, one can verify that, ∀x,

f (x) − f (x⋆) +
1
2
∥A(x − x⋆)∥22 = ⟨A

TAx − 1, x − x⋆⟩ = ⟨∇ f (x), x − x⋆⟩.

Hence, summing Equation (E.1.22) and Equation (E.1.23), we also have

E
[
⟨∇ f (̃xK), x̃K − x⋆⟩ +

1
2
∥A(̃xK − x⋆)∥2

]
≤

2ϕ0(x⋆)
AK

=
∥x0 − x⋆∥2

Λ

AK
.

Finally, the bound on the rate of growth of Ak is provided in Section E.1.3. □

The reason A does not show up in the final bounds (thereby rendering our algorithm “scale-
invariant”) is because Proposition 6.2.1 allows bounding ∥x0 − x⋆∥2

Λ
by | f (x⋆)|where we crucially

use the non-negativity of A and x. This does not seem possible for general A. However, an additive
(as opposed to multiplicative) error bound can be obtained even with the more general A with only
small updates to the analysis. This bound would necessarily depend on the scale of A. The choice
of the regularizer 1

2∥ · −x0∥
2
Λ

is also crucial here.

E.1.3 Omitted Proofs from Section 6.3: Growth of Scalar Sequences

In this section, we use the properties of {ai} and {ak
i } to obtain our claimed rate of growth of Ak. Note

that in any iteration k ≥ 2 of Algorithm 6.3.1, there are two possible updates to ak, which we name
as follows.

Type I update: ak+1 =
nak

n − 1
(E.1.24)

Type II update: ak+1 =

√
Ak

2n
(E.1.25)

Obtaining a handle on the growth rate of Ak requires controlling the number of updates of both
types specified above. At a high level, the idea behind obtaining such a bound is that if the algorithm
had only Type II updates, we would have Ak ≥ Ω(k2

n2); we then go on to show that we cannot have
more than 5

2 n log n Type I updates since those make ak grow too fast. We formalize this intuition in
the following lemmas.

Lemma E.1.4. In Algorithm 6.3.1, we have, for k ≥ 2, that ak+1 ≥ ak and Ak+1 > Ak.

Proof. Notice that for all k, we have ak > 0, which implies that Ak+1
def
= Ak+ak+1 satisfies Ak+1 > Ak. To

check the non-decreasing nature of ak, we recall that ak+1 = min
(

nak
n−1 ,

√
Ak

2n

)
. In the case that

√
Ak

2n ≥
nak
n−1 ,

we have ak+1 =
nak
n−1 > ak, as claimed. Consider the other case with ak+1 =

√
Ak

2n , and suppose, for the
sake of contradiction, that ak+1 < ak. Chaining this inequality with the assumed expression for ak+1,
scaling appropriately, and squaring both sides gives Ak < 4n2a2

k . Plugging this into Ak = Ak−1 + ak
and solving for ak from this quadratic inequality (and further invoking the nonnegativity of ak),

yields ak >
1+
√

1+16n2Ak−1

8n2 >
√

Ak−1
2n . However, this contradicts ak = min

(
nak−1
n−1 ,

√
Ak−1
2n

)
≤

√
Ak−1
2n . □

Lemma E.1.5. Consider the iterations {sk} in which Algorithm 6.3.1 performs a Type II update ask+1 =

√
Ask

2n .
Then we have Ask ≥

k2

c1n2 and ask ≥
k−1

2
√

c1n2 for c1 = 36.

Proof. We prove this claim by induction. First, notice that sk ≥ k+1 for any k. Recall our initialization
a1 = A1 =

1
√

2n1.5 . By combining this with the monotonicity property stated in Lemma E.1.4, we

have as1 ≥ a2 =
1

√
2n2.5 ≥ 0. By using Lemma E.1.4 again, we have, in a similar fashion, that

As1 ≥ A2 =
1

√
2n2.5 +

1
√

2n1.5 ≥
1

c1n2 , which proves the base case for induction. Assume that for

some k > 1, we have the induction hypothesis Ask ≥
k2

c1n2 and ask ≥
k−1

2
√

c1n2 . Then, combining the
monotonicity of Ak from Lemma E.1.4 with the fact that the algorithm performs a Type II update

on ask , we have ask+1 =

√
Ask+1−1

2n ≥

√
Ask

2n ≥
k

2
√

c1n2 . By again applying monotonicity of Ak and the

induction hypothesis about ak, we have Ask+1 = Ask+1−1 + ask+1 ≥ Ask + ask+1 ≥
2k2+

√
c1k

2c1n2 > (k+1)2

c1n2 . □

Lemma E.1.6. If at some kth
0 iteration of Algorithm 6.3.1, we have that

ak0 >
n − 1

2
√

c1n2
; Ak0 ≥

1
c1

(E.1.26)

then for all k ≥ k0, we have that

ak ≥
k − 1 − k0 + n

2
√

c1n2
; Ak ≥

(k − k0 + n)2

c1n2 (E.1.27)

for c1 = 36.

Proof. We prove the claim by induction. First, the base case is true for k = k0 by our assumption on
ak0 and Ak0 . Assume the induction hypothesis ak ≥

k−1−k0+n
2
√

c1n2 and Ak ≥
(k−k0+n)2

c1n2 for k ≥ k0. We now
discuss how ak changes with the two types of updates.

If the algorithm performs a Type I update on ak, then, by definition, ak+1 =
nak
n−1 . Now applying the

assumed lower bound on ak, we have, when k > k0, that

ak+1 =
nak

n − 1
≥

k − 1 − k0 + n
2
√

c1n(n − 1)
≥

k − k0 + n
2
√

c1n2
.

Similarly, given that Ak ≥
(k−k0+n)2

c1n2 , we have,

Ak+1 = Ak + ak+1 ≥
(k − k0 + n)2

c1n2 +
k − k0 + n
2
√

c1n2
≥

(k + 1 − k0 + n)2

c1n2 .

If, on the other hand, the algorithm performs a Type II update on ak, then we have

ak+1 =

√
Ak

2n
≥

k − k0 + n
2
√

c1n2
.

This completes the induction. □

As we saw in Lemma E.1.6, after the kth
0 iteration - starting at which Inequality E.1.26 holds - Ak

grows fast. We therefore need to estimate the number of Type I updates before the kth
0 iteration.

Lemma E.1.7. There are at most 3
2 n log n Type I updates (Equation (E.1.24)) performed before the kth

0
iteration (the first iteration at which Inequality E.1.26 holds).

Proof. Suppose there are n1 Type I updates performed by Algorithm 6.3.1 before the kth
0 iteration,

when Inequality E.1.26 starts to hold. Further, by Lemma E.1.4, ak is monotonically increasing
(for both types of updates). Then, when considering Type I updates (Equation (E.1.24)), we have

ak0 ≥

(
n

n−1

)n1
a2 =

(
n

n−1

)n1
·

1
√

2n2.5 . In order for ak0 >
n−1
12n2 , we only need to have n1 > log n

n−1

(√
n(n−1)
6
√

2

)
.

In a similar fashion, combining the monotonicity of Ak from Lemma E.1.4 with the Type I update
rule, we have

Ak0 ≥ a2

(
1 +

n
n − 1

+
(n
n − 1

)2
+ · · · +

(n
n − 1

)n1
)
>

(n
n−1)n1

√
2n2.5

.

So, in order to have Ak0 >
1
36 per Inequality E.1.26, we only need to have n1 ≥ log n

n−1
(n2.5

18
√

2
). By using

the approximation 1 + x ≤ ex and combining the above two bounds, we get as soon as n1 ≥
3
2 n log n,

the inequality (E.1.26) holds. □

Proposition E.1.8. [Rate of change of Ak] When k ≥ 5
2 n log n, we have Ak ≥

(k− 5
2 n log n)2

36n2 .

Proof. Let there be t1 Type I updates and t2 Type II updates before the first iteration at which
Inequality E.1.26 holds, and let us call this iteration k0. By the result of Lemma E.1.7, we have

t1 ≤
3
2 n log n. By the result of Lemma E.1.5, we must have Ak0 ≥

t2
2

c1n2 and ak0 ≥
t2−1

2
√

c1n2 . To meet
the requirement in Inequality E.1.26 then, we can see that t2 ≤ n. Therefore, k0 = t1 + t2 ≤
3
2 n log n + n ≤ 5

2 n log n. Having reached the kth
0 iteration, the result of Lemma E.1.6 applies, and we

have Ak ≥
(k−k0)2

c1n2 . □

E.1.4 Omitted Proofs from Section 6.4: Restart Strategy

To establish local error bounds, we start with the observation that (P) is equivalent to a linear
complementarity problem.

Proposition E.1.9. Problem (P) is equivalent to the following linear complementarity problem, denoted by
LCP(M,q).

Mx + q ≥ 0, x ≥ 0, ⟨x,Mx + q⟩ = 0, (E.1.28)

where Λ−1M = A⊤A and q = −Λ−11.

Proof. Observe first that, as Λ−1 is a diagonal matrix with positive elements on the diagonal, the
stated linear complementarity problem is equivalent to

∇ f (x) ≥ 0, x ≥ 0, ⟨∇ f (x), x⟩ = 0. (E.1.29)

By Proposition 6.2.1, these conditions hold for any solution of (P). In the opposite direction, suppose
that the conditions from Equation (E.1.29) hold for some x. Then applying these conditions for any
u ≥ 0 gives

⟨∇ f (x),u − x⟩ = ⟨∇ f (x),u⟩ ≥ 0.

But ⟨∇ f (x),u − x⟩ ≥ 0 is the first-order optimality condition for (P), and so x solves (P). □

For r(x) = ∥R(x)∥Λ, a quantity termed natural residual [MR94], local error bound is obtained as a
corollary of the following theorem.

Theorem E.1.10 ([MR94], Theorem 2.1). Let M ∈ Rn×n be such that LCP(M, 0) has 0 as its unique
solution. Then there exists µ > 0 such that for each x ∈ Rn, we have r(x) ≥ µ∥x− x⋆∥, where x⋆ is a solution
to LCP(M,q) that is closest to x under the norm ∥ · ∥.

Theorem E.1.10 applies to our problem due to the nonnegativity (and nondegeneracy) of A and
choosing ∥·∥ = ∥·∥Λ. By arguing that Theorem 6.3.5 provides an upper bound on r(̃xK), in expectation,
we then obtain our final result below.

Proposition E.1.11. For any x ∈ Rn
+, r(x) ≤

√
2n(f (x) − f (x⋆)), where x⋆ ∈ argminu∈Rn

+
f (u).

Proof. Given x ∈ Rn
+, consider x̂ defined as x̂ j⋆ = x j⋆ −R j⋆(x), where j⋆ = argmax1≤ j≤n |R j(x)| · ∥A: j∥2,

and x̂ j = x j for j , j⋆. Then observing that

f (x̂) − f (x) = ∇ j⋆ f (x)([x̂] j⋆ − [x] j⋆) +
∥A: j⋆∥

2
2

2
|[x̂] j⋆ − [x] j⋆ |

2

≤ −
1
2
|R j⋆(x)|2∥A: j⋆∥

2
2 ≤ −

1
2n
∥R(x)∥2Λ,

and combining with f (x̂) ≥ f (x⋆), r(x) = ∥R(x)∥Λ, the claimed bound follows after a simple
rearrangement. □

Theorem 6.4.1. Given an error parameter ε > 0 and x0 = 0, consider the following algorithmA :

A : SI-NNLS+ with Restarts
Initialize: k = 1.
Initialize Lazy SI-NNLS+ at xk−1.
Run Lazy SI-NNLS+ until the output x̃k

K satisfies r(̃xk
K) ≤ 1

2 r(xk−1).
Restart Lazy SI-NNLS+ initializing at xk = x̃k

K.
Increment k.
Repeat until r(̃xk

K) ≤ ϵ.

Then, the expected number of arithmetic operations of A is O
(
nnz(A)

(
log n +

√
n
µ

)
log

(
r(x0)
ϵ

))
. As a

consequence, given ϵ̄ > 0, the total expected number of arithmetic operations until a point with f (x)− f (x⋆) ≤

ϵ̄| f (x⋆)| can be constructed byA is O
(
nnz(A)

(
log n +

√
n
µ

)
log

(
n
µϵ̄

))
.

Proof. Because each restart halves the natural residual r(x), it is immediate that the total number
of restarts until r(̃xk

K) ≤ ϵ is bounded by log
(

r(x0)
ϵ

)
. Thus, to prove the first (and main) part of the

theorem, we only need to bound the number of iterations (and the overall number of arithmetic
operations) of (Lazy) SI-NNLS+ in expectation. Hence, in the following, we only consider one run
of SI-NNLS+ until the natural residual is halved. To keep the notation simple, we let x0 denote the
initial point of SI-NNLS+ and x̃k denote the output of SI-NNLS+ at iteration k. If r(x0) = 0,A halts
immediately and the bound on the number of iterations holds trivially, so assume r(x0) > 0. Using
Theorem 6.3.5, we have that ∀k ≥ 2,

E[Akr2(̃xk)] ≤ n∥x0 − x⋆∥2Λ ≤
n
µ2 r2(x0). (E.1.30)

As r2(·) is nonnegative, we can use Markov’s inequality to bound the total number of iterations
K until r(̃xK) ≤ r(x0)

2 . In particular, using Equation (E.1.30), we get by Markov’s inequality that

Pr[K > k] ≤ Pr
[
r2(̃xk) ≥ r2(x0)

4

]
≤

4n
µ2Ak

. As K is nonnegative, we can estimate its expectation using

E[K] =
∞∑

i=0

Pr[K > i] ≤
∞∑

i=0

min
{
1,

4n
µ2Ai

}
≤

⌈12n
√

n/µ+ 5
2 n log n⌉∑

i=0

1 +
∞∑

⌈12n
√

n/µ+ 5
2 n log n⌉+1

4n
µ2Ai

≤ 24n
√

n/µ +
5
2

n log n + 2,

where in the last inequality we use the rate of Ak from Proposition E.1.8.

In the lazy implementation of SI-NNLS+, as argued in Section E.2, the expected cost of an iteration
is nnz(A)

n , which leads to the claimed bound on the number of arithmetic operations until r(x) ≤ ϵ.

By using that r(x0) ≤
√

2n(f (x0) − f (x⋆)) =
√

2n| f (x⋆)|, f
(̃
xK1 − R(̃xK1)

)
− f (x⋆) ≤

(
(n−1)+ n+1

µ

)
r2(̃xK1)

(argued below), the bound on the number of iterations until f
(̃
xK1 − R(̃xK1)

)
− f (x⋆) ≤ ϵ̄| f (x⋆)| have

f
(̃
xK1 − R(̃xK1)

)
− f (x⋆) ≤

(
(n − 1) +

n + 1
µ

)
r2(̃xK1)

≤

(
(n − 1) +

n + 1
µ

) 1
22K1

r2(x0)

≤

(
(n − 1) +

n + 1
µ

) 1
22K1

2n| f (x⋆)|

and by setting K1 =
1
2 log2

2n
(

(n−1)+ n+1
µ

)
ϵ̄ , we have this bound.

Finally, it remains to argue that f
(̃
xK1 − R(̃xK1)

)
− f (x⋆) ≤

(
(n − 1) + n+1

µ

)
r2(̃xK1). Observe that the

definition of R(x) is equivalent to x − x̄, where

x̄ = argminu∈Rn
+

{
⟨∇ f (x),u − x⟩ +

1
2
∥u − x∥2Λ

}
.

By the first-order optimality of x̄ based on the equivalent definition of R(x) above, we have
⟨∇ f (x) +Λ(x̄ − x), x⋆ − x̄⟩ ≥ 0. Rearranging, and using the definition of convexity of f , we have

f (x̄) − f (x⋆) ≤ ⟨∇ f (x̄), x̄ − x⋆⟩
≤ ⟨∇ f (x) − ∇ f (x̄) +Λ(x̄ − x), x⋆ − x̄⟩
= ⟨(A⊤A −Λ)(x − x̄), x⋆ − x̄⟩
= ⟨(A⊤A −Λ)R(x),R(x)⟩ + ⟨(A⊤A −Λ)R(x), x⋆ − x⟩
= ⟨(A⊤A −Λ)R(x),R(x)⟩ + ⟨A⊤AR(x), x⋆ − x⟩ − ⟨ΛR(x), x⋆ − x⟩

≤ (n − 1)∥R(x)∥2Λ + (n + 1)∥R(x)∥Λ∥x − x⋆∥Λ

≤

(
(n − 1) +

n + 1
µ

)
r2(x),

where in the last inequality we have used the error bound from Theorem E.1.10. □

E.2 Implementation Version of SI-NNLS+

Since Algorithm 6.3.1 explicitly updates x̃k and ỹk (of lengths n and m respectively), the per iteration
cost is O(m + n), which is unnecessarily high when the matrix A is sparse. In this section, we show
that by using a lazy update strategy, we can efficiently implement Algorithm 6.3.1 with overall
complexity independent of the ambient dimension. To attain this result, we maintain implicit
representations for x̃k, yk, and ȳk by introducing two auxiliary variables that are amenable to
efficient updates.

Efficiently Updating the Primal Variable. In Lemma E.2.1, we show that we can work with an
implicit representation of x̃k by introducing rk.

Lemma E.2.1. For {̃xk} defined in Equation (6.3.3) (and simplified in Algorithm 6.3.1), we have, for k ≥ 1,

x̃k = xk +
1

Ak
rk, (E.2.1)

where xk evolves as per Algorithm 6.3.1, r1 = 0 and, when k ≥ 1, rk = rk−1 + ((n − 1)ak − Ak−1)(xk − xk−1).

Proof. We prove the lemma by induction. Using the facts that x0 = 0, x1 = x̃1, s1 = 0, a1 = A1, and
A0 = 0, we have

x̃1 =
1

A1

(
A0̃x0 + a1

(
nx1 − (n − 1)x0

))
=

1
A1

(a1x1 + (n − 1)a1(x1 − x0))

= x1 + ((n − 1)a1 − A0)(x1 − x0). (E.2.2)

Assume for certain k ≥ 2, that Eq. (E.2.1) holds for k − 1. Then, using the recursion of x̃k in
Algorithm 6.3.1, we have that for k ≥ 3,

Ak̃xk = Ak−1̃xk−1 + akxk + (n − 1)ak(xk − xk−1)
= Ak−1xk−1 + rk−1 + akxk + (n − 1)ak(xk − xk−1)
= Ak−1(xk−1 − xk + xk) + rk−1 + akxk + (n − 1)ak(xk − xk−1)
= Ak−1(xk−1 − xk) + Ak−1xk + rk−1 + akxk + (n − 1)ak(xk − xk−1)
= Akxk + rk−1 + ((n − 1)ak − Ak−1)(xk − xk−1)
= Akxk + rk,

as required. □

The expression for rk in Lemma E.2.1 shows that it can be updated at cost O(1) as xk differs from
xk−1 only at one coordinate. Therefore, by Equation (E.2.1) we need not compute x̃k in all iterations
and can instead maintain rk. Along the same lines, we give an efficient implementation strategy for
yk and ȳk in the following discussion.

Efficiently Updating the Dual Variable. We now show how to update the dual variable efficiently.

Lemma E.2.2. Consider {yk} and {xk} evolving as per Algorithm 6.3.1. Then, for k = 1, we have y1 = Ax1;
for k ≥ 2, we have

yk =
Ak−1

Ak
yk−1 +

ak

Ak
Axk +

(n − 1)ak

Ak
A(xk − xk−1), (E.2.3)

Proof. The proof is directly from the definition of yk in Algorithm 6.3.1. □

Lemma E.2.3. Consider {yk} and {xk} evolving as per Algorithm 6.3.1. Then for all k ≥ 1, we have

yk = Axk +
1

Ak
sk, (E.2.4)

where s1 = 0 and sk = sk−1 + ((n − 1)ak − Ak−1)A(xk − xk−1) when k ≥ 2.

Proof. We prove the lemma by induction. For the base case of k = 1,we have, by the choice of s1 = 0,

that y1 = Ax1 = Ax1 +
1

A1
s1. Then for some k ≥ 2, assume Eq. (E.2.4) holds for k − 1, then we have,

Akyk = Ak−1yk−1 + akAxk + (n − 1)akA(xk − xk−1)
= Ak−1Axk−1 + sk−1 + akAxk + (n − 1)akA(xk − xk−1)
= Ak−1A(xk−1 − xk + xk) + sk−1 + akAxk + (n − 1)akA(xk − xk−1)
= AkAxk + sk−1 + ((n − 1)ak − Ak−1)A(xk − xk−1)
= AkAxk + sk, (E.2.5)

where the first step is by Lemma E.2.2, second by the induction hypothesis, third by adding and
subtracting Ak−1Axk, fourth by rearranging terms appropriately, and the final step uses the recursive
definition of sk stated in the lemma. Dividing throughout by Ak then finishes the proof. □

Algorithm E.2.1 SI-NNLS+ (Implementation)

1: Input: Matrix A ∈ Rm×n
+ with n ≥ 4, accuracy ϵ

2: Output: Vector x̃K ∈ Rn
+ such that f (̃xK) ≤ (1 − ϵ) f (x⋆).

3: Initialize: a1 =
1

n−1 , a2 =
n

n−1 , A1 = a1, ϕ0(x) = 1
2∥x − x0∥

2
Λ

, y0 = y0 = Ax0, p0 = 0,q0 = Ax0, t0 =
0, s1 = 0, r1 = 0.

4: for k = 1, 2, . . . ,K do
5: Sample jk uniformly at random from {1, 2, . . . ,n}
6: if k = 1 then
7: ȳ0 = q0
8: else if k = 2 then
9: ȳ1 = q1 +

a1
a2

t1
10: else if k ≥ 3 then
11: ȳk−1 = qk−1 +

1
Ak−1

(
1 −

a2
k−1

akAk−2

)
sk−1 +

(n−1)a2
k−1

akAk−2
tk−1

12: end if

13: pk,i =

pk−1,i, i , jk
pk−1,i + nak

(
AT

:i ȳk−1 − 1
)
, i = jk.

14: xk,i =

xk−1,i, i , jk
max

{
0,min

{
x0,i −

1
∥A:i∥2

· pk,i,
1
∥A:i∥2

}}
, i = jk

15: tk = A(xk − xk−1)
16: if k ≥ 2 then
17: rk = rk−1 + ((n − 1)ak − Ak−1)(xk − xk−1)
18: sk = sk−1 + ((n − 1)ak − Ak−1)tk
19: end if
20: qk = qk−1 + tk
21: Ak+1 = Ak + ak+1

22: ak+2 = min{nak+1
n−1 ,

√
Ak+1
2n }

23: end for
24: return xK +

1
AK

rK

Lemma E.2.4. Consider {xk}, {yk}, and {yk} evolving as per Algorithm 6.3.1. Then we have that ȳ1 =

Ax1 +
a1
a2

A(x1 − x0) and

ȳk = Axk +
1

Ak

(
1 −

a2
k

ak+1Ak−1

)
sk +

(n − 1)a2
k

ak+1Ak−1
A(xk − xk−1). (E.2.6)

Proof. From the definition of ȳk, the initializations for x0,y0, and y0, and Lemma E.2.2, we have
ȳ1 = y1 +

a1
a2

(y1 − y0) = Ax1 +
a1
a2

A(x1 − x0). For k ≥ 2, by Lemma E.2.2, we have Akyk − Ak−1yk−1 =
akAxk + (n − 1)akA(xk − xk−1). As a result,

Ak−1(yk − yk−1) = akAxk + (n − 1)akA(xk − xk−1) − akyk. (E.2.7)

So for k ≥ 2, it follows that

ȳk = yk +
ak

ak+1
(yk − yk−1) = yk +

ak

ak+1

(ak

Ak−1
Axk +

(n − 1)ak

Ak−1
A(xk − xk−1) −

ak

Ak−1
yk

)
=

(
1 −

a2
k

ak+1Ak−1

)
yk +

a2
k

ak+1Ak−1
Axk +

(n − 1)a2
k

ak+1Ak−1
A(xk − xk−1)

= Axk +
1

Ak

(
1 −

a2
k

ak+1Ak−1

)
sk +

(n − 1)a2
k

ak+1Ak−1
A(xk − xk−1),

where the first step is by the definition of yk in Algorithm 6.3.1, the second step is by Equation (E.2.7),
the third step is by rearranging, and the final step is by Lemma E.2.3. □

Based on the above lemmas, we give our efficient lazy implementation version of Algorithm 6.3.1 in
Algorithm E.2.1. In Algorithm E.2.1, we also introduce other auxiliary variables pk,qk and tk. Based
on Lemma E.2.1-Lemma E.2.4, it is easy to verify the equivalence between Algorithm 6.3.1 and
Algorithm E.2.1. With this implementation, by updating only the dual coordinates corresponding
to the nonzero coordinates of the selected column of A, the per-iteration cost is proportional to the
number of nonzero elements of the selected row in the iteration. As a result, the overall complexity
result will depend only on the number of nonzero elements of A.

Appendix F

Appendix for Chapter 7

This chapter contains details and proofs from Chapter 7.

We start with a piece of notation we frequently use in the appendix. For a given vector x ∈ Rm, we
use Diag(x) to describe the diagonal matrix with x on its diagonal. For a matrix X, we use diag(X)
to denote the vector made up of the diagonal entries of X. Further, recall as stated in Section 7.1.4,

that given any vector x, we use its uppercase boldface name X def
= Diag(x).

F.1 Technical Proofs: Gradient, Hessian, Initial Error, Minimum Progress

Lemma 7.2.3 (Gradient and Hessian). For any w ∈ Rm
>0, the objective in (7.1.4),F (w) = − log det(A⊤WA)+

1
1+α1⊤w1+α, has gradient and Hessian given by the following expressions.

[∇F (w)]i = w−1
i · (w

1+α
i − σi(w)) and ∇2

F (w) =W−1P(w)(2)W−1 + αWα−1.

Proof. The proof essentially follows by combining Lemmas 48 and 49 of [LS14]. For completeness,
we provide the full proof here. Applying chain rule to the log det function and then the definition
of ρ(w) from (7.2.1) gives the claim that

∇iF (w) = −(A(A⊤WA)−1A⊤)ii + wα
i = −a⊤i (A⊤WA)−1ai + wα

i =
−σi(w)

wi
+ wα

i .

We now set some notation to compute the Hessian: let M def
= A(A⊤WA)−1A⊤, let h ∈ Rm be any

arbitrary vector, and let H def
= Diag(h). For f : Rn

→ R and for x, h ∈ Rn we letDx f (x)[h] denote the
directional derivative of f at x in the direction h, i.e.,Dx f (x)[h] = limt→0(f (x + th) − f (x))/t. Then
we have,

Dw⟨h,−Diag(A(A⊤WA)−1A⊤)⟩[h] = ⟨h,−Diag(ADw(A⊤WA)−1[h]A⊤)⟩

= ⟨h,Diag(A(A⊤WA)−1
Dw(A⊤WA)[h]A⊤WA)−1A⊤)⟩

= ⟨h,Diag(MHM)⟩

=
∑

i, j

hih jMi jM ji =
∑

i, j

hih jM2
i j,

where the last step follows by symmetry of M. This implies

∇
2
i jF (w) =

{
(a⊤i (A⊤WA)−1a j)2 if i , j
(a⊤i (A⊤WA)−1a j)2 + αwα−1

i otherwise ,

217

which, in shorthand, is ∇2
F (w) =M ◦M+ αWα−1. We may express this Hessian as in the statement

of the lemma by writing M in terms of P(w). □

Lemma 7.2.4 (Initial Sub-Optimality). At the start of Algorithm 7.2.1, the value of the objective of (7.1.4)
differs from the optimum objective value as F (w(0)) ≤ F (w) + n log(m/n).

Proof. We study the two terms constituting the objective in (7.1.4). First, by choice of w(0) = n
m 1, we

have
− log det

(
A⊤W(0)A

)
= − log det

(
(n/m)A⊤A

)
. (F.1.1)

Next, since leverage scores always lie between zero and one, the optimality condition for (7.1.4),
σ(w) = (w)1+α, implies w ≤ 1, which in turn gives W ⪯ I. This implies A⊤WA ⪯ A⊤A. Therefore,

− log det
(
A⊤A

)
≤ − log det

(
A⊤WA

)
. (F.1.2)

Combining (F.1.1) and (F.1.2) gives

− log det
(
A⊤W(0)A

)
≤ − log det

(
A⊤WA

)
+ n log(m/n). (F.1.3)

Next, observe that 1⊤(w(0))1+α = m · (n/m)1+α, and 1⊤(w)1+α =
∑m

i=1 σi(w) = n, where we invoked
Fact 7.1.6. By now applying m ≥ n, we get

1⊤(w(0))1+α
≤ 1⊤(w)1+α. (F.1.4)

Combining (F.1.3), (F.1.4), and the definition of the objective (7.1.4) finishes the claim. □

Lemma 7.2.6 (Function Decrease in Descent(·)). Let w, η ∈ Rm
>0 with ηi ∈ [0, 1

3ᾱ] for all i ∈ [m].
Further, let w+ = Descent(w, [m], η), where Descent is defined in Equation (7.2.2). Then, w+ ∈ Rm

>0 with
the following decrease in function objective.

F (w+) ≤ F (w) −
∑
i∈[m]

ηi

2
· w1+α

i ·
(ρi(w) − 1)2

ρi(w) + 1
.

Proof. By the remainder form of Taylor’s theorem, for some t ∈ [0, 1] and w̃ = tw + (1 − t)w+

F (w+) = F (w) + ⟨∇F (w),w+ − w⟩ +
1
2

(w+ − w)⊤∇2
F (w̃)(w+ − w). (F.1.5)

We prove the result by bounding the quadratic form of ∇2
F (w̃) from above and leveraging the

structure of w+ and ∇F (w). Lemma 7.2.3 and Fact 7.1.6 imply that

∇
2
F (w̃) = W̃−1P(w̃)(2)W̃−1 + αW̃α−1

⪯ W̃−1Σ(w̃)W̃−1 + αW̃α−1 . (F.1.6)

Further, the positivity of wi and σi(w) and the non-negativity of η and ρ imply that (1 − ∥η∥∞)wi ≤

w+i ≤ (1 + ∥η∥∞)wi for all i ∈ [m]. Since ∥η∥∞ ≤ 1
3ᾱ , this implies that

(1 − 1
3ᾱ)wi ≤ w̃i ≤ (1 + 1

3ᾱ)wi for all i ∈ [m] .

Consequently, for all i ∈ [m], we bound the first term of (F.1.6) as[
W̃−1Σ(w̃)W̃−1

]
ii
= e⊤i W̃−1/2A(A⊤W̃A)−1A⊤W̃−1/2ei =

1
w̃i

a⊤i (A⊤W̃A)−1ai

≤ (1 − 1
3ᾱ)−1 1

wi
a⊤i (A⊤W̃A)−1ai ≤ (1 − 1

3ᾱ)−2 1
wi

a⊤i (A⊤WA)−1ai

= (1 − 1
3ᾱ)−2

[
W−1Σ(w)W−1

]
ii
⪯ 3

[
W−1Σ(w)W−1

]
ii

(F.1.7)

Further, when α ∈ (0, 1], we bound the second term of (F.1.6) as

W̃α−1
⪯ (1 − 1

3ᾱ)α−1Wα−1
⪯ (1 − 1

3ᾱ)−1Wα−1
⪯ 3Wα−1, (F.1.8)

and when α ≥ 1, we have

W̃α−1
⪯ (1 + 1

3ᾱ)α−1Wα−1
⪯ exp

(
α − 1

3ᾱ

)
Wα−1 = exp

(
α − 1

3α

)
Wα−1

⪯ 3Wα−1. (F.1.9)

Using (F.1.7), (F.1.8), and (F.1.9) in (F.1.6), we have that in all cases

∇
2
F (w̃) ⪯ 3

[
W−1Σ(w)W−1 + αWα−1

]
⪯ 3ᾱW−1

[
Σ(w) +W1+α

]
W−1 .

Applying to the above Loewner inequality the definition of w+ gives

(w+ − w)⊤∇2
F (w̃)(w+ − w) ≤

∑
i∈[m]

3ᾱ · (w1+α
i + σi(w)) ·

(
ηi ·

ρi(w) − 1
ρi(w) + 1

)2

=
∑
i∈[m]

3ᾱ · η2
i · w

1+α
i ·

(ρi(w) − 1)2

ρi(w) + 1
. (F.1.10)

Next, recall that by Lemma 7.2.3, [∇F (w)]i = w−1
i · (w

1+α
i − σi(w)) for all i ∈ [m]. Consequently,

⟨∇F (w),w+ − w⟩ =
∑
i∈[m]

(w1+α
i − σi(w)) ·

(
ηi ·

ρi(w) − 1
ρi(w) + 1

)
= −

∑
i∈[m]

ηi · w1+α
i ·

(ρi(w) − 1)2

ρi(w) + 1
. (F.1.11)

Combining (F.1.5), (F.1.10), and (F.1.11) yields that

F (w+) ≤ F (w) +
∑
i∈[m]

−ηi +
3ᾱη2

i

2

 · w1+α
i ·

(ρi(w) − 1)2

ρi(w) + 1
.

The result follows by plugging in ηi ∈ [0, (3ᾱ)−1], as assumed. □

F.2 From Optimization Problem to Lewis Weights

The goal of this section is to prove how to obtain ϵ-approximate Lewis weights from an ε̃-approximate
solution to the problem in (7.1.4). Our proof strategy is to first utilize the fact that the vector wR
obtained after the rounding step following the for loop of Algorithm 7.2.1 satisfies the properties
of being ε̃-suboptimal (additively) and also the rounding condition (7.2.3). In Lemma 7.2.1, the
ε̃-suboptimality is used to show a bound on ∥σ(wR)−w1+α

R ∥∞. Coupled with the rounding condition,
we then show in Lemma F.2.1 that ŵR constructed as per the last line of Algorithm 7.2.1 then satisfies

approximate optimality, σ(ŵ) ≈δ ŵ1+α, for some small δ > 0. In Lemma F.2.3, we finally relate this
approximate optimality to coordinate-wise multiplicative closeness between ŵ and the vector of
true Lewis weights. Finally, in Lemma 7.2.1, we pick the appropriate approximation factors for
each of the lemmas invoked and prove the desired approximation. Since the vector wTtotal obtained
at the end of the for loop of Algorithm 7.5.1 also satisfies the aforementioned properties of wR, the
same set of lemmas apply to Algorithm 7.5.1 as well. We begin with some technical lemmas.

F.2.1 From Approximate Closeness to Approximate Optimality

Lemma F.2.1. Let w ∈ Rm
>0 such that ∥σ(w) − w1+α

∥∞ ≤ ε for some parameter 0 < ε ≤ 1
100m2(α+α−1)2 and

also let ρmax(w) ≤ 1 + α. Define ŵi = (a⊤i (A⊤WA)−1ai)1/α. Then, for the parameter δ = 20
√

εm(α + α−1),
we have that σ(ŵ)≈δŵ1+α.

Proof. Our strategy to prove σ(ŵ) ≈δ ŵ1+α involves first noting that this is the same as proving
ŵ−1
· σ(ŵ) ≈δ ŵα and, from the definition of ŵ in the statement of the lemma, to instead prove

A⊤ŴA ≈δ A⊤WA.

To this end, we split W into two matrices based on the size of its coordinates, setting the following
notation. Define Ww≤η to be the diagonal matrix W with zeroes at indices corresponding to w > η,
and Ŵw≤η to be the diagonal matrix Ŵ with zeroes at indices corresponding to w > η. We first
show that A⊤Ŵw≤ηA and A⊤Ww≤ηA are small compared to A⊤WA and can therefore be ignored in
the preceding desired approximation. We then prove that for w > η, we have w ≈δ ŵ. This proof
technique is inspired by Lemma 4 of [Vai89a].

First, we prove that A⊤Ŵw≤ηA is small as compared to A⊤Ww>ηA. Since (7.2.3) is satisfied, it means

a⊤i (A⊤WA)−1ai = σi(w) · w−1
i ≤ (1 + α)wα

i .

Combining this with the definition of ŵi as in the statement of the lemma, we may use non-negativity
of α to derive

ŵi ≤ (1 + α)1/αwi ≤ 3wi. (F.2.1)

We apply this inequality in the following expression to obtain

Tr
(
(A⊤Ŵw≤ηA)(A⊤WA)−1

)
=

∑
wi≤η

ŵi(a⊤i (A⊤WA)−1ai)

=
∑
wi≤η

(a⊤i (A⊤WA)−1ai)1+1/α

≤ (1 + α)1+1/α
∑
wi≤η

w1+α
i

≤ 3(1 + α)mη1+α. (F.2.2)

This implies that1

A⊤Ŵw≤ηA ⪯ 3(1 + α)mη1+αA⊤WA. (F.2.3)

Our next goal is to bound A⊤Ŵw>ηA in terms of A⊤WA, which we do by first bounding it in terms

1Given X,Y ⪰ 0, we have Y1/2XY1/2
⪰ 0. Then, if Tr(XY) ≤ 1, we have Tr

(
Y1/2XY1/2

)
≤ 1, and combining these with

the previous matrix inequality, we conclude that Y1/2XY1/2
⪯ I, which implies that X ⪯ Y−1.

of A⊤Ww>ηA and then bounding A⊤Ww>ηA in terms of A⊤WA. By definition, ŵα
i = σi(w) · w−1

i .
Further, by assumption, ∥σ(w) − w1+α

∥∞ ≤ ε. Therefore, for any wi ≥ η

ŵα
i ≤ (w1+α

i + ε) · w−1
i ≤ (1 + ε/η1+α)w1+α

i · w−1
i = (1 + ε/η1+α)wα

i ,

and
ŵα

i ≥ (w1+α
i − ε) · w−1

i ≥ (1 − ε/η1+α)w1+α
i · w−1

i = (1 − ε/η1+α)wα
i .

By our choice of ε, for wi ≥ η, we have(
1 −

2ε
αη1+α

)
wi ≤ ŵi ≤

(
1 +

2ε
αη1+α

)
wi. (F.2.4)

Further, we have the following inequality:

A⊤Ww>ηA ⪯ A⊤WA. (F.2.5)

Hence, we can combine Inequality F.2.5, Inequality F.2.4, and Inequality F.2.3 to see that

A⊤ŴA = A⊤Ŵw>ηA +A⊤Ŵw≤ηA

⪯

(
1 +

2ε
αη1+α

)
A⊤Ww>ηA + 3(1 + α)mη1+αA⊤WA

⪯ A⊤WA
(
1 +

2ε
αη1+α

+ 3(1 + α)mη1+α
)
.

Set η1+α =
√

ε for the upper bound.

For the lower bound, we bound A⊤Ww≤ηA and, therefore, also A⊤Ww>ηA. Observe that

Tr
(
(A⊤Ww≤ηA)(A⊤WA)−1

)
=

∑
wi≤η

wia⊤i (A⊤WA)−1ai =
∑
wi≤η

σi(w)

≤

∑
wi≤η

(w1+α
i + ε) ≤ m(η1+α + ε),

where the second step is by ∥σ(w) − w1+α
∥∞ ≤ ε, as assumed in the lemma. This implies that

A⊤Ww≤ηA ⪯ m(η1+α + ε)A⊤WA,

and therefore that
A⊤Ww>ηA ⪰ (1 −m(η1+α + ε))A⊤WA.

Repeating the method for the upper bound then finishes the proof. □

F.2.2 From Approximate Optimality to Approximate Lewis Weights

In this section, we go from the previous notion of approximation to the one we finally seek in
Equation (7.1.5). Specifically, we show that if σ(w) ≈β w1+α, then w ≈O((β/α)

√
n) w. To prove this, we

first give a technical result. We recall notation stated in Section 7.1.4: for any projection matrix
P(w) ∈ Rm×m, we have the vector of leverage scores σ(w) = diag(P(w)).

Claim F.2.2. For any projection matrix P(w) ∈ Rm×m, α ≥ 0, and vector x ∈ Rm, we have that

∥

[
P(w)(2) + αΣ(w)

]−1
Σ(w)x∥∞ ≤

1
α
∥x∥∞ +

1
α2 ∥x∥Σ(w) ≤

(
1 +
√

n/α
α

)
∥x∥∞

Proof. Let y def
=

[
P(w)(2) + αΣ(w)

]−1
Σ(w)x. Since 0 ⪯ P(w)(2)

⪯ Σ(w) (Fact 7.1.6), we have that

Σ(w) ⪯ 1
α

[
P(w)(2) + αΣ(w)

]
and (P(w)(2) + αΣ(w))−1

⪯ α−1Σ(w)−1. Consequently, taking norms in
terms of these matrices gives

∥y∥Σ(w) = ∥
[
P(w)(2) + αΣ(w)

]−1
Σ(w)x∥Σ(w) ≤

1
√
α
∥Σ(w)x∥[P(w)(2)+αΣ(w)]−1 ≤

1
α
∥x∥Σ(w) . (F.2.6)

Next, since by Lemma 47 of [LS14], ∥Σ(w)−1P(w)(2)z∥∞ ≤ ∥z∥Σ(w) for all z ∈ Rm, we see that∣∣∣[P(w)(2)y]i
∣∣∣ ≤ σi(w)∥y∥Σ(w) for all i ∈ [m], and since by definition of y, we have [(P(w)(2) +αΣ(w))y]i =

σi(w)xi for all i ∈ [m], we have that

∥y∥∞ = max
i∈[m]
|yi| = max

i∈[m]

∣∣∣∣∣ 1αxi +
1

ασi(w)

[
P(w)(2)y

]
i

∣∣∣∣∣ ≤ 1
α
∥x∥∞ +

1
α
∥y∥Σ(w) . (F.2.7)

Combining Inequality F.2.6 and Inequality F.2.7 and using that
∑

i∈[m] σi(w) ≤ n yields the claim. □

Lemma F.2.3. Let ŵ ∈ Rm
>0 be a vector that satisfies approximate optimality of (7.1.4) in the following sense:

σ(ŵ) = Ŵ1+αv, for exp
(
−µ

)
1 ≤ v ≤ exp

(
µ
)
1.

Then, ŵ is also coordinate-wise multiplicatively close to w, the true vector of Lewis weights, as formalized
below.

exp
(
−

1
α

(1 +
√

n/α)µ
)

w ≤ ŵ ≤ exp
(1
α

(1 +
√

n/α)µ
)

w .

Proof. For all t ∈ [0, 1], let [vt]i = [vt
i] so that v1 = v and v0 = 1. Further, for all t ∈ [0, 1], let wt be the

unique solution to

wt = argminw∈Rm
>0

ft(w) def
= − log det

(
A⊤WA

)
+

1
1 + α

∑
i∈[m]

[vt]iw1+α
i . (F.2.8)

Then we have the following gradients.

∇w ft(w) = −W−1σ(w) +Wαvt ,

∇w(
d
dt

ft)(w) =Wα d
dt

vt =Wαvt ln(v) (F.2.9)

∇
2
ww ft(w) =W−1

[
P(w)(2) + αW1+αV

]
W−1 . (F.2.10)

Consequently, by optimality of wt as defined in (F.2.8), we have 0 = ∇w ft(wt) = −W−1
t σ(wt) +Wα

t vt.
Rearranging the terms of this equation yields that

σ(wt) =W1+α
t vt, (F.2.11)

and therefore w1 = ŵ and w0 = w. To prove the lemma, it therefore suffices to bound

ln
(
ŵ/w

)
= ln(w1/w0) =

∫ 1

t=0

[
d
dt

ln(wt)
]

dt =
∫ 1

t=0
W−1

t

[
d
dt

wt

]
dt . (F.2.12)

To bound Equation (F.2.12), it remains to compute d
dt wt and apply Claim F.2.2. To do this, note that

0 =
d
dt
∇w

[
ft(wt)

]
= ∇w(

d
dt

ft)(wt) + ∇2
ww ft(wt) ·

d
dt

wt .

Using that P(wt)(2) +W1+α
t Vt ≻ 0, we have, by rearranging the above equation and applying

Equation (F.2.9) and Equation (F.2.10) that

d
dt

wt = −
[
∇

2
ww ft(wt)

]−1
·

[
∇w(

d
dt

ft)(wt)
]
= −Wt

[
P(wt)(2) + αW1+α

t Vt
]−1

W1+α
t vt ln(v) . (F.2.13)

Applying Equation (F.2.11) to Equation (F.2.13), we have that

W−1
t

[
d
dt

wt

]
= −

[
P(wt)(2) + αΣ(wt)

]−1
Σ(wt) ln(v) .

Applying Claim F.2.2 to the above equality, substituting in Equation (F.2.12) and ∥ ln(v)∥∞ ≤ µ
therefore yields

∥ ln
(
ŵ/w

)
∥∞ = ∥ ln(w1/w0)∥∞ ≤

∫ 1

t=0
∥W−1

t

[
d
dt

wt

]
∥∞dt ≤

∫ 1

t=0

(
1 +
√

n/α
α

)
µdt .

□

F.2.3 From Optimization Problem to Approximate Lewis Weights

Lemma 7.2.1 (Lewis Weights from Optimization Solution). Let w ∈ Rm
>0 be a vector at which the objective

(7.1.4) is ε̃-suboptimal in the additive sense for ε̃ = α8ϵ4

(25m(
√

n+α)(α+α−1))4 , i.e., F (w) ≤ F (w) ≤ F (w) + ε̃.
Further assume that w satisfies the rounding condition: ρmax(w) ≤ 1+ α. Then, the vector ŵ defined as ŵi =
(a⊤i (A⊤WA)−1ai)1/α satisfies ŵi ≈ϵ wi for all i ∈ [m], thus achieving the goal spelt out in Equation (7.1.5).

Proof. We are given a vector w ∈ Rm satisfying F (w) ≤ F (w) ≤ F (w) + ε̃. Then by Lemma 7.2.5,

we have that
(σi(w)−w1+α

i)2

σi(w)+w1+α
i
≤ ε̃ for each i ∈ [m]. This bound implies that wi ≤ 3 for all i because, if

not, then because of σi(w) ∈ [0, 1] and the decreasing nature of (x − a)2/(x + a) over x ∈ [0, 1] for a

fixed a ≥ 3, we obtain
(σi(w)−w1+α

i)2

σi(w)+w1+α
i
≥

(1−w1+α
i)2

1+w1+α
i
≥ 1, a contradiction. Therefore ∥σ(w) − w1+α

∥∞ ≤ 2
√

ε̃.

Coupled with the provided guarantee ρmax(w) ≤ 1+ α, we see that the requirements of Lemma F.2.1

are met with ε = 2
√

ε̃, for ε̃ def
= ϵ̂4

(25m(α+α−1))4 , and Algorithm 7.2.1 therefore guarantees a ŵ satisfying

σ(ŵ) ≈ϵ̂ ŵ1+α. Therefore, we can now apply Lemma F.2.3 with µ = ϵ̂, and choosing ϵ̂ = α2

α+
√

n
ϵ lets

us conclude that ŵi ≈ϵ wi, as claimed. □

F.3 A Geometric View of Rounding

At the end of Algorithm 7.2.2 and Algorithm 7.2.3, the iterate w satisfies the condition ρmax(w) ≤ 1+α.
We now show the geometry implied by the preceding condition, thereby provide the reason behind
the terminology “rounding.”

Lemma F.3.1. Given w ∈ Rm
>0 such that ρmax(w) ≤ 1+α. Define the ellipsoid E(w) := {x : x⊤A⊤WAx ≤ 1}.

Then, we have that
E(w) ⊂ {x ∈ Rn

| ∥W−α/2Ax∥∞ ≤
√

1 + α}.

Proof. Consider any point x ∈ E(w). Then, by Cauchy-Schwarz inequality and ρmax(w) ≤ 1 + α,

∥W−α/2Ax∥∞ = max
i∈[m]

e⊤i W−α/2Ax = max
i∈[m]

e⊤i W−α/2A(A⊤WA)−
1
2 (A⊤WA)

1
2 x

≤ max
i∈[m]

√
e⊤i W−α/2A(A⊤WA)−1A⊤W−α/2ei

√

x⊤A⊤WAx

≤ max
i∈[m]

√
e⊤i W−α/2A(A⊤WA)−1A⊤W−α/2ei = max

i∈[m]

√
σi(w)
w1+α

i

≤

√

1 + α.

□

F.4 Explanations of Runtimes in Prior Work

The convex program (7.1.3) formulated by [CP15] has a variable size of n2. Therefore, by [LSW15],
the number of iterations to solve it using the cutting plane method is O(n2 log

(
nϵ−1

)
, each iteration

computing a⊤i Mai for i ∈ [m]. This can be computed by multiplying an n × n matrix with an n ×m
matrix, which costs between O(mn) (at least the size of the larger input matrix) and O(mn2) (each
entry of the resulting m × n matrix obtained by an inner product of length n vectors). Further, there
is at least a total of O(n6) additional work done by the cutting plane method. This gives us a cost of
at least n2(mn + n4). The runtime of [Lee16] follows from Theorem 5.3.4.

Appendix G

Appendix for Chapter 8

This chapter contains details and proofs from Chapter 8.

G.1 Proofs: Strict RoS Constraint

The goal of this section is to prove Proposition 8.4.2 and Proposition 8.4.3, for which we need the
following definition and results.

Definition G.1.1. We define the following dual variables.

• Let ft(b) := vt · xt(b), recall gt from Equation (8.2.3), and for some fixed λ ≥ 0, define

f⋆t,RoS(λ) := max
b≥0

[
ft(b) + λ · gt(b)

]
. (G.1.1)

• Let f⋆ be defined as in Equation (G.1.1). Then we define the following dual variable parametrized by the
input distribution P.

DRoS(λ|P) := E(v,p)∼P

[
f⋆RoS(λ)

]
. (G.1.2)

Proposition G.1.2. RecallDRoS(λ|P) as defined in Equation (G.1.2). Then the optimum value Reward(Opt,−→γ)
for Problem 8.2.2 defined for a sequence −→γℓ ∼ Pℓ of ℓ requests satisfies the inequality

E−→γℓ∼Pℓ
[
Reward(Opt,−→γℓ)

]
≤ ℓ ·min

λ≥0
DRoS(λ|P).

Proposition G.1.3. For some fixed number r, let λr := 1
r
∑r

t=1 λt, where λt are the dual iterates in
Algorithm 8.3.1. Then, the reward (see Equation (8.2.6)) of Algorithm 8.3.1 is lower bounded as

Reward(Algorithm 8.3.1,−→γr) ≥ E−→γr∼Pr

[
r · DRoS(λr|P)

]
− E−→γr∼Pr

 r∑
t=1

λt · gt(bt)

 .
Proposition 8.4.2. Under Assumption 8.4.1 for the distribution P, let K(−→γ) be the number of iterations in
the first phase of Algorithm 8.4.1 for some input sequence −→γ . Then, we have

E−→γ∼PT [K(−→γ)] ≤ O(
√

T log T).

Proof. Let zt = max(0, vt · xt(bt) − pt(bt)) be the reward collected at iteration t (in the first phase).
Let z′t := β

2 1zt≥β/2. By construction, z′t ≤ zt for all t. For any given sequence −→γ , let K(−→γ) and K′(−→γ),

respectively, be the first time such that
∑K(−→γ)

t=1 zt ≥ R and
∑K′(−→γ)

t=1 z′t ≥ R for some reward R. Then, for

225

every −→γ , we have K(−→γ) ≤ K′(−→γ). By the boundedness assumption on zt, we have

Prob(z′t = β/2) = Prob(zt ≥ β/2) ≥ E [zt] − Prob(zt ≤ β/2) · E
[
zt|zt ≤ β/2

]
≥ β/2.

Then, by Hoeffding bound,

Prob(K(−→γ) ≥ q) ≤ Prob(K′(−→γ) ≥ q) ≤ e−O(qβ2). (G.1.3)

Picking q = O(R/β2) for R = 2
√

T log T finishes the claim. □

Proposition 8.4.3. Let −→γℓ ∼ Pℓ and −→γr ∼ P
r be sequences of lengths ℓ and r, respectively, with ℓ ≤ r, of

i.i.d. requests each from a distribution P. Then the following inequality holds.

E−→γℓ∼Pℓ
[
Reward(Algorithm 8.3.1,−→γℓ)

]
≥
ℓ
r
E−→γr∼Pr

[
Reward(Opt,−→γr)

]
−O(

√
r).

Proof. By Proposition G.1.2, Proposition G.1.3, and Theorem 8.3.1,

Reward(Algorithm 8.3.1,−→γℓ) ≥ E−→γℓ∼Pℓ
[
ℓ · DRoS(λℓ|P)

]
− E−→γℓ∼Pℓ

 ℓ∑
t=1

λt · gt(bt)

≥ ℓ ·min

λ≥0
DRoS(λ|P) − E−→γℓ∼Pℓ

 ℓ∑
t=1

λt · gt(bt)

≥
ℓ
r
· E−→γr∼Pr

[
Reward(Opt,−→γr)

]
−O(

√
r).

□

G.2 Proofs: Both Strict Constraints

The goal of this section is proving Theorem 8.5.2.

Definition G.2.1. We need the following definitions of dual variables.

• For some λ ≥ 0 and µ ≥ 0, let ft(b) := vt · xt(b), define gt as in Equation (8.2.3), and define

f⋆t,combined(µ, λ) := max
b

[
ft(b) + λ · gt(b)) − µ · pt(b)

]
. (G.2.1)

• The following dual variable parametrized by ρ and P; the quantity f⋆ is defined in the same way as in
Equation (G.2.1).

Dcombined(µ, λ|P, ρ) := µ · ρ + E(v,p)∼P

[
f⋆combined(µ, λ)

]
. (G.2.2)

Proposition G.2.2. For some ρ′ ≥ 0, let Dcombined(µ, λ|P, ρ′) be as defined in Equation (G.2.2). Then
the optimum value Reward(Opt,−→γℓ, ρ) for Problem 8.2.5 with a total initial budget of ρℓ over a sequence
−→γℓ ∼ Pℓ of ℓ requests satisfies the inequality

E−→γℓ∼Pℓ
[
Reward(Opt,−→γℓ, ρ)

]
≤ ℓ · min

µ≥0,λ≥0

[
Dcombined(µ, λ|P, ρ′) + (ρ − ρ′) · µ

]
.

Definition G.2.3. The stopping time τ of Algorithm 8.5.1, with a total initial budget of B is the first time
τ at which

∑τ
t=1 pt(bt) + 1 ≥ B. Intuitively, this is the first time step at which the total price paid almost

exceeds the total budget.

Proposition G.2.4. Let τ be a stopping time as in Definition G.2.3 for some initial budget ρ′k. Let
µτ =

1
τ

∑τ
i=1 µi and λτ = 1

τ

∑τ
i=1 λi. Then the expected reward (see Equation (8.2.6)) of Algorithm 8.5.1 over

a sequence of length k with i.i.d. input requests from distribution Pk is lower bounded as

E−→γk∼P
k

[
Reward(Algorithm 8.5.1,−→γ , ρ′)

]
≥ E−→γk∼P

k

[
τ · Dcombined(µτ, λτ|P, ρ

′)
]

− E−→γk∼P
k

 τ∑
t=1

µt · (ρ′ − pt(bt)) −
τ∑

t=1

λt · gt(bt)

 .
Proposition G.2.5. Consider a run of Algorithm 8.5.1 with initial total budget ρℓ and the total time
horizon ℓ. We define the corresponding stopping time (as defined in Definition G.2.3) as the time τ at which∑τ

t=1 pt(bt) ≥ ρℓ − 1. Then, the dual variable {µt} that evolves as per Line 8 in Algorithm 8.5.1 satisfies the
inequality

∑τ
t=1 µt · (ρ − pt(bt)) ≤ (τ − ℓ) + 1/ρ +O(

√
ℓ).

Theorem 8.5.2. With i.i.d. inputs from a distribution P over a time horizon T, the regret of Algorithm 8.5.2
on Problem 8.2.5 is, under Assumption 8.4.1, bounded by

Regret(Algorithm 8.5.2,PT) ≤ O(
√

T log T).

Further, Algorithm 8.5.2 suffers no constraint violation of either the RoS or budget constraint.

Proof. The RoS constraint is not violated because the first phase accumulates the buffer that is the
guaranteed cap on violation in the second phase. The budget constraint is respected by design:
the first phase pays at most ρT, and the second phase strictly respects the budget, as guaranteed
by Algorithm 8.5.1. Next, we note that the total expected reward is at least that in the second phase

E−→γ∼PT

[
Reward(Algorithm 8.5.2,−→γ , ρ)

]
≥ Ek

[
E−→γk+1:T∼P

T−k

(
Reward(Algorithm 8.5.1,−→γk+1:T, ρ̂

)]
,

(G.2.3)

where ρ̂ = ρT−K(−→γ)
T−K(−→γ)

and the right-hand side captures the reduced time horizon T−K(−→γ) and reduced

initial budget ρT − K(−→γ) for Algorithm 8.5.1. Conditioning on the high-probability event that
k ≤ ρT (by Inequality G.1.3 coupled with the assumption that ρ is a fixed constant) and letting
R = Reward(Algorithm 8.5.1,−→γk+1:T, ρ̂):

Ek

[
E−→γk+1:T∼P

T−k (R)
]
≥ (1 − e−O(T))Ek

[
E−→γk+1:T∼P

T−k (R) | k ≤ ρT
]
. (G.2.4)

Applying Proposition G.2.4 with the reduced budget and time horizon:

E−→γk+1:T∼P
T−k [R] ≥ E−→γk+1:T∼P

T−k

[
τ · Dcombined(µτ, λτ|P, ρ̂)

]
− E−→γk+1:T∼P

T−k

 τ∑
t=1

µt · (ρ̂ − pt(bt))

− E−→γk+1:T∼P

T−k

 τ∑
t=1

λt · gt(bt)

 . (G.2.5)

Next, by Proposition G.2.2, we have:

Dcombined(µτ, λτ|P, ρ̂) + (ρ − ρ̂) · µτ ≥
1
T
E−→γ∼PT

[
Reward(Opt,−→γ , ρ)

]
. (G.2.6)

We can now repeat the trick in the proof of Theorem 8.5.1:

E−→γ∼PT

[
Reward(Opt,−→γ , ρ)

]
≤
τ
T
· E−→γ∼PT

[
Reward(Opt,−→γ , ρ)

]
+ (T − τ), (G.2.7)

Then, Inequality G.2.3, Inequality G.2.4, Inequality G.2.5, Inequality G.2.6, and Inequality G.2.7 give

E−→γ∼PT

[
Regret(Algorithm 8.5.2,−→γ)

]
≤ E−→γ∼PT (T − τ) +

T
eO(T)

+ Ek

E−→γk+1:T∼P
T−k

 τ∑
t=1

µt · (ρ̂ − pt(bt))

 | k ≤ ρT

+ Ek

E−→γk+1:T∼P
T−k

 τ∑
t=1

λt · gt(bt)

 | k ≤ ρT

+ Ek

[
E−→γk+1:T∼P

T−k

[
τµτ(ρ − ρ̂)

]
| k ≤ ρT

]
. (G.2.8)

By applying Proposition G.2.5 and Proposition 8.4.2, we have

Ek

E−→γk+1:T∼P
T−k

 τ∑
t=1

µt · (ρ̂ − pt(bt))

 | k ≤ ρT

 ≤ E−→γ∼PT

[
(τ − T) + K(−→γ)

]
+O(

√

T)

+ Ek

[
E−→γk+1:T

(1/ρ̂) | k ≤ ρT
]

≤ E−→γ∼PT (τ − T) +O(
√

T log T). (G.2.9)

We invoke Lemma 14 to conclude
∑R

t=1 λtgt ≤ O(
√

R) for all R ≤ T, which lets us conclude

E−→γ∼PT

 τ∑
t=1

λtgt

 ≤ O(
√

T). (G.2.10)

To bound the final term in Inequality G.2.8, we observe that ρ − ρ̂ = (1−ρ)K(−→γ)
T−K(−→γ)

by definition of ρ̂.

Combining this with τ ≤ T, the bound on
∑τ

i=1 µi from Algorithm 8.5.1, the result of Proposition 8.4.2,
and the conditional expectation, we get

Ek

[
E−→γk+1:T∼P

T−k

[
τµτ(ρ − ρ̂)

]
| k ≤ ρT

]
≤ O(

√

T). (G.2.11)

Combining Inequality G.2.8, Inequality G.2.9, Inequality G.2.10, and Inequality G.2.11 finishes the
proof. □

	1 Introduction
	1.1 Semidefinite Programs
	1.2 Nonsmooth Optimization
	1.3 Linear Algebraic Problems
	1.4 Online Optimization
	1.5 Organization of the Thesis

	2 An O"0365O(m/3.5) Cost Algorithm for Semidefinite Programs with Diagonal Constraints
	2.1 Introduction
	2.2 Our Approach

	3 A Faster Interior Point Method for Semidefinite Programs
	3.1 Introduction
	3.2 An Overview of Our Techniques
	3.3 Bottlenecks to Improving Our Result

	4 Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient Oracle Complexity
	4.1 Introduction
	4.2 Notation and Preliminaries
	4.3 Our Algorithm
	4.4 Our Analysis
	4.5 Initialization

	5 A Gradient Sampling Algorithm for Lipschitz Functions in High and Low Dimensions
	5.1 Introduction
	5.2 Interpolated Normalized Gradient Descent (INGD)
	5.3 Faster INGD in Low Dimensions

	6 A Fast Scale-Invariant Algorithm for Non-negative Least Squares with Non-negative Data
	6.1 Introduction
	6.2 Notation and Preliminaries
	6.3 Our Algorithm and Convergence Analysis
	6.4 Adaptive Restart
	6.5 Numerical Experiments and Discussion

	7 Computing Lewis Weights to High Precision
	7.1 Introduction to Lewis Weights
	7.2 Our Algorithm
	7.3 Analysis of Round(): The Parallel Algorithm
	7.4 Analysis of Round(): Sequential Algorithm
	7.5 A ``One-Step'' Parallel Algorithm

	8 Online Bidding Algorithms for Return-on-Spend Constrained Advertisers
	8.1 Introduction
	8.2 Preliminaries
	8.3 Approximate RoS Constraint
	8.4 Strict RoS Constraint
	8.5 RoS and Budget Constraints
	8.6 Conclusion

	Appendices
	A Appendix for Chapter 2
	A.1 Previous Results
	A.2 Analysis Common to Both Algorithms
	A.3 Analysis of the Arora-Kale Algorithm
	A.4 Analysis of our Proposed Algorithm
	A.5 General Technical Results

	B Appendix for Chapter 3
	B.1 Notation and Preliminaries
	B.2 Matrix Multiplication
	B.3 Our Main Theorem
	B.4 Approximate Central Path via Approximate Hessian
	B.5 Low-Rank Update
	B.6 Runtime Analysis
	B.7 Comparison with Cutting Plane Method
	B.8 Initialization

	C Appendix for Chapter 4
	C.1 Decomposable submodular function minimization

	D Appendix for Chapter 5
	D.1 Missing Proofs
	D.2 Implementation of The Oracles

	E Appendix for Chapter 6
	E.1 Appendix: Omitted Technical Details
	E.2 Implementation Version of SI-NNLS+

	F Appendix for Chapter 7
	F.1 Technical Proofs: Gradient, Hessian, Initial Error, Minimum Progress
	F.2 From Optimization Problem to Lewis Weights
	F.3 A Geometric View of Rounding
	F.4 Explanations of Runtimes in Prior Work

	G Appendix for Chapter 8
	G.1 Proofs: Strict RoS Constraint
	G.2 Proofs: Both Strict Constraints

