Theoretical Aspects of Ultracold Molecules for

New Physics Search

Timo Fleig

LCPQ, I.R.S.A.M.C Université Paul Sabatier Toulouse III

France

30 June

Université Paul Sabatier

Outline – Part 1

Electron EDM with trapped ultracold molecules

Alkali-radium diatomics and the story of AgRa Dispersion coefficients with Gaussian basis sets

Outline – Part 2

Toward nuclear Schiff moment with trapped ultracold molecules

Atomic Schiff interactions: Gaussian basis sets ... again Next-generation Schiff molecule: AgFr ?

\mathcal{P} , \mathcal{T} -odd Property Calculations

using correlated wavefunctions

Expectation values over relativistic Configuration Interaction wavefunctions¹ $\left\langle \hat{O} \right\rangle_{\psi_{I}^{(0)}} = \sum_{I=I-1}^{\dim \mathcal{F}^{t}(M,n)} c_{kI}^{*} c_{kJ} \left\langle \left| \left(\mathcal{S}\overline{\mathcal{T}} \right)_{I}^{\dagger} \right| \hat{O} \right| \left(\mathcal{S}\overline{\mathcal{T}} \right)_{J} \right| \right\rangle$

Property operator \hat{O} in basis of Kramers-paired molecular spinors $\hat{O} = \sum_{m,n=1}^{P_u} o_{mn} a_m^{\dagger} a_n + \sum_{m=1}^{P_u} \sum_{n=P_u+1}^{P} o_{m\overline{n}} a_m^{\dagger} a_{\overline{n}} + \sum_{m=P_u+1}^{P} \sum_{n=1}^{P_u} o_{\overline{m}n} a_{\overline{m}}^{\dagger} a_n + \sum_{m,n=P_u+1}^{P} o_{\overline{m}\overline{n}} a_{\overline{m}}^{\dagger} a_{\overline{n}}$

First-term contribution to expectation value

$$W'(\Psi_k)_1 = \sum_{\substack{I,J=1\\I,J=1}}^{\dim \mathcal{F}^{t}(\mathbf{P},\mathbf{N})} c_{kI}^* c_{kJ} \sum_{\substack{m,n=1\\m,n=1}}^{P_u} o_{mn}^M$$
$$\begin{pmatrix} N_p \in \mathcal{S}_I \ N_p \in \mathcal{S}_I + N_{\overline{p}} \in \overline{\mathcal{T}}_I \\ \langle \mid \prod_{p=1}^{N_p \in \mathcal{S}_I} \prod_{\overline{p}=N_p+1}^{N_p \in \overline{\mathcal{T}}_I} a_{\overline{p}} a_p \ a_m^{\dagger} a_n \prod_{q=1}^{N_p \in \mathcal{S}_J} N_p \in \mathcal{S}_J + N_{\overline{p}} \in \overline{\mathcal{T}}_J \\ \prod_{p=1}^{T_{p=N_p+1}} a_q^{\dagger} a_{\overline{q}}^{\dagger} \mid \rangle$$

¹ S. Knecht, Dissertation, HHU Düsseldorf 2009

\mathcal{P}, \mathcal{T} -odd Properties as Expectation Values

Interaction constants / enhancement factors for n-electron system

• Electron eEDM interaction constant² / enhancement³

$$\begin{split} W_d &:= \frac{1}{\Omega} \left\langle \sum_{j=1}^n \gamma_j^0 \, \mathbf{\Sigma}_j \cdot \mathbf{E}_j \right\rangle_{\psi^{(0)}} \approx -\frac{2ic}{\Omega \, e\hbar} \left\langle \sum_{j=1}^n \gamma_j^0 \gamma_j^5 \, \mathbf{p}_j^{-2} \right\rangle_{\psi^{(0)}} \\ E_{\text{eff}} &= -\Omega \, W_d \end{split} \qquad \qquad R \approx R_{\text{lin}} = -\frac{E_{\text{eff}}(E_{\text{ext}})}{E_{\text{ext}}} \end{split}$$

• S-PS nucleon-electron interaction constant⁴ / ratio⁵

$$W_{\mathcal{S}} := \frac{\imath}{\Omega} \frac{G_F}{\sqrt{2}} A(Z) \left\langle \sum_{j=1}^n \gamma_j^0 \gamma_j^5 \rho_N(\mathbf{r}_j) \right\rangle_{\psi^{(0)}} \qquad S = -\frac{\left\langle \imath \sum_j \gamma_j^0 \gamma_j^5 \rho_N(\mathbf{r}_j) \right\rangle_{\Psi(E_{\text{ext}})}}{E_{\text{ext}}}$$

- ³TF, L.V. Skripnikov, *Symmetry* **12** (2020) *498*
- ⁴M. Denis *et al.*, *New J. Phys.* **7** (2015) *043005*
- ⁵TF, M. Jung, J. High Energy Phys. (JHEP) **07** (2018) 012

²E. Lindroth, E. Lynn, P.G.H. Sandars, J. Phys. B: At. Mol. Opt. Phys. 22 (1989) 559, stratagem II

TF, M.K. Nayak, Phys. Rev. A 88 (2013) 032514

\mathcal{P} , $\mathcal{T}\text{-}odd$ Properties as Expectation Values

Interaction constants / enhancement factors for n-electron system

• Quadrupole term of nuclear vector potential in terms of nMQM tensor

 $\mathbf{A}_Q(\mathbf{r}) = -\sum_{k,n} M_{nk} \frac{1}{2r^5} \sum_{i,l} \varepsilon_{iln} r_l r_k \mathbf{e}_i$

Nuclear magnetic quadrupole (M)- electronic magnetic field interaction Hamiltonian

$$\hat{H}_{Qe} = -\frac{\boldsymbol{\alpha} \times \mathbf{r}}{2r^5} \cdot (\mathbf{r}\mathbf{M})$$

Nuclear MQM interaction constant (molecules)⁶:

$$W_M = \frac{3}{2\Omega} \left\langle \sum_{j=1}^n \left(\frac{\boldsymbol{\alpha}_j \times \mathbf{r}_{jA}}{r_{jA}^5} \right)_z (r_{jA})_z \right\rangle_{\psi_k^{(0)}}$$

⁶TF, M.K. Nayak, *Phys. Rev. A* **93** (2016) *012505*

$\mathcal{P}, \mathcal{T}\text{-}\text{Odd} \text{ and } \text{Spectroscopic Constants for X + Ra}$

	$R_e \; [{\sf a.u.}]$	$B_e \ [{ m cm}^{-1}]$	D[Debye]	EA(A) [eV]	$E_{\rm eff} \left[rac{{ m GV}}{{ m cm}} ight]$	$W_S \; [{\sf kHz}]$	$W_M \left[\frac{10^{33} \text{Hz}}{e \text{cm}^2}\right]$
LiRa(10au)	7.668	0.151	1.36	0.618	22.2	-59.5	0.652
LiRa(50au)	7.689	0.150	1.34	0.618	21.7	-58.3	0.641
NaRa	8.703	0.038	0.51	0.548	12.0	-32.2	0.368
KRa	10.37	0.017	0.39	0.501	5.44	-14.6	0.167
RbRa	10.75	0.008	0.36	0.486	5.01	-13.6	0.152
CsRa	11.25	0.006	0.46	0.472	4.52	-12.6	0.138
FrRa	11.26	0.004	0.24	0.486	3.44	-12.4	0.137
AgRa	6.241	0.021	4.76	1.304	63.9	-175.1	1.761

Analytical relationship between $E_{\rm eff}$ and W_S underlying matrix elements⁷

1

	$\left\lfloor \frac{d_e}{C_S 10^{-}} \right\rfloor$	$\frac{18}{18}$ ecm
"diamagnetic" systems ⁸	Xe	Hg
$Ratio \ \frac{\langle 0, 0 2ic \sum_{j} \gamma_{j}^{0} \gamma_{j}^{5} \mathbf{p}_{j}^{2} p \to s \ 0, 0 \rangle}{\langle 0, 0 \frac{AG_{F}}{\sqrt{2}} i \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) p \to s \ 0, 0 \rangle}$	-158.0	-85.9
$Ratio \ \frac{\langle 0, 0 2ic \sum_{j} \gamma_{j}^{0} \gamma_{j}^{5} \mathbf{p}_{j}^{2} p(s) \to p(s) \ 1, 0 \rangle}{\langle 0, 0 \frac{AG_{F}}{\sqrt{2}} i \sum_{e} \gamma_{e}^{0} \gamma_{e}^{5} \rho(\mathbf{r}_{e}) p(s) \to p(s) \ 1, 0 \rangle}$	-159.2	-85.2

⁷V.A. Dzuba, V.V. Flambaum, C. Harabati, *Phys. Rev. A* **84** (2011) *052108* ⁸T. F., M. Jung, *Phys. Rev. A* **103** (2021) *012807* ٦

EDM Effective Electric Field : LiRa vs. AgRa

M.I.T. Workshop, Cambridge, USA, 30 June 2021

$\mathcal{P}, \mathcal{T}\text{-}\text{Odd} \text{ and } \text{Spectroscopic Constants for X + Ra}$

	$R_e \; [{\sf a.u.}]$	$B_e \ [\mathrm{cm}^{-1}]$	D[Debye]	EA(A) [eV]	$E_{eff}\left[rac{\mathrm{GV}}{\mathrm{cm}} ight]$	$W_S \; [{\sf kHz}]$	$W_M \; \left[\frac{10^{33} \text{Hz}}{e \text{cm}^2} \right]$
LiRa(10au)	7.668	0.151	1.36	0.618	22.2	-59.5	0.652
LiRa(50au)	7.689	0.150	1.34	0.618	21.7	-58.3	0.641
NaRa	8.703	0.038	0.51	0.548	12.0	-32.2	0.368
KRa	10.37	0.017	0.39	0.501	5.44	-14.6	0.167
RbRa	10.75	0.008	0.36	0.486	5.01	-13.6	0.152
CsRa	11.25	0.006	0.46	0.472	4.52	-12.6	0.138
FrRa	11.26	0.004	0.24	0.486	3.44	-12.4	0.137
AgRa	6.241	0.021	4.76	1.304	63.9	-175.1	1.761
	-			•	-		

Partial charge on partner atom (DCHF)

А	δ^A [e] at R_e
Fr	-0.03
Rb	-0.05
Li	-0.08
Ag	-0.24

Rotational constant

$$B_e = \frac{B}{hc} = \frac{\hbar}{4\pi c\mu R_e^2}$$

M.I.T. Workshop, Cambridge, USA, 30 June 2021

Electron EDM Using Trapped Ultracold AgRa⁹

State of the Art

In collaboration with

David DeMille (Chicago)

- Important molecular potentials and constants
- Relevant \mathcal{P}, \mathcal{T} -odd constants at R_e
- Electric transition dipole matrix elements (partially)
- Vibronic transition moments for trapped-bound transitions
- Vibronic transition moments for bound-bound transitions

⁹T. F., O. Grasdijk, D. DeMille, (2021) in preparation

PECs for AgRa

E1 Matrix Elements for AgRa

M.I.T. Workshop, Cambridge, USA, 30 June 2021

Long-Range Theory – Dispersion Coefficients

• Interaction energy correct to lowest order for heteronuclear neutral atom pair: $V(R)\approx -\tfrac{C_6}{R^6}$

Hund's case C formulation of leading dispersion coefficient¹⁰:

$$C_6(\Omega) = \sum_{j=|J_A-1|}^{J_A+1} \sum_{J=|J_B-1|}^{J_B+1} A_{jJ}(\Omega) X_{jJ}$$

Representation of angular factor:

$$A_{jJ}(\Omega) = \sum_{\mu m M_J} \left\{ (1 + \delta_{\mu 0}) \begin{pmatrix} J_A & 1 & j \\ -M_{J_A} & \mu & m_j \end{pmatrix} \begin{pmatrix} J_B & 1 & J \\ -M_{J_B} & -\mu & M_j \end{pmatrix} \right\}^2$$

with $\Omega = M_{J_A} + M_{J_B} = m_j + M_J$

X factor with reduced matrix elements: $X_{jJ} = \sum_{\alpha_l, \alpha_k} \frac{\left| \left\langle \alpha_A J_A \right| |\hat{\mathbf{D}}| |\alpha_l J_l = j \right\rangle \right|^2 \left| \left\langle \alpha_B J_B \right| |\hat{\mathbf{D}}| |\alpha_k J_k = J \right\rangle \right|^2}{E_l - E_A + E_k - E_B}$

¹⁰S.G. Porsev, M.S. Safronova, A. Derevianko, and C.W. Clark, *Phys. Rev. A* 89 (2014) 012711

0

S.G. Porsev, M.S. Safronova, A. Derevianko, and C.W. Clark, Phys. Rev. A 89 (2014) 022703

• Adapted form of WET using TDM norm:

$$\left\langle \alpha J || \hat{\boldsymbol{D}} || \alpha' J' \right\rangle = \frac{\left| \left| \left\langle \alpha J M_J | \hat{\boldsymbol{D}} | \alpha' J' M'_J \right\rangle \right| \right| \sqrt{2J+1}}{\left\langle J' 1 M'_J q | J' 1 J M_J \right\rangle}$$

with $q = M_J - M'_J$

$$Via \text{ general definition of CGC} \left\langle j_1 j_2 m_{j_1} m_{j_2} | j_1 j_2 j m_j \right\rangle = \delta(m_j, m_{j_1} + m_{j_2}) \sqrt{\frac{(j_1 + j_2 - j)!(j + j_1 - j_2)!(j + j_2 - j_1)!(2j + 1)!}{(j + j_1 + j_2 + 1)!}} \times \sum_k \frac{(-1)^k \sqrt{(j_1 + m_{j_1})!(j_1 - m_{j_1})!(j_2 + m_{j_2})!(j_2 - m_{j_2})!(j + m_j)!(j - m_j)!}}{k!(j_1 + j_2 - j - k)!(j_1 - m_{j_1} - k)!(j_2 + m_{j_2} - k)!(j - j_2 + m_{j_1} + k)!(j - j_1 - m_{j_2} + k)!}$$

Finally E1 oscillator strengths:

$$f_{IF} = \frac{2}{3} \frac{\varepsilon_F - \varepsilon_I}{2J_I + 1} \left| \left\langle \alpha_I J_I \right| \left| \hat{\boldsymbol{D}} \right| \left| \alpha_F J_F \right\rangle \right|^2$$

Assessment of Accuracy

		present		experiment (NIST)	literature
Excited state	RME	\Deltaarepsilon [cm $^{-1}$]	f	\Deltaarepsilon [cm $^{-1}$]	f
$2P_{1/2}(2p^1)$	3.3197	14909	0.2495	14903.66	
${}^2P_{3/2}(2p^1)$	4.6948	14910	0.4991	14904.00	$0.7470(^2P)^{\ 11}$
${}^2P_{1/2}(3p^1)$	0.1794	30916	0.0015	30925.38	
${}^{2}P_{3/2}^{'}(3p^{1})$	0.2536	30917	0.0030	30925.38	$0.00482(^2P)^{-12}$
${}^2P_{1/2}(4p^1)$	0.3138	39039	0.0058	36469.55	
${}^2P_{3/2}(4p^1)$	0.4437	39039	0.0117	36469.55	

		present		experiment (NIST)	literature
excited state	RME	\Deltaarepsilon [cm $^{-1}$]	f	\Deltaarepsilon [cm $^{-1}$]	f
$^{-3}P_1(2s^12p^1)$	0.0002	21977	0.0000	21978.93	
${}^1P_1(2s^12p^1)$	3.2615	42585	1.3760	42565.35	$1.375(^{1}P)$ ¹³
${}^{1}P_{1}(2s^{1}3p^{1})$	0.2111	60347	0.0082	60187.34	
${}^{1}P_{1}(2s^{1}4p^{1})$	0.1781	70323	0.0068	67034.70	
${}^{1}P_{1}(2s^{1}5p^{1})$	0.2727	87309	0.0197	70120.49	

¹¹Z.-C. Yan, M. Tambasco, G.W.F. Drake, *Phys. Rev. A* 57 (1998) *1652*

¹²L. Qu, Z. Wang, B. Li, *Eur. Phys. J. D* **5** (1999) *173*

¹³J. Fleming, M. R. Godefroid, K. L. Bell, A. Hibbert, N. Vaeck, J. Olsen, P. Jönsson, C. Froese Fischer, J. Phys. B: At. Mol. Opt. Phys. 29 (1996) 4347

Be

Dispersion Coefficients Using Gaussian Basis Sets

Assessment of Accuracy

	C_{6} [a.u.]				
System/State	present	literature			
LiLi $X^1 \Sigma_0$	1390 464	$1389 \ {}^{14}$			
Lide $\Lambda \ \square_{1/2}$	404	410			

¹⁴S.G. Porsev, M.S. Safronova, A. Derevianko, and C.W. Clark, *Phys. Rev. A* 89 (2014) 022703

¹⁵J. Jiang, Y. Cheng, J. Mitroy, J. Phys. B: At. Mol. Opt. Phys. **46** (2013) 125004

Assessment of Accuracy

		present		experiment (NIST)	literature
Excited state	RME	\Deltaarepsilon [cm $^{-1}$]	f	\Deltaarepsilon [cm $^{-1}$]	f
$P_{1/2}(3p^1)$	3.5865	16799	0.3282	16956.17	$0.325 \; (^2P_{1/2}) \; ^{16}$
${}^2P_{3/2}(3p^1)$	5.0724	16817	0.6572	16973.37	$0.650 ({}^2P_{3/2}) {}^{16}$
${}^2P_{1/2}(4p^1)$	0.3101	30001	0.0044	30266.99	,
${}^2P_{3/2}(4p^1)$	0.4425	30007	0.0089	30272.58	$0.016 \pm 0.003 \ (^2P)^{17}$
${}^2P_{1/2}(5p^1)$	0.1422	37122	0.0011	35040.38	
${}^{2}P_{3/2}(5p^{1})$	0.2049	37131	0.0024	35042.85	$0.0025 \pm 0.0005 \ (^2P)^{17}$

	$C_6 \; [{\sf a.u.}]$			
System/State	present	literature		
NaNa $X^1\Sigma_0$	1642	1564 ¹⁶		
NaBe $X^2 \Sigma_{1/2}$	514	522 17		

• $C_6 = 1603$ [a.u.] using exp. data for strongest transition

¹⁷P. Erman, J. Brzozowski, and Wm. Hayden Smith Astrophys. J. **192** (1974) 59

¹⁶G. Stephenson, *Proc. Roy. Soc. A* **64** (1951) *458*

Assessment of Accuracy

		present		experiment (NIST)	literature
Excited state	RME	\Deltaarepsilon [cm $^{-1}$]	f	\Deltaarepsilon [cm $^{-1}$]	f
$-{}^2P_{1/2}(4p^1)$	4.2323	12861	0.3499	12985.19	0.330 ¹⁸
${}^2P_{1/2}^{-}(4p^1)$ (5 a.u.)	4.2238	12857	0.3484		
$^2P_{1/2}^{-}(4p^1)$ (SDTQ_SDT 5 a.u.)	4.1328	13195	0.3422		
${}^2P_{1/2}^{'}(4p^1)$ (+CVC 5 a.u.)	4.2230	12853	0.3481		
$^2{P}_{1/2}^{'}(4p^1)~(+$ p 5 a.u.)	4.1919	13240	0.3533		
$-2P_{3/2}(4p^1)$	5.9860	12918	0.7030	13042.90	0.657 ¹⁸
${}^2P_{3/2}^{-}(4p^1)$ (5 a.u.)	5.9817	12914	0.7018		
$^2{P}_{3/2}^{-}(4p^1)$ (SDTQ_SDT 5 a.u.)	5.8425	13253	0.6871		
${}^2P_{3/2}(4p^1)$ (+CVC 5 a.u.)	5.9706	12910	0.6990		
$^2{P}_{3/2}^{'}(4p^1)~(+$ p 5 a.u.)	5.9244	13291	0.7085		
$-{}^2P_{1/2}(5p^1)$	0.2797	24412	0.0029	24701.38	
${}^2P_{3/2}(5p^1)$	0.4129	24430	0.0063	24720.14	
${}^2P_{1/2}(6p^1)$	0.1452	29696	0.0010	28999.27	
${}^2P_{3/2}(6p^1)$	0.2197	29715	0.0022	29007.71	

• SDTQ_SDT model halves deviations (residual deviation $\approx 4\%$)

¹⁸G. Stephenson, Proc. Roy. Soc. A **64** (1951) 458

Assessment of Accuracy

		present		experiment (NIST)	literature
Excited state	RME	$\Delta arepsilon \; [{ m cm}^{-1}]$	f	$\Delta arepsilon \; [{ m cm}^{-1}]$	f
$-{}^2P_{1/2}(7p^1)$	4.4278	12311	0.3666	12237.41	0.340 ¹⁹
$^2P_{1/2}^{'}(7p^1)$ (SDTQ_SDT) 4.3595	12793	0.3693		
$^2P_{1/2}^{'}(7p^1)$ (SDTQ_SDT	-) "r	mixed"	0.3532		
${}^2P_{1/2}^{'}(7p^1)$ (+5d CVC)	4.4584	12381	0.3738		
${}^2P_{3/2}^{'}(7p^1)$	6.1117	13910	0.7891	13924.00	0.736 ¹⁹
r ${}^2P_{3/2}^{'}(7p^1)$ (SDTQ_SDT	6.0164	14429	0.7932		
$^2P_{3/2}^{'}(7p^1)$ (SDTQ_SDT	-) "r	mixed"	0.7655		
${}^2P_{3/2}^{'}(7p^1)~(+{ m 5d}~{ m CVC})$	6.1548	13949	0.8025		
$-{}^2P_{1/2}(8p^1)$	0.2879	23052	0.0029	23112.96	
${}^2P_{3/2}(8p^1)$	0.9112	23613	0.0298	23658.31	
${}^2P_{1/2}(9p^1)$	0.1487	29579	0.0010	27118.21	
${}^2P_{3/2}^{'}(9p^1)$	0.6109	30473	0.0173	27366.20	

- Higher excitation ranks do not lead to improvement for fBut use of RME and $\Delta \varepsilon(\exp)$ gives more accurate results
- CVCs lead to slight increase of f

F

¹⁹V.A. Dzuba and V.V. Flambaum and O.P. Sushkov, *Phys. Rev. A* **51** (1995) *3454*

Transition Properties for AgRa

	experiment present				
Transition	$\Delta E \ [\mathrm{cm}^{-1}] \ (NIST)$	f_{IF} ²⁰	$\Delta E \ [\mathrm{cm}^{-1}]$	RME [a.u.]	f_{IF}
$-{}^{2}S_{1/2}(5s) - {}^{2}P_{1/2}(5p)$	29552.1	0.232	28401	2.697	0.314
, , ,			28904	2.51 (+T)	0.276
${}^{2}S_{1/2}(5s) - {}^{2}P_{3/2}(5p)$	30472.7	0.476	29240	3.812	0.645
, , ,			29734	3.54 (+T)	0.566
${}^{2}S_{1/2}(5s) - {}^{2}P_{1/2}(6p)$	48297.4	0.005	48883	0.126	0.001
${}^{2}S_{1/2}(5s) - {}^{2}P_{3/2}(6p)$	48500.8	0.011	49352	0.303	0.007
${}^{2}S_{1/2}(5s) - {}^{2}P_{1/2}(7p)$	54041.0	0.001			
${}^{2}S_{1/2}(5s) - {}^{2}P_{3/2}(7p)$	54121.1	0.003			
${}^{2}S_{1/2}(5s) - \infty$	61106.0	0.272			

Ag

 $^{^{20}}$ J. Carlsson, P. Jønsson, L. Sturesson, Z. Phys. D **16** (1990) 87

G. J. Bengtsson and J. Larsson and S. Svanberg, Phys. Rev. A 42 (1990) 5457

G. J. Bengtsson and P. Jønsson and J. Larsson and S. Svanberg, Z. Phys. D 22 (1991) 437

S. Civiš and I. Matulková and J. Cihelka and P. Kubelik and K. Kawaguchi and V. E. Chernov, *Phys. Rev. A* 82 (2010) 022502

Transition Properties for AgRa

Ra

	literature ²¹		present			
Transition	$\Delta E \ [\mathrm{cm}^{-1}] \ (NIST)$	RME [a.u.]	f_{IF}	$\Delta E \ [\mathrm{cm}^{-1}]$	RME [a.u.]	f_{IF}
$^{1}S_{0}(7s^{2}) - ^{3}P_{1}(7s7p)$	13999.4	1.218	0.063	13713	0.865	0.031
${}^{1}S_{0}(7s^{2}) - {}^{1}P_{1}(7s7p)$	20715.6	5.504	1.906	22922	5.835	2.370
${}^{1}S_{0}(7s^{2}) - J' = 1$				33511	1.429	0.208
${}^{1}S_{0}(7s^{2}) - J' = 1$				46545	0.664	0.062
${}^{3}P_{1}(7s7p) - {}^{3}D_{1}(7s6d)$	-283.6	2.574	-0.002	215	2.571	0.001
${}^{3}P_{1}(7s7p) - {}^{3}D_{2}(7s6d)$	-5.5	4.382	-0.000	510	4.490	0.010
${}^{3}P_{1}(7s7p) - {}^{1}D_{2}(7s6d)$	3081.9	0.344	0.000	5317	0.013	0.000
${}^{3}P_{1}(7s7p) - {}^{3}S_{1}(7s8s)$	12754.7	3.890	0.195	13109	3.792	0.191
${}^{3}P_{1}(7s7p) - {}^{3}F_{2}(6d^{2})$	15518^{b}	0.542	0.005			
${}^{3}P_{1}(7s7p) - {}^{1}D_{2}(6d^{2})$	16571^{b}	1.274	0.027			
${}^{3}P_{1}(7s7p) - (J=1)$				30420	1.300	0.052
${}^{3}P_{1}(7s7p) - (J=1)$				32474	3.113	0.319
${}^{3}P_{1}(7s7p) - (J=2)$				32615	4.882	0.787
${}^{3}P_{1}(7s7p) - (J=2)$				46215	2.425	0.275
${}^{3}P_{1}(7s7p) - \infty$				28573.4	3.393	0.333

²¹V. A. Dzuba, V. V. Flambaum, J. Phys. B: At. Mol. Opt. Phys. **40** (2007) 227

Dispersion Coefficients for AgRa²²

Diss. channel	$Ag(^2S_{1/2})$ - $Ra(^1S_0)$	$Ag(^2S_{1/2})$ - $Ra(^3P_1)$			$Ag(^2S_{1/2})$ - $Ra(^3S_1)$
Molecular state	$\Omega = 1/2(1)$	$\Omega = 1/2(3)$	$\Omega = 1/2(4)$	$\Omega = 3/2(1)$	$\Omega = 3/2(12)$
C_{6} [a.u.]	853	733	953	958	4253

²²T. F., O. Grasdijk, D. DeMille, (2021) in preparation

Toward Nuclear Schiff moment with trapped ultracold molecules

In collaboration with

Mickaël Hubert (EPITA, Toulouse)

- Two models for nuclear density²³: $\rho_G(r) = Z \left(\frac{\zeta}{\pi}\right)^{\frac{3}{2}} e^{-\zeta r^2} \text{ (Gaussian)}$ $\rho_F(r) = \frac{a}{1+e^{\frac{r-C}{t}}} \text{ (Fermi)}$
- Fermi: Expand into Gaussian basis set

$$\rho_F(r) = \sum_{i=1}^n \alpha_i e^{-\zeta_i r^2} \text{ optimize } \{\alpha_i, \zeta_i\}$$

²³M. Hubert and T. F., (2021) *unpublished*

A Glance at Atoms: Xe Schiff Interaction

• Energy shift due to atomic Schiff moment interaction²⁴:

 $\Delta \varepsilon_{\rm SM} = -S_z \frac{3}{B} \left\langle \hat{z} \, \rho({\bf r}) \right\rangle_{\psi(E_{\rm ext})} \qquad {\rm with} \qquad B = \int_0^\infty \rho({\bf r}) r^4 dr$

• Definition of the atomic interaction constant

$$\alpha_{\mathsf{SM}} := \frac{\Delta \varepsilon_{\mathsf{SM}}}{S_z \, E_{\mathsf{ext}}} = \frac{-\frac{3}{B} \left\langle \hat{z} \, \rho(\mathbf{r}) \right\rangle_{\psi(E_{\mathsf{ext}})}}{E_{\mathsf{ext}}}$$

	$\alpha_{SM} \left[10 \right]$	$\left17 \frac{e \text{cm}}{e \text{fm}^3} \right]$	
Model	Gauss	Fermi	€DCHF
Dyall-cvDZ	-1.220	-1.005	-7446.876435682244
Dyall-cvTZ	-0.379	-0.391	-7446.895053544852
Dyall-cvQZ	0.318	0.234	-7446.895410571442
Dyall-cvQZ-79s67p	0.375	0.293	-7446.895402055156
Dyall-cvQZ-79s67p/SD8-5au	0.354	0.275	
Dzuba <i>et al.</i> ²⁵ (RPA, 2002)	0.	38	
Ramachandran <i>et al.</i> ²⁶ (CPHF, 2014)	0.3	874	
Sakurai <i>et al.</i> ²⁷ (RNCCSD, 2019)	0.3	32	

²⁴V.V. Flambaum, V.A. Dzuba, H.B. Tran Tan, *Phys. Rev. A* **101** (2020) *042501*

²⁵V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges, and M.G. Kozlov, *Phys. Rev. A* **66** (2002) *012111*

²⁶S. M. Ramachandran and K. V. P. Latha, *Phys. Rev. A* **90** (2014) *042503*

²⁷A. Sakurai, B.K. Sahoo, K. Asahi, B.P. Das, *Phys. Rev. A* **100** (2019) *020502*

Schiff Interaction in Molecules

TIF

Model / $R=3.94$ a.u.	$W_{SM} = rac{\Deltaarepsilon_{SM}}{S_z}(TI)$ [a.u.]
cvQZ/DCHF	42877
cvQZ/SD8_4au	38280
$cvQZ/SD18_4au$	38648
$cvQZ/SD10_SDT18_4au$	37341
Flambaum <i>et al.</i> ²⁸ (CC, 2002)	40539
Abe <i>et al.</i> ²⁹ (CC, 2020)	41136

AgFr

Model (at $R=6.525$ a.u.)	$W_{SM} = rac{\Deltaarepsilon_{SM}}{S_z}(Fr)$ [a.u.]
cvTZ/DCHF	26692
cvTZ/S18_CAS2in22_SD20_4au	26075
cvQZ/DCHF	27915
cvQZ/S18_CAS2in22_SD20_4au	27328
cvTZ-cvQZ/DCHF	27922
cvTZ-cvQZ/S18_CAS2in22_SD20_4au	27272

²⁸V.V. Flambaum, V.A. Dzuba, H.B. Tran Tan, *Phys. Rev. A* **101** (2020) *042501*

A.N. Petrov, N.S. Mosyagin, T.A. Isaev, A.V. Titov, V.F. Ezhov, E. Eliav, and U. Kaldor, Phys. Rev. Lett. 88 (2002) 073001

²⁹M. Abe, T. Tsutsui, J. Ekman, M. Hada, B.P. Das, *Mol. Phys.* **118** (2020) *e1767814*

Schiff Interaction in Molecules: AgFr PEC

M.I.T. Workshop, Cambridge, USA, 30 June 2021

Appendix : Technical Definition of Atomic Wavefunctions

	accumulated # of electrons		
Virtual	N N		
Model space (n+1)s,(n+2)s (n-1)d,nd np,,(n+4)p	N-2 N		
Sub-valence (n-1)s,(n-1)p,ns	N-3 N		
Frozen core			

Li (n = 2): N = 3, no model space, no frozen core (FCI), Sub-valence is 1s, 2sonly;

Na (n = 3): N = 11, no frozen core; Single excitations out of the 1s shell added to expansion for enhanced convergence;

K-Fr (n = 4...7): N = 9, $np, \ldots, (n+4)p$ for p functions in model space;

The cutoff for the virtual space is set to 100 [a.u.] for all atoms except for Fr where is it 5 [a.u.]

Appendix : Technical Definition of Molecular Wavefunctions

	accumulated # of electrons min may		
Virtual	N N		
Model space σ (ns,n's) σ (n's,ns)	N-2 N		
Sub-valence (n-1)s,(n-1)p (n'-1)s,(n'-1)p	N-5 N-3		
Frozen core			

Up to two holes are allowed in the sub-valence spinors which accounts for correlation effects among the sub-valence electrons and with the valence electrons. The model space is restricted to the valence spinors where all occupations are allowed. The cutoff for the virtual space is set to 10 [a.u.]