Infrastructure for radioactive molecule production at CERN-ISOLDE

Sebastian ROTHE CERN, Accelerator Systems Department

ISOLDE: Isotope Separation On Line DEvice

R. Catherall et al 2017 J. Phys. G: Nucl. Part. Phys. 44 094002

1.4GeV Protons Extraction electrode Extraction optics Mass separator Proton lon 5 Target unit Source 2000 °C +/- 8V 500 A Transfer 3 (pulsed) 6 line Protons 🕅 1 GeV p up to **2300 °C** 20 cm $\frac{1}{1000}$ A Target heating (1 – 2kW), <~10% beam power

- Production
 Ionization
 Diffusion
 Mass Separation
- 3. Effusion 6

Beam Intensity = σ . j. N_t . ε

- $\varepsilon = \varepsilon_{diff} \varepsilon_{eff} \varepsilon_{is} \varepsilon_{sep} \varepsilon_{trans}$
- N_t Nr of exposed atoms [dim] j – Proton flux [cm⁻²] σ – Cross section [mb]

Adapted from

J. P. Ramos | 17/09/2018

EMIS2018

199192

ε – Efficiency [%]

ISOLDE Radioactive beams

https://isoyields2.web.cern.ch/lsoldeYieldChart.aspx

J.Ballof et.al, Nuclear Inst. and Methods in Physics Research B 463 (2020) 211

La

Cs

Та

Re

23.10.2013 v0.06 • all

w

Ir Pt

▼ all

Ra Cn

V · PSE none V

Os

Rn

Uu

Juh

Fm Md No Lr

boiling/melting points vs. ISOLDE Yields

field (µC⁻

Molecular Beams – Why?

- Beam purification
 - Shift the mass region to a higher mass
 - avoid isobaric contaminants. e.g. GeS, SnS, SeCO, LaO
- Beam extraction by *In-situ* volatilization
 - Elements with very low volatility are not released
 - Reactive elements can be chemically trapped

Physics with radioactive molecules

Article

Spectroscopy of short-lived radioactive molecules

https://doi.org/10.038/h41586-020-2290-4 Received.24.July 2010 Received.24.July 2010 Received.24.July 2010 R. P. de Grocole¹, S. Francho¹, C. Homagn¹, T. E. Golsen¹, R. P. de Grocole¹, S. Francho¹, T. Routste¹, S. Roby, T. Homagn¹, T. E. Golsen¹, R. P. de Grocole¹, S. Francho¹, T. R. Unstatovi, S. Roby, H. Shaw², A. Koszorok¹, R. P. de Grocole¹, S. Francho¹, T. R. Ustatovi, S. Roby, H. Shaw², A. Koszorok¹, R. P. de Grocole¹, S. Francho¹, L. Schwikhard¹, A. R. Verson¹, K. D. A. Wend¹, F. Wietholtz¹, S. G. Wilkine¹ & K. Tang¹

(biased example)

https://web.mit.edu/radiomolecules/

Jochen Ballof | ISOLDE Workshop | 5.DEC.2017 (modified)

Optimize reaction conditions

- target material
 - U vs. Th
 - Metal vs. Carbide vs. Oxide
- target microstructure
 - Investigate nano materials , stabilize nanostructure
- Reactive gas type
 - (O, F, S, ...)
- Reaction conditions
 - Concentrations, temperatures

In-target production

Thorium vs Uranium

FLUKA Simulations: : Joao Pedro Ramos

Nanomaterials

• Study effects of reactive gas to actinide nano materials

Adopted from João Pedro Ramos | 07/09/2017 MEDICIS-Promed Specialized Training on Radioisotope Production

Ionization / molecular formation techniques

- Surface ->In target molecular, BaF, RaF
- Plasma (FEBIAD/VADIS) -> BeF2, TiF3, SeCO
- E-impact : Mo(CO)6
- Direct laser -> ionization LaF, RaF (to be tested YOL2, GPS) See talk to
 - See talk by S.Wilkins

- Photochemistry -> hints seen with Ac/AcO, U/UO - Isotope selective ?
- In-trap formation :
 - U+ -> UO+ seen in ISOLTRAP's RFQ.
 - RFQcb@YOL2, ISCOOL@ISOLDE
 - Addition of reactive gas to promote molecular species

c.f.: M. Fan et al, 2021, Optical mass spectrometry of cold RaOH+ and RaOCH3+

- laser access, study breakup / photochemistry

Example: Boron beams at ISOLDE

Y. Martinez Palenzuela, Thesis (https://lirias.kuleuven.be/handle/123456789/636675)

J. Ballof, 2019, Radioactive boron beams produced by isotope mass separation at CERN-ISOLDE, <u>Eur. Phys. J. A 55 (2019) 65</u>

Refractory Metal Carbonyl beams

Extraction as complex compounds

e.g. Mo + 6 CO \rightarrow M \circ (C \circ)₆

	т	IS		DF	- P	eri	odi	ic t	ah	le (of e	ale	me	ente	2		
1					•••		u		un			510		// / (2
н																	Не
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	ο	F	Ne
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
к	Са	Sc	Ті	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
55	56	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ТΙ	Pb	Bi	Ро	At	Rn
Ava	railable Beams Unavailable Beams Forms Carbonyl Forms CO-Compound										bund						

 $Mo(CO)_6$ is fragile:

- Decomposition in beam induced plasmas
- Using a neutron converter to reduce charged particle fluence

Refractory Metal Carbonyl beams

. Cu – improved heat dissipation Thermo couples Dedicated Experiment to study formation and decomposition of carbonyls at ISOLDE Neutron converter rod (tungsten) Sample Assembly with robot handle PEEK gas containers Handle for the sample with KF clamping assembly Swagelok Angle Valves (radiation hard) **Neutron Converter** and Stäubli RBE03 quick connectors Inside view of the casserole Thermocouples CAREONYL Casserole under vacuum IRRADIATION Beam window J.Ballof

Holder

Photocathode source

VADIS source at ambient temperature Photon-induced electron generation

Motivation

- Ionization of fragile molecules
- No decomposition on hot surfaces
- Diagnostic tool to measure ionization properties

Set up

J. Ballof, D. Leimbach, B.A. Marsh, A. Ringvall-Moberg, S. Rothe, T. Stora, S. Wilkins

First Results: Mass spectrum of Mo(CO)₆ + Kr

Two operation modes found

"Photo cathode"	Direct laser breakup
Anode biased	Anode off
Magnet 6A	Magnet off
Krypton ionized	Krypton not ionized
Mo(CO)3 predominant	Mo(CO)5 predominant

Studying molecular beam formation

Concept for a dedicated development unit for molecular beams

Study chemical reactions

- Injection of gases and vapor of solid samples into reaction volume
- Suppression by quartz and other materials

Parameters

- 2 gases, controllable flow rates
- 2 mass markers
- Controllable temperatures in reaction volume and chromatography column
- Materials for chromatography and
- Materials in reaction volume (target matrix)

RGA

Studying molecular beam formation

Concept for a dedicated development unit for molecular beams

First prototype for reaction chamber tested at YOL1

V.Samothrakis, M.Ballan, J.Ballof, D.Leimbach, B.Crepieux, S.Rothe et al.

ISOLDE target at MIRACLS PoP

LISA – Laser Ionization and Spectroscopy of Actinides

ESRs at ISOLDE-CERN

Bianca Reich	Mi		
ESR 02	ESR		
Development of high-resolution in- source hot-cavity RILIS methods for	Targe		

ia Au

Deve sour actinides.

et developments for extraction of actinides from thick ISOL targets followed by laser-induced molecular break-up and/or ionization.

https://lisa-itn.web.cern.ch

LISA - Laser Ionization and Spectroscopy of Actinides. This Marie Sklodowska-Curie Action (MSCA) Innovative Training Networks (ITN) receives funding from the European Union's H2020 Framework Programme under grant agreement no. 861198

Copyright © 2021 CERN

Pre-irradiated targets (June 2021), M.Au et al.

RILIS run

Start of protons for physics: 21 June End of protons for physics 15 November <u>1. #638-UC-Re:</u>

- Target irradiated end of run2 at ISOLDE (2018) before LHC long shutdown 2 (LS2)
- Preparation of July TISD beam time
- Test single ion detectors
- Tune to ISOLTRAP MR-ToF

Letter of Intent: Radioactive molecules at ISOLDE: NTC I-227 (http://cds.cern.ch/record/2748712)

Radioactive molecules at ISOLDE (June 2021)

Photochemistry ?, tbc.

Installation of TISD chamber with MagneToF detector and signal plate at ISOLDE GLM

M.Au et.al

Radioactive molecules at ISOLDE (June 2021)

Atomic actinide beams (transuraniums : Np, Pu) Identified at ISOLTRAP MR-ToF

RILIS lab at ISOLDE set up for fast switching between two-step ionization schemes for actinides

Offline molecular beam development (YOL1)

- Targets and material samples
- Gas injection: NF₃, CF₄, SF₆
- Ion sources: surface, plasma, RILIS
 - Direct ionization
 - Dissociation ionization
 - Thermal dissociation
- Reaction condition studies

An ISOLDE target and ion source unit with gas injection

Two target units in a glove box for sample exchange

ISOLDE PUMP STAND

ISOLDE OFFLINE 1 (YOL1)

LaC is pyrophoric !

Offline molecular beam developments (YOL2)

- 1) In-source laser spectroscopy of stable molecules
 - Laser lab is ready
 - magneToF installed .
 - LaF target ready #712
- 2) In-trap molecular formation/dissociation
 - Laser access to trapped region
 - gas system upgrade underway
 - ! detection and identification after creation in REQcb
 - Design ongoing
 - Seed funding received !

2021 ~Wien filter

MR-ToF

Laser Room @ YOL2

https://home.cern/news/news/experiments/isoldes-new-offline-2-source-nears-completion

From: A.Ringvall et.al, (to be published)

M.Athanasakis-Kaklamanakis, M.Au et.al

M. Fan et al, 2021, Optical mass spectrometry of cold RaOH+ and RaOCH3+

25 A. Ringvall Moberg et al, 2020, Time-of-Flight study of molecular beams extracted from the ISOLDE RFQ cooler and buncher

HRS, GPS, YOL2 gas systems

Hardware installed and tested, expert CTRL ready.

Radioactive molecules at ISOLDE: target and ion source development (TISD) campaign (**M.Au** et al.)

Start of protons for physics: 21 June End of protons for physics 15 November

Letter of Intent: Radioactive molecules at ISOLDE: NTC I-227 (http://cds.cern.ch/record/2748712)

See talk by S.Wilkins Np 1. #637-UC-W: ____AI. 50533.30954 cm⁻ 50536.3 cm RaF in-source laser spectroscopy 746.43 nm 13397.104 cm⁻¹ 2. #713-UC-VD5: 37136.2 cm⁻¹ 829.12 nm Actinide fluoride production, 12060.98 cm⁻¹ 25075.226 cm⁻¹ identification and laser manipulation CF4 injection 398.8 nm 25075.226 cm⁻¹ Identification via decay station or ISOLTRAP MR-ToF 0 cm⁻¹ DILIS databas RILIS run Single ion detection at GLM e.g. NpF6 beamline **BP: 55C** Possible **laser ionization**, probing of dissociation

Check for 229Pa ! ③

ISOLDE first radioactive beams after LS2 - June 2021

