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Machine learning for ultracold quantum dynamics



Predictions of scattering lengths 

Identification of resonances

Feasibility of sympathetic/evaporative cooling

Understanding collision losses

Ultracold chemistry

Understanding collisional decoherence

Quantum scattering theory is critically important for 
ultracold physics



Atomic/molecular collisions are extremely sensitive to 
interaction potentials

External fields are non-perturbative

Converged calculations of molecular dynamics require 
large basis sets

Time-dependent quantum dynamics difficult to apply

However, scattering calculations – particularly at low 
temperatures – are challenging

J. Huang, S. Liu, D. H. Zhang, and R. V. Krems, Time-dependent wave packet 
dynamics calculations of cross sections for ultracold scattering of molecules,
Phys. Rev. Lett 120, 143401 (2018)



Measurements of resonances        

scattering lengths

bound state energies

fine and hyperfine structure couplings

Trap loss / collision cross sections

reactive potential surfaces

long-range interactions

Often, one needs to solve the equivalent of inverse problems



Inverse problems are difficult … especially for complex 
molecules

+



Direct problems: 

PES always come with errors

How to determine the effect of errors in PES on
predictions of dynamical observables? 

+ =    ?



Average over variations of the PES

Jie Cui and RK, Phys. Rev. A 88, 042705 (2013). 
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Error bars are obtained by simple 
scaling of PES

But this does not account for errors
in anisotropy

Required: 
analysis of scattering observables
as functions of strength and topology
of PES

Particularly important 
for polyatomic molecules!



Average over variations of the PES

Jie Cui and RK, Phys. Rev. A 88, 042705 (2013). 
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Error bars are obtained by simple 
scaling of PES

But this does not account for errors
in anisotropy

Required: 
analysis of scattering observables
as functions of strength and topology
of PES
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Inverse problems: 

High-dimensional problems for complex species 

How to obtain PES from measured observables?

+ =    ?



I will show that and how these challenges 
can be addressed with machine learning!



Electronic structure calculations

Parameters relevant for 
experiments (energy, angular 
momentum, fields)
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and are non-parametric probabilistic ML models



Traditional approach:  

Treat atomic/molecular dynamics as evolving on 
a well-defined precomputed PES 

Our approach:

Treat atomic/molecular dynamics as evolving on 
a non-parametric series of PES that is conditioned 
by observables





Neural networks

Require Big data
Often challenging to train

“…suffering is a perfectly natural part of getting a neural network to work 
well…” – Andrej Karpathy, https://karpathy.github.io/2019/04/25/recipe/

In physics

Data come from the solutions of complex equations 
or from experiments

Data are expensive
The focus should be on making physical predictions based on 

small data 
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https://karpathy.github.io/2019/04/25/recipe/


Deterministic neural networks cannot be used for problems with 
small data

Another way to make predictions is Probabilistic Modelling

It is at the core of Bayesian machine learning
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If the number of hidden neurons is taken to infinity, a Bayesian 
neural network becomes a Gaussian process
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Gaussian processes are determined by  a mean function and a 
covariance function (aka kernel function)
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Gaussian processes are determined by  a mean function and a 
covariance function (aka kernel function)

Choosing the proper kernel function is key to the performance 
of the models!



Choosing the proper kernel function is key to the performance 
of the models!

Check these papers on how to build the best kernels for physics 
applications:

R. Vargas, J. Sous, M. Berciu and R. V. Krems,  Phys. Rev. Lett. 121, 
255702 (2018)

Jun Dai and R. V. Krems, J. Chem. Theory Comp. 16, 1386 (2020). 



How many potential energy points does one need to know to describe the reaction?



How many potential energy points does one need to know to describe the reaction?

Unknown 
Theory

Parameters
Observable

Theory

H = E 



Quantum scattering calculation

Black curve – using an analytic 
fit of the PES based on 8700 calculations

Red curve – using a GP 
model
based on 30 calculations

R. V. Krems, Bayesian Machine Learning for Quantum Molecular Dynamics, PCCP 21, 13992 (2019)

Rodrigo Vargas, Yafu Guan, Dong Hui Zhang and RK, Bayesian optimization for the inverse scattering problem 
in quantum  dynamics,  New J. Phys. 21, 022001 (2019)



+ =    ?

This is a problem with a high-dimensional Hamiltonian!

We want to solve it with very few quantum calculations

To do that, we need to be able to solve extrapolation problems

Hamiltonian parameters
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Phase	I

Phase	II

Phase	III

Hamiltonian parameters

Rodrigo Vargas, John Sous, Mona Berciu and R. V. Krems, Phys. Rev. Lett. 121, 255702 (2018)
Jun Dai and R. V. Krems, J. Chem. Theory Comp. 16, 1386 (2020)



Rodrigo Vargas, John Sous, Mona Berciu and R. V. Krems, Phys. Rev. Lett. 121, 255702 (2018)
Jun Dai and R. V. Krems, J. Chem. Theory Comp. 16, 1386 (2020)

Heisenberg spin model



Choosing better kernels not only makes extrapolation possible, 
but also allows models to extrapolate farther

Choosing better kernels is like replacing spectacles with binoculars 
when it comes to quantum phase diagrams

Generalized polaron model

Rodrigo Vargas, John Sous, Mona Berciu and R. V. Krems, Phys. Rev. Lett. 121, 255702 (2018)



Extrapolation of potential energy surfaces
Six-dimensional surface for H3O+

Jun Dai and RK, J. Chem Theory Comp. 16, 1386 (2020)



Jun Dai and RK, J. Chem Theory Comp. 16, 1386 (2020)

Extrapolation of potential energy surfaces
Six-dimensional surface for H3O+



What about higher-dimensional problems?



51 dimensions

Hiroki Sugisawa, I. Sato and RVK, J. Chem. Phys. 153, 114101 (2020)
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Hiroki Sugisawa, I. Sato and RVK, J. Chem. Phys. 153, 114101 (2020)



This allows us to compute things we couldn’t imagine 
just a few years ago… Work of Hiroki Sugisawa

Wave function of H5O3
- at the MP2 quantum chemistry level

Direct approach: 220 years on a single core of Intel i7-9700K
Our approach: 8 days



• Quantum dynamics calculations for complex 
systems are difficult

• Such calculations must rely on approximations
• Can the results of approximate quantum 

calculations be corrected by machine 
learning?

A. Jasinski, J. Montaner, R. C. Forrey, B. H. Yang, P. C. Stancil, N. Balakrishnan, 
R. Vargas-Hernandez, J. Dai and R. V. Krems, PRR 2, 032051 (2020)

Same models can be used for transfer learning



A. Jasinski, J. Montaner, R. C. Forrey, B. H. Yang, P. C. Stancil, N. Balakrishnan, 
R. Vargas-Hernandez, J. Dai and R. V. Krems, PRR 2, 032051 (2020)
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Sensitivity of observables to interaction PES, 
and their errors. [Jie Cui and RK, PRL 115, 073202 (2015)]

Machine learning for quantum dynamics:

Inverse quantum problems 
[R. Vargas-Hernandez, Y. Guan, D. H. Zhang, and RK, NJP 21, 022001 (2019)]

Enhancing the accuracy of approximate dynamical 
calculations [A. Jasinski et al, PRR 2, 032051 (2020)]

Extrapolation in Hamiltonian parameter spaces
[R. Vargas-Hernandez, J. Sous, M. Berciu and RK, PRL 121, 255702 (2018)]

More references at https://groups.chem.ubc.ca/krems



Roman Krems University of British Columbia

https://groups.chem.ubc.ca/krems


