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Isotope Shift - Open questions

• What elements can be more easily studied in molecular form?
• What can we learn from !!" and !"!?
• Can we do systematic studies of spin dependent effects along isotopic 

chains?
• Can we use isotope shift in molecules to search for new forces and 

particles (e.g. King plot non-linearities)? What are the advantages 
compared to atoms?
• More transitions
• More sensitivity to lighter mediators 



Isotope Shift – King plot nonlinearity 
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Isotope Shift – King plot nonlinearity 

#!!"

I. Counts, et al., “Evidence for nonlinear isotope shift in Yb+ 

search for new boson,” Phys. Rev. Lett. 125, 123002 (2020).
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Isotope Shift – King plot nonlinearity 

##$RaF − ##%RaF
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High Resolution spectroscopy of !!"RaF
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P-branch (ΔJ = −1)

Q-branch (ΔJ = 0)

R-branch (ΔJ = 1)

/#Π&/# ← 2#Σ(



Results (R-branch)
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Results (Q-branch)
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• How can we increase the population in the 
vibrational ground state after the neutralization 
cell? Cryogenic neutralization cell?

Garcia Ruiz, Berger et al. CERN-INTC-2018-017 (2018)
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• How can we increase the population in the 
vibrational ground state after the neutralization 
cell? Cryogenic neutralization cell?

• How can we further reduce the background? 
Perpendicular ionization step? Detecting electrons?

• What is the best way to decelerate and cool the 
molecules? Is it advantageous to use negative 
molecular ions?

Garcia Ruiz, Berger et al. CERN-INTC-2018-017 (2018)
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Outlook (Long-term)

• Experimental demonstration of trapping and laser cooling of RaF
• Searches for new particles and forces (e.g. King non-linearity in 

isotope shift measurements)
• Measurement of hadronic parity violation (anapole moment)
• Searches for P,T-odd effects (e.g. electron EDM, Nuclear Shiff

moment, MQM)
• What else?
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Thank you!
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Backup slides
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3 GHz50 MHz
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Predicted rotational spectrum

Gerhard Herzberg, The spectra and structures of simple free 
radicals: an introduction to molecular spectroscopy (Courier 
Corporation, 1988).
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Measured Isotope Shift
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A4Π (Hund case a)

X4Σ (Hund case b)

RaF Hamiltonian

Centrifugal corrections: DJ4 J + 1 4
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γ = −2B%Δg& [1]

- = −2.'

Parameters needed:
• Ground electronic state:
• B% – free parameter [1]
• D% – low resolution data 
• 0 – theory 

• Excited electronics state:
• B( – high resolution data 
• D( – low resolution data 
• p – theory 
• T – low resolution data 

2 = 4.#
4!

Fitting procedure

Constraints:

[1] TA Isaev and R Berger, “Lasercooled radium monofluoride: A 
molecular all-in-one probe for new physics,” arXiv preprint 
arXiv:1302.5682 (2013). 61



Parameters needed:
• Ground electronic state:
• B7 – free parameter
• D7 – low resolution data 
• + – theory 

• Excited electronics state:
• B8 – high resolution data 
• D8 – low resolution data 
• p – theory 
• T – low resolution data 

-9(:54) − 2-9 :5! + -9 : = 2(2; − 2<)

Fitting procedure

Constraints:
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!!#RaF
• Fine structure similar to ##)RaF → small isotope 

shift corrections 

Can be ignored

Non-zero only in Π&/# state

Can be ignored
⇒ 8 parameters

P-branch R-branch

2 shifts for Q-branch 1 − 2 cm*&
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Resonant ionization scheme

• Resonant laser:
• Dye laser (pulsed)
• 10 GHz (0.3 cmB!) linewidth
• 100 µJ

• Ionization laser:
• Nd:YAG laser (3rd harmonic)
• % = 355 nm
• 100 Hz repetition rate
• 30 mJ

RF Garcia Ruiz, et al., “Spectroscopy of short-lived radioactive 
molecules,” Nature 581, 396–400 (2020). 66



Resonant ionization scheme

• Resonant laser 1
• Injection seeded
• 50 MHz linewidth
• 200 µJ

• Resonant laser 2
• PDL
• 30 GHz linewidth
• 1 mJ
• % = 15496 cmB!

• Ionization laser
• Nd:YAG laser 
• % = 532 nm
• 30 mJ



• Increased sensitivity to P-odd, T-even effects

Why Radium Monofluoride (RaF)?

68



• Increased sensitivity to P, T-odd effects

Why Radium Monofluoride (RaF)?

69



70

Experimental Setup
Hot molecules ⇒ Doppler broadening
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Isotope Shift of RaF - Results
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K. Gaul, R. Berger

Isotope Shift – King plot nonlinearity 
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