| Bessel {base} | R Documentation | 
Bessel Functions of integer and fractional order, of first and second kind, J(nu) and Y(nu), and Modified Bessel functions (of first and third kind), I(nu) and K(nu).
besselI(x, nu, expon.scaled = FALSE) besselK(x, nu, expon.scaled = FALSE) besselJ(x, nu) besselY(x, nu)
x | 
 numeric, ≥ 0.  | 
nu | 
 numeric; The order (maybe fractional!) of the corresponding Bessel function.  | 
expon.scaled | 
 logical; if   | 
If expon.scaled = TRUE, exp(-x) I(x;nu),
or exp(x) K(x;nu) are returned.
For nu < 0, formulae 9.1.2 and 9.6.2 from Abramowitz &
Stegun  are applied (which is probably suboptimal), except for
besselK which is symmetric in nu.
The current algorithms will give warnings about accuracy loss for
large arguments.  In some cases, these warnings are exaggerated, and
the precision is perfect.  For large nu, say in the order of
millions, the current algorithms are rarely useful.
Numeric vector with the (scaled, if expon.scaled = TRUE)
values of the corresponding Bessel function.
The length of the result is the maximum of the lengths of the parameters. All parameters are recycled to that length.
Original Fortran code:
W. J. Cody, Argonne National Laboratory 
Translation to C and adaptation to R:
Martin Maechler maechler@stat.math.ethz.ch.
The C code is a translation of Fortran routines from http://www.netlib.org/specfun/ribesl, ../rjbesl, etc. The four source code files for bessel[IJKY] each contain a paragraph “Acknowledgement” and “References”, a short summary of which is
based on (code) by David J. Sookne, see Sookne (1973)... Modifications... An earlier version was published in Cody (1983).
as besselI
based on (code) by J. B. Campbell (1980)... Modifications...
draws heavily on Temme's Algol program for Y... and on Campbell's programs for Y_ν(x) .... ... heavily modified.
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover, New York; Chapter 9: Bessel Functions of Integer Order.
In order of “Source” citation above:
Sockne, David J. (1973) Bessel Functions of Real Argument and Integer Order. NBS Jour. of Res. B. 77B, 125–132.
Cody, William J. (1983) Algorithm 597: Sequence of modified Bessel functions of the first kind. ACM Transactions on Mathematical Software 9(2), 242–245.
Campbell, J.B. (1980) On Temme's algorithm for the modified Bessel function of the third kind. ACM Transactions on Mathematical Software 6(4), 581–586.
Campbell, J.B. (1979) Bessel functions J_nu(x) and Y_nu(x) of float order and float argument. Comp. Phy. Comm. 18, 133–142.
Temme, Nico M. (1976) On the numerical evaluation of the ordinary Bessel function of the second kind. J. Comput. Phys. 21, 343–350.
Other special mathematical functions, such as
gamma, Γ(x), and beta,
B(x).
require(graphics)
nus <- c(0:5, 10, 20)
x <- seq(0, 4, length.out = 501)
plot(x, x, ylim = c(0, 6), ylab = "", type = "n",
     main = "Bessel Functions  I_nu(x)")
for(nu in nus) lines(x, besselI(x, nu = nu), col = nu + 2)
legend(0, 6, legend = paste("nu=", nus), col = nus + 2, lwd = 1)
x <- seq(0, 40, length.out = 801); yl <- c(-.8, .8)
plot(x, x, ylim = yl, ylab = "", type = "n",
     main = "Bessel Functions  J_nu(x)")
for(nu in nus) lines(x, besselJ(x, nu = nu), col = nu + 2)
legend(32, -.18, legend = paste("nu=", nus), col = nus + 2, lwd = 1)
## Negative nu's :
xx <- 2:7
nu <- seq(-10, 9, length.out = 2001)
op <- par(lab = c(16, 5, 7))
matplot(nu, t(outer(xx, nu, besselI)), type = "l", ylim = c(-50, 200),
        main = expression(paste("Bessel ", I[nu](x), " for fixed ", x,
                                ",  as ", f(nu))),
        xlab = expression(nu))
abline(v = 0, col = "light gray", lty = 3)
legend(5, 200, legend = paste("x=", xx), col=seq(xx), lty=seq(xx))
par(op)
x0 <- 2^(-20:10)
plot(x0, x0^-8, log = "xy", ylab = "", type = "n",
     main = "Bessel Functions  J_nu(x)  near 0\n log - log  scale")
for(nu in sort(c(nus, nus+0.5)))
    lines(x0, besselJ(x0, nu = nu), col = nu + 2)
legend(3, 1e50, legend = paste("nu=", paste(nus, nus+0.5, sep=",")),
       col = nus + 2, lwd = 1)
plot(x0, x0^-8, log = "xy", ylab = "", type = "n",
     main = "Bessel Functions  K_nu(x)  near 0\n log - log  scale")
for(nu in sort(c(nus, nus+0.5)))
    lines(x0, besselK(x0, nu = nu), col = nu + 2)
legend(3, 1e50, legend = paste("nu=", paste(nus, nus + 0.5, sep = ",")),
       col = nus + 2, lwd = 1)
x <- x[x > 0]
plot(x, x, ylim = c(1e-18, 1e11), log = "y", ylab = "", type = "n",
     main = "Bessel Functions  K_nu(x)")
for(nu in nus) lines(x, besselK(x, nu = nu), col = nu + 2)
legend(0, 1e-5, legend=paste("nu=", nus), col = nus + 2, lwd = 1)
yl <- c(-1.6, .6)
plot(x, x, ylim = yl, ylab = "", type = "n",
     main = "Bessel Functions  Y_nu(x)")
for(nu in nus){
    xx <- x[x > .6*nu]
    lines(xx, besselY(xx, nu=nu), col = nu+2)
}
legend(25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)
## negative nu in bessel_Y -- was bogus for a long time
curve(besselY(x, -0.1), 0, 10, ylim = c(-3,1), ylab = "")
for(nu in c(seq(-0.2, -2, by = -0.1)))
  curve(besselY(x, nu), add = TRUE)
title(expression(besselY(x, nu) * "   " *
                 {nu == list(-0.1, -0.2, ..., -2)}))