Future Schiff-Moment Calculations

in Radioactive Nuclei

J. Engel

June 29, 2021

How Diamagnetic Atoms Get EDMs, Roughly

Because SM CP violation is so weak, an additional undiscovered source is required to explain why there is so much more matter than antimatter.

The source can work its way into nuclei through CP-violating $\pi N N$ vertices (in chiral EFT)...

How Diamagnetic Atoms Get EDMs, Roughly

Because SM CP violation is so weak, an additional undiscovered source is required to explain why there is so much more matter than antimatter.

The source can work its way into nuclei through CP-violating $\pi N N$ vertices (in chiral EFT)...

How Diamagnetic Atoms Get EDMs, Roughly

... and to a nuclear EDM from the nucleon EDM or a T-violating $N N$ interaction:

$V_{P T} \propto \bar{g}\left(\sigma_{1} \pm \sigma_{2}\right) \cdot\left(\nabla_{1}-\nabla_{2}\right) \frac{\exp \left(-m_{\pi}\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right)}{m_{\pi}\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|}+$ contact terms/etc.

How Diamagnetic Atoms Get EDMs, Roughly

....and to a nuclear EDM from the nucleon EDM or a T-violating $N N$ interaction:

$V_{P T} \propto \bar{g}\left(\sigma_{1} \pm \sigma_{2}\right) \cdot\left(\nabla_{1}-\nabla_{2}\right) \frac{\exp \left(-m_{\pi}\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|\right)}{m_{\pi}\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|}+$ contact terms/etc.
Atoms get EDMs from nuclei. But electronic shielding replaces nuclear dipole operator with "Schiff operator,"

$$
S \propto \sum_{p}\left(r_{p}^{2}-\frac{5}{3} R_{\mathrm{ch}}^{2}\right) z_{p}+\ldots
$$

making relevant nuclear quantity the Schiff moment:

$$
\langle S\rangle=\sum_{m} \frac{\langle\mathrm{O}| S|m\rangle\langle m| V_{P T}|\mathrm{O}\rangle}{E_{\mathrm{O}}-E_{m}}+\text { c.c. }
$$

How Diamagnetic Atoms Get EDMs, Roughly

... and to a nuclear EDM from the nucleon EDM or a T-violating $N N$ interaction:

Job of nuclear-structure theory: compute de-
$V_{P T} \propto \quad$ pendence of $\langle S\rangle$ on the three \bar{g} 's (and on the ns/etc. contact-term coefficients and nucleon EDM).

Atom
It's up to QCD/EFT to compute the dependence of the \bar{g} vertices on fundamental sources of $C P$ violation.

See talks by Vincenzo, Jordy, Michael.
making relevant nuclear quantity the Schiff moment:

$$
\langle S\rangle=\sum_{m} \frac{\langle\mathrm{O}| S|m\rangle\langle m| V_{P T}|\mathrm{O}\rangle}{E_{\mathrm{O}}-E_{m}}+\text { c.c. }
$$

Nuclear Models in One Slide

Starting point is always a mean field

Nuclear Models in One Slide

Starting point is always a mean field

Nuclear Models in One Slide

Starting point is always a mean field

Nuclear Models in One Slide

Starting point is always a mean field

Nuclear Models in One Slide

Starting point is always a mean field

Nuclear Models in One Slide

Starting point is always a mean field

Generator-Coordinate Method (GCM): extension of DFT that mixes many mean-field states with different collective properties.

Nuclear Models in One Slide

Starting point is always a mean field

Generator-Coordinate Method (GCM): extension of DFT that mixes many mean-field states with different collective properties.

${ }^{225} \mathrm{Ra}$ and Other Light Actinides

 Octupole Physics and DFT

Unlike in other nuclei, these two states are the whole story.

Deformed density
Two members of the parity doublet correspond to the same intrinsic mean-field state:

$$
\left|\frac{1}{2}^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \pm|0\rangle)
$$

and, to good approximation,

Octupole Systematics

More DFT

From Cao et al., arXiv:2004.01319

See talk by W. Nazarewicz?

Correlation of ${ }^{225} \mathrm{Ra}\langle S\rangle_{\text {intr. }}$ with ${ }^{224} \mathrm{Ra}$ Octupole Defm.

J. Dobaczewski, JE, M. Kortelainen, P. Becker

Correlation with octupole moment of ${ }^{225} \mathrm{Ra}$ even better.
That moment will be determined at ANL.
Observables also correlated in other octupole-deformed actinides.

Implications of Correlation for Lab Schiff Moment

Looks good, but situation is more complicated when we include octupole moments in other nuclei. The resulting a_{i} for ${ }^{225} \mathrm{Ra}$:

$$
\begin{array}{ccc}
\text { isoscalar } & \text { isovector } & \text { isotensor } \\
-0.4-0.8 & -2--8 & 2-5
\end{array}
$$

Range doesn't include systematic uncertainty.

Reducing Uncertainty of Lab Moments

The problem is that we don't have information about $\left\langle V_{P T}\right\rangle$.

Reducing Uncertainty of Lab Moments

The problem is that we don't have information about $\left\langle V_{P T}\right\rangle$.
Can we find measurements that will constrain its matrix element?

- In one-body approximation $V_{P T} \approx \vec{\sigma} \cdot \vec{\nabla} \rho$. The closest simple one body operator is $\vec{\sigma} \cdot \vec{r}$.

Can we measure $\left\langle 1 / 2^{-}\right| \vec{\sigma} \cdot \vec{r}\left|1 / 2^{+}\right\rangle$or something like it, in some octupole-deformed nucleus?

Reducing Uncertainty of Lab Moments

The problem is that we don't have information about $\left\langle V_{P T}\right\rangle$.
Can we find measurements that will constrain its matrix element?

- In one-body approximation $V_{P T} \approx \vec{\sigma} \cdot \vec{\nabla} \rho$. The closest simple one body operator is $\vec{\sigma} \cdot \vec{r}$.

Can we measure $\left\langle 1 / 2^{-}\right| \vec{\sigma} \cdot \vec{r}\left|1 / 2^{+}\right\rangle$or something like it, in some octupole-deformed nucleus?

- What about charge-changing transition strength to isobar analog of $\left|1 / 2^{-}\right\rangle$in ${ }^{225} \mathrm{Fr}$? Axial-charge β decays in other nuclei?
$V_{P T}$ is similar to two-body current operator in axial-charge channel.

Reducing Uncertainty of Lab Moments

The problem is that we don't have information about $\left\langle V_{P T}\right\rangle$.
Can we find measurements that will constrain its matrix element?

- In one-body approximation $V_{P T} \approx \vec{\sigma} \cdot \vec{\nabla} \rho$. The closest simple one body operator is $\vec{\sigma} \cdot \vec{r}$.

Can we measure $\left\langle 1 / 2^{-}\right| \vec{\sigma} \cdot \vec{r}\left|1 / 2^{+}\right\rangle$or something like it, in some octupole-deformed nucleus?

- What about charge-changing transition strength to isobar analog of $\left|1 / 2^{-}\right\rangle$in ${ }^{225} \mathrm{Fr}$? Axial-charge β decays in other nuclei?
$V_{P T}$ is similar to two-body current operator in axial-charge channel.

The other option is an ab-initio calculation with controlled errors!

Ab Initio Nuclear Structure

Starts with chiral effective-field theory
Nucleons, pions sufficient below chiral-symmetry breaking scale.
Expansion of operators in powers of Q / Λ_{χ}.
$Q=m_{\pi}$ or typical nucleon momentum.

2N Force
3N Force
4N Force

+...

$\mathrm{N}^{3} \mathrm{LO}$
$\left(Q / \Lambda_{\chi}\right)^{4}$

At each "order," only a finite number of operators exist.

Ab Initio Nuclear Structure

Starts with chiral effective-field theory
Nucleons, pions sufficient below chiral-symmetry breaking scale.
Expansion of operators in powers of Q / Λ_{χ}.
$Q=m_{\pi}$ or typical nucleon momentum.

2N Force
3N Force
4N Force

At each "order," only a finite number of operators exist.

Leading-order terms in $V_{P T}$ depend on source of CP violation.
see Jordy's talk.
$\mathrm{N}^{3} \mathrm{LO}$
$\left(Q / \Lambda_{\chi}\right)^{4}$

Ab Initio Many-Body Methods

Partition of Full Hilbert Space

$$
\begin{aligned}
& P=\text { "reference" space } \\
& Q=\text { the rest }
\end{aligned}
$$

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {eff }}$ in P reproducing most important eigenvalues.

Simpler calculation done here.

Ab Initio Many-Body Methods

Partition of Full Hilbert Space

$P=$ "reference" space
$Q=$ the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {eff }}$ in P reproducing most important eigenvalues.

Simpler calculation done here.

Ab Initio Many-Body Methods

Partition of Full Hilbert Space

$P=$ "reference" space
$Q=$ the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {eff }}$ in P reproducing most important eigenvalues.

Must must apply same unitary transformation to transition operator.

Simpler calculation done here.

Ab Initio Many-Body Methods

Partition of Full Hilbert Space

$$
P \text { = "reference" space }
$$

$Q=$ the rest
Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {off }}$ in P reproducing most
Q As difficult as solving original problem. ivalues.

But many-body effective operators (beyond 2- or 3-body) can be treated approximately.
ly same unitary to transition

Simpler calculation done here.
operator.

In-Medium Similarity Renormalization Group

One way to determine the transformation
Flow equation for effective Hamiltonian. Gradually decouples reference space.

from H. Hergert

$$
\frac{d}{d s} H(s)=[\eta(s), H(s)], \quad \eta(s)=\left[H_{d}(s), H_{o d}(s)\right], \quad H(\infty)=H_{\text {eff }}
$$

Trick is to keep all 1- and 2-body terms in H at each step after normal ordering (IMSRG-2, includes most important parts of 3, 4-body ...terms).
If reference space is a single state, end up with g.s. energy. If, e.g., it is a valence space, get effective shell-model interaction and operators.

Ab Initio Calculations of Spectra

Reference State with Collective Correlations

Background: Generator Coordinate Method

Construct set of mean fields by constraining coordinate(s), e.g. quadrupole moment $\left\langle Q_{0}\right\rangle$. Then diagonalize H in space of symmetry-restored quasiparticle vacua with different $\left\langle Q_{0}\right\rangle$.

Reference State with Collective Correlations

Background: Generator Coordinate Method

Construct set of mean fields by constraining coordinate(s), e.g. quad
symr

Reference State with Collective Correlations

Background: Generator Coordinate Method
Construct set of mean fields by constraining coordinate(s), e.g. quadrupole moment $\left\langle Q_{0}\right\rangle$. Then diagonalize H in space of symmetry-restored quasiparticle vacua with different $\left\langle Q_{0}\right\rangle$.

Potential energy surface

Li et al.: Potential energy surface for ${ }^{130} \mathrm{Xe}$

Collective squared wave functions

Rodríguez and Martínez-Pinedo: Wave functions in ${ }^{76} \mathrm{Ge}$,Se peaked at two different deformed shapes.

Reference State with Collective Correlations

Background: Generator Coordinate Method

In-Medium GCM

J.M. Yao, B. Bally, JE, R. Wirth, T.R. Rodríguez, H. Hergert

Uses GCM reference state to capture collective multi-particle multi-hole correlations, include the rest through IMSRG.

In-Medium GCM

J.M. Yao, B. Bally, JE, R. Wirth, T.R. Rodríguez, H. Hergert

Uses GCM reference state to capture collective multi-particle multi-hole correlations, include the rest through IMSRG.

Procedure for Schiff moment, which involves two states:

1. Use bare Hamiltonian to construct approximate GCM states for ground state and its partner, and create the statistical ensemble:

$$
\rho=a\left|1 / 2^{+}\right\rangle\left\langle 1 / 2^{+}\right|+b\left|1 / 2^{-}\right\rangle\left\langle 1 / 2^{-}\right|
$$

In-Medium GCM

J.M. Yao, B. Bally, JE, R. Wirth, T.R. Rodriguez, H. Hergert

Uses GCM reference state to capture collective multi-particle multi-hole correlations, include the rest through IMSRG.

Procedure for Schiff moment, which involves two states:

1. Use bare Hamiltonian to construct approximate GCM states for ground state and its partner, and create the statistical ensemble:

$$
\rho=a\left|1 / 2^{+}\right\rangle\left\langle 1 / 2^{+}\right|+b\left|1 / 2^{-}\right\rangle\left\langle 1 / 2^{-}\right|
$$

2. Use flow equation to construct Hamiltonian \bar{H} so that $\operatorname{Tr}(\rho \bar{H})$ is minimized, apply resulting transformation to $V_{P T}$ and S to get $\bar{V}_{P T}$ and \bar{S}.

In-Medium GCM

J.M. Yao, B. Bally, JE, R. Wirth, T.R. Rodriguez, H. Hergert

Uses GCM reference state to capture collective multi-particle multi-hole correlations, include the rest through IMSRG.

Procedure for Schiff moment, which involves two states:

1. Use bare Hamiltonian to construct approximate GCM states for ground state and its partner, and create the statistical ensemble:

$$
\rho=a\left|1 / 2^{+}\right\rangle\left\langle 1 / 2^{+}\right|+b\left|1 / 2^{-}\right\rangle\left\langle 1 / 2^{-}\right|
$$

2. Use flow equation to construct Hamiltonian \bar{H} so that $\operatorname{Tr}(\rho \bar{H})$ is minimized, apply resulting transformation to $V_{P T}$ and S to get $\bar{V}_{P T}$ and \bar{S}.
3. Neither $\left|1 / 2^{+}\right\rangle$or $\left|1 / 2^{-}\right\rangle$is an exact eigenvector of \bar{H}, even without truncation of flow equations, so do a second set of GCM calculations with \bar{H}.

In-Medium GCM

J.M. Yao, B. Bally, JE, R. Wirth, T.R. Rodriguez, H. Hergert

Uses GCM reference state to capture collective multi-particle multi-hole correlations, include the rest through IMSRG.

Procedure for Schiff moment, which involves two states:

1. Use bare Hamiltonian to construct approximate GCM states for ground state and its partner, and create the statistical ensemble:

$$
\rho=a\left|1 / 2^{+}\right\rangle\left\langle 1 / 2^{+}\right|+b\left|1 / 2^{-}\right\rangle\left\langle 1 / 2^{-}\right|
$$

2. Use flow equation to construct Hamiltonian \bar{H} so that $\operatorname{Tr}(\rho \bar{H})$ is minimized, apply resulting transformation to $V_{P T}$ and S to get $\bar{V}_{P T}$ and \bar{S}.
3. Neither $\left|1 / 2^{+}\right\rangle$or $\left|1 / 2^{-}\right\rangle$is an exact eigenvector of \bar{H}, even without truncation of flow equations, so do a second set of GCM calculations with \bar{H}.
4. Compute Schiff moment with $\bar{V}_{P T}$ and \bar{S}.

In-Medium GCM

J.M. Yao, B. Bally, JE, R. Wirth, T.R. Rodríguez, H. Hergert

Uses GCM reference state to capture collective multi-particle multi-hole correlations, include the rest through IMSRG.

Procedure for Schiff moment, which involves two states:

We have already done this for the $\beta \beta$ decay of ${ }^{48} \mathrm{Ca}$ to ${ }^{48} \mathrm{Ti}$ (also involving two states).

Now doing it for the decay of ${ }^{76} \mathrm{Ge}$.
is minimized, apply resulting transformation to $V_{P T}$ and S to get $\bar{V}_{P T}$ and \bar{S}.
3. Neither $\left|1 / 2^{+}\right\rangle$or $\left|1 / 2^{-}\right\rangle$is an exact eigenvector of \bar{H}, even without truncation of flow equations, so do a second set of GCM calculations with \bar{H}.
4. Compute Schiff moment with $\bar{V}_{P T}$ and \bar{S}.

In-Medium GCM for Decay of ${ }^{48} \mathrm{Ca}$ GCM Reference States for IMSRG

Potential Energy Surfaces

${ }^{48} \mathrm{Ca}$ is spherical and ${ }^{48} \mathrm{Ti}$ is weakly deformed.

Spectrum in ${ }^{48} \mathrm{Ti}$

Spectrum in ${ }^{48} \mathrm{Ti}$

In 9 shells

β_{2} only
We get large E2's.

Application to Schiff Moment of, e.g., ${ }^{225} \mathrm{Ra}$

Required Improvements to Methods

- More nucleons will require larger spaces = more memory, processors = supercomputer use (maybe).

Application to Schiff Moment of, e.g., ${ }^{225} \mathrm{Ra}$

Required Improvements to Methods

- More nucleons will require larger spaces = more memory, processors = supercomputer use (maybe).
- Chiral interactions will need to be tested in really heavy nuclei.

Application to Schiff Moment of, e.g., ${ }^{225} \mathrm{Ra}$

Required Improvements to Methods

- More nucleons will require larger spaces = more memory, processors = supercomputer use (maybe).
- Chiral interactions will need to be tested in really heavy nuclei.

That's about it!

How much smaller will the uncertainty be?
Not clear, but it will be more believable.

Application to Schiff Moment of, e.g., ${ }^{225} \mathrm{Ra}$

Required Improvements to Methods

- More nucleons will require larger spaces = more memory,

> That's all; thanks. 異

How much smaller will the uncertainty be?
Not clear, but it will be more believable.

