Showcase

Mario thinks the recognizes these from building 54. No, thats not it... maybe building 28? Something like that. It's all Greek to him, but then mathematical expressions usually are.

- $z=w^{3}$ with $z, w \in \mathbb{C}$ near 0
- $z^{2}+1=x^{2}+4 y^{2}$, marked with lines of the form $(t \cos \theta+\sin \theta, \pm(t \sin \theta-\cos \theta) / 2, t)$ for various values of θ.
- $y^{2}=x^{2}-z^{3}+3 x^{2} z$
- $x^{2}+2 y^{2}+3 z^{2}=1$, marked with curves in the principal directions. A point where the principal directions are not well-defined is indicated.
- The shape of a soap film stretched between two parallel wire hoops.
- $z^{4}+2 z^{2}+1=x^{2}+y^{2}$, marked with curves along which the normal curvature vanishes.
- $x^{2}+y^{2} / 4+z^{2} / 9=1$ and $z^{2} / 3=1+x^{2} / 5+y^{2} / 2$
- $z=\operatorname{Re}\left((x+i y)^{2}\right)$
- A surface, locally isometric to the hyperbolic plane, with an isolated singularity

