EDM Experiments vs TeV-Scale New Physics

Matt Reece Harvard University June 28, 2021

Based on: arXiv:2104.02679 with Daniel Aloni, Pouya Asadi, Yuichiro Nakai, Motoo Suzuki

Question

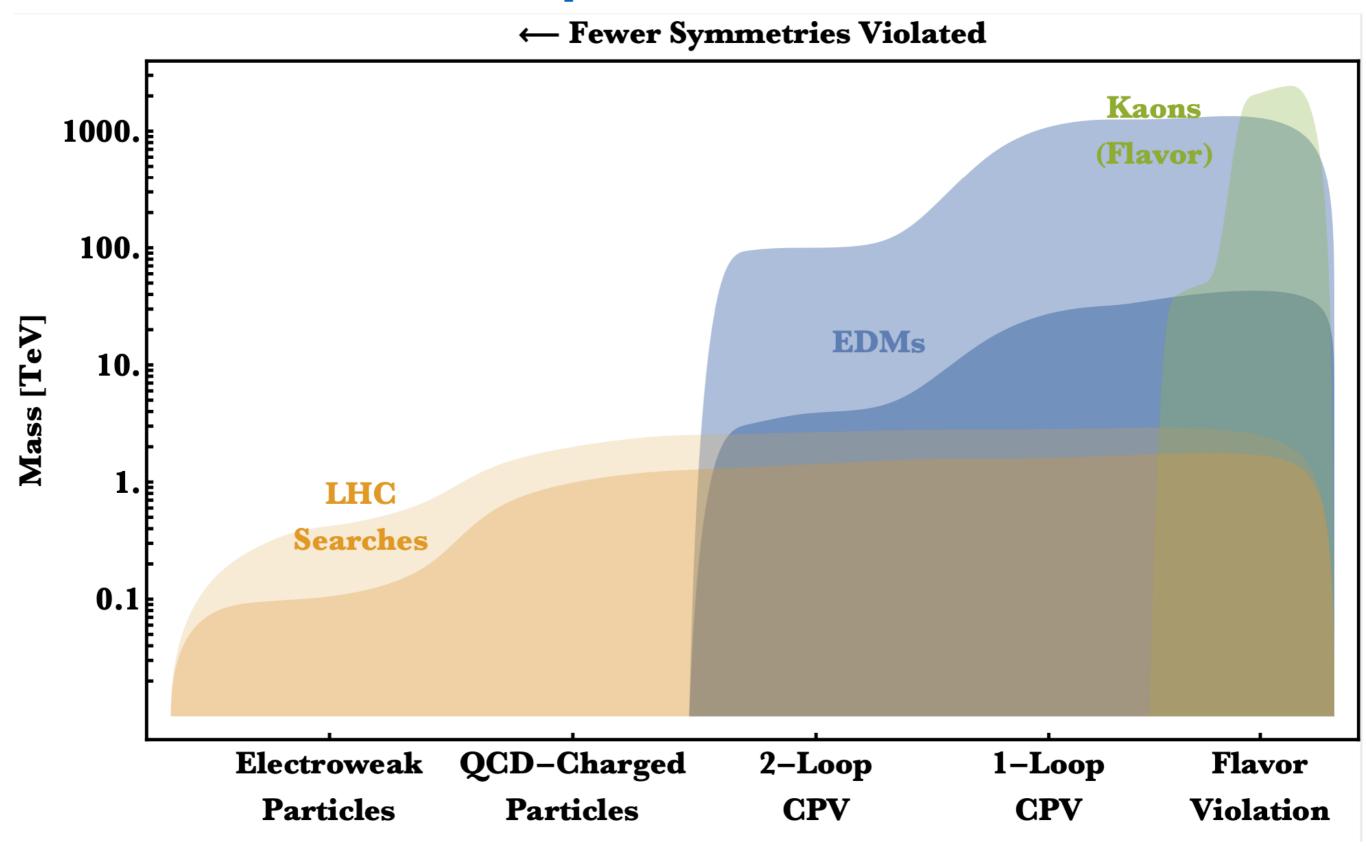
Electron EDM experiments are now probing mass scales well above 1 TeV.

Colliders and muon g-2 experiments are looking for particles around 1 TeV.

Are EDM experiments bad news for such searches?

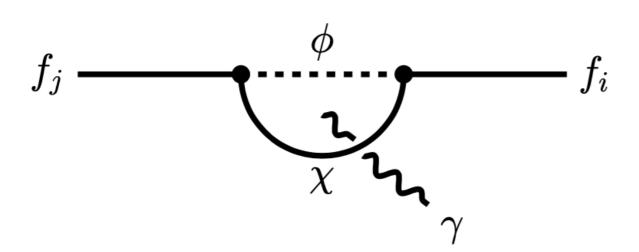
To answer this, we should think more about the fundamental physics of **CP** and **flavor**.

Mass Reach Comparison: A Cartoon



from discussions with John Doyle, 2017

Lepton Dipole Operators



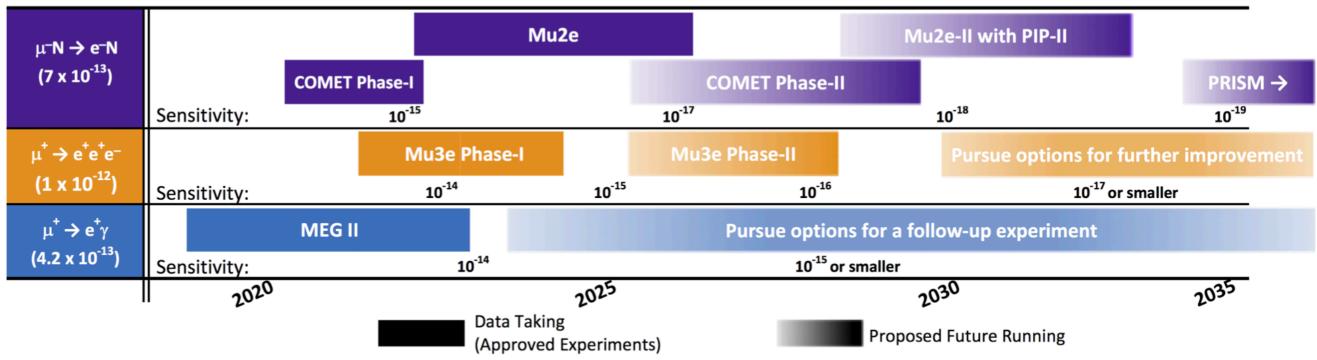
- Electron EDM
- f_i Muon g-2

 - $\mu \rightarrow e \gamma$ $\tau \rightarrow \mu \gamma, \tau \rightarrow e \gamma$

If we see new physics in one of these, do we expect to see new physics in all of these?

Is new physics in muon g-2 already excluded? E.g., by lack of new physics in the electron EDM?

Charged Lepton Flavor Violation



Source: Baldini et al., 1812.06540, submission to 2020 European Strategy from COMET, MEG, Mu2e and Mu3e collaborations

Comparisons: Flavor & CP Observables

Observable	Current bound	Current Λ (TeV)	Future reach	Future Λ (TeV)
eEDM	$1.1 \times 10^{-29} e \mathrm{cm}$	1.0×10^{3}	$\sim 10^{-32} e {\rm cm}$	3.3×10^{4}
$BR(\mu \to e\gamma)$	4.2×10^{-13}	57.	$\sim 10^{-14}$	1.5×10^{2}
$R(\mu N \to eN)$	$7 \times 10^{-13} \text{ (Au)}$	12.	$\sim 10^{-17} \text{ (Al)}$	1.8×10^{2}
$BR(\mu \to 3e)$	10^{-12}	13.	$\sim 10^{-16}$	1.3×10^{2}

Bound based on
$$c_{ij} = \frac{eg^2}{16\pi^2} \frac{m_{\mu}}{\Lambda^2}$$

Comparisons: Flavor & CP Observables

Observable	Current bound	Current Λ (TeV)	Future reach	Future Λ (TeV)
eEDM	$1.1 \times 10^{-29} e \mathrm{cm}$	1.0×10^{3}	$\sim 10^{-32} e {\rm cm}$	3.3×10^{4}
$BR(\mu \to e\gamma)$	4.2×10^{-13}	57.	$\sim 10^{-14}$	1.5×10^{2}
$R(\mu N \to eN)$	$7 \times 10^{-13} \text{ (Au)}$	12.	$\sim 10^{-17} \text{ (Al)}$	1.8×10^{2}
$BR(\mu \to 3e)$	10^{-12}	13.	$\sim 10^{-16}$	1.3×10^{2}

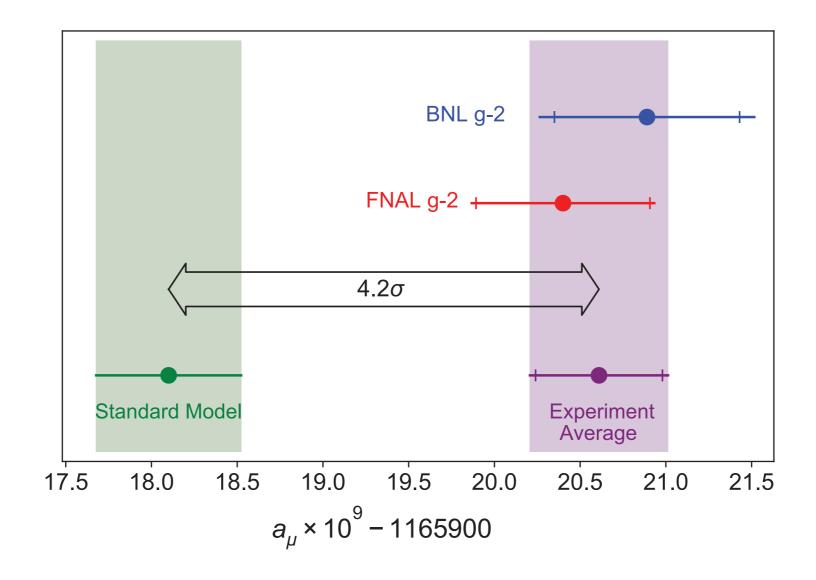
Bound based on

$$c_{ij} = \frac{eg^2 \left(m_{\mu}\right)}{16\pi^2 \Lambda^2}$$

Somewhat arbitrary choice! *Not* MFV. Rough attempt at apples-to-apples comparison.

Models of flavor/CP change which are best.

Fermilab's Update on Muon g-2



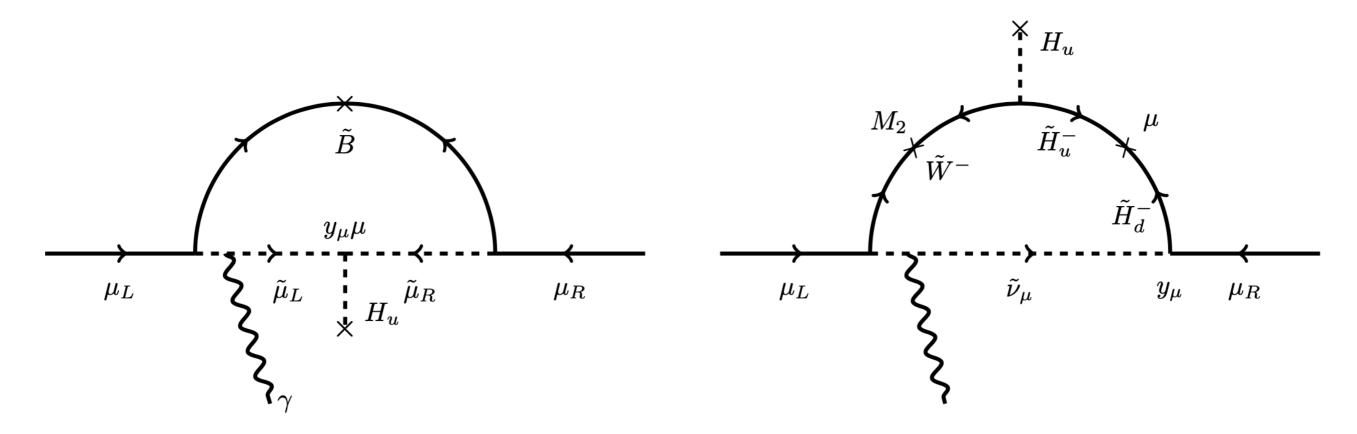
LHC Run 3 should be targeting electroweak physics (e.g. sleptons/charginos/neutralinos in SUSY, but more generally). But *not ruled out yet*.

Muon g-2 and SUSY

Basic dimensional analysis: new physics around weak scale!

$$\Delta a_{\mu} \sim \left(\frac{g^2}{8\pi^2}\right) \left(\frac{m_{\mu}}{M_{\rm BSM}}\right)^2 \sim 2.5 \times 10^{-9} \Rightarrow M_{\rm BSM} \sim 150 \text{ GeV}$$

e.g., from smuon/bino or sneutrino/chargino loops:

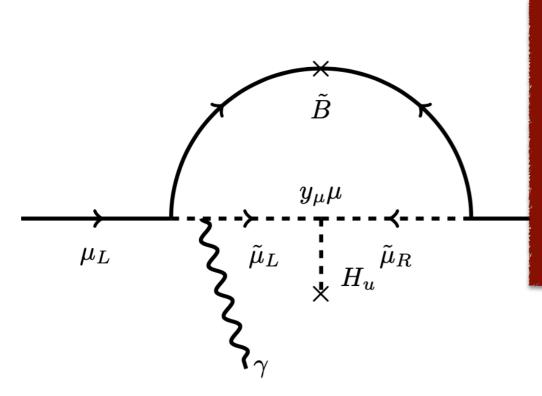


Muon g-2 and SUSY

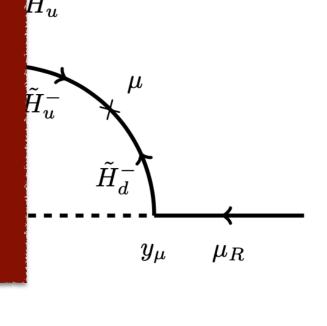
Basic dimensional analysis: new physics around weak scale!

$$\Delta a_{\mu} \sim \left(\frac{g^2}{8\pi^2}\right) \left(\frac{m_{\mu}}{M_{\rm BSM}}\right)^2 \sim 2.5 \times 10^{-9} \Rightarrow M_{\rm BSM} \sim 150 \text{ GeV}$$

e.g., from smuon/bino or sneutrino/chargino loops:

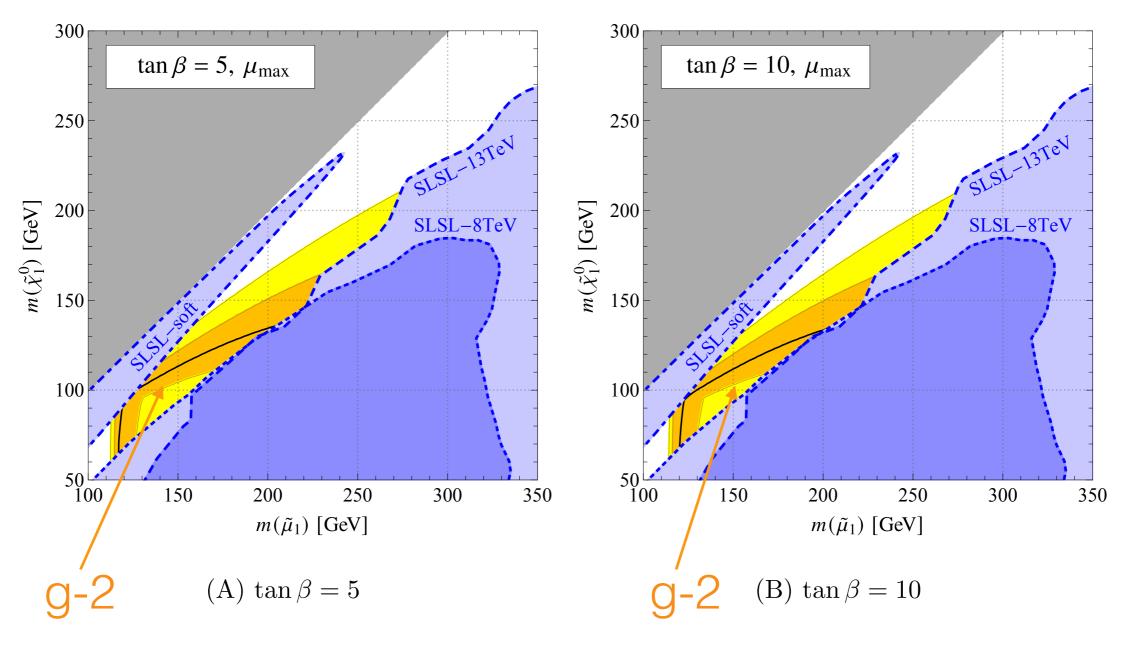


Much lower scale than electron EDM, $\mu \rightarrow e \gamma$ are probing! Consistent?



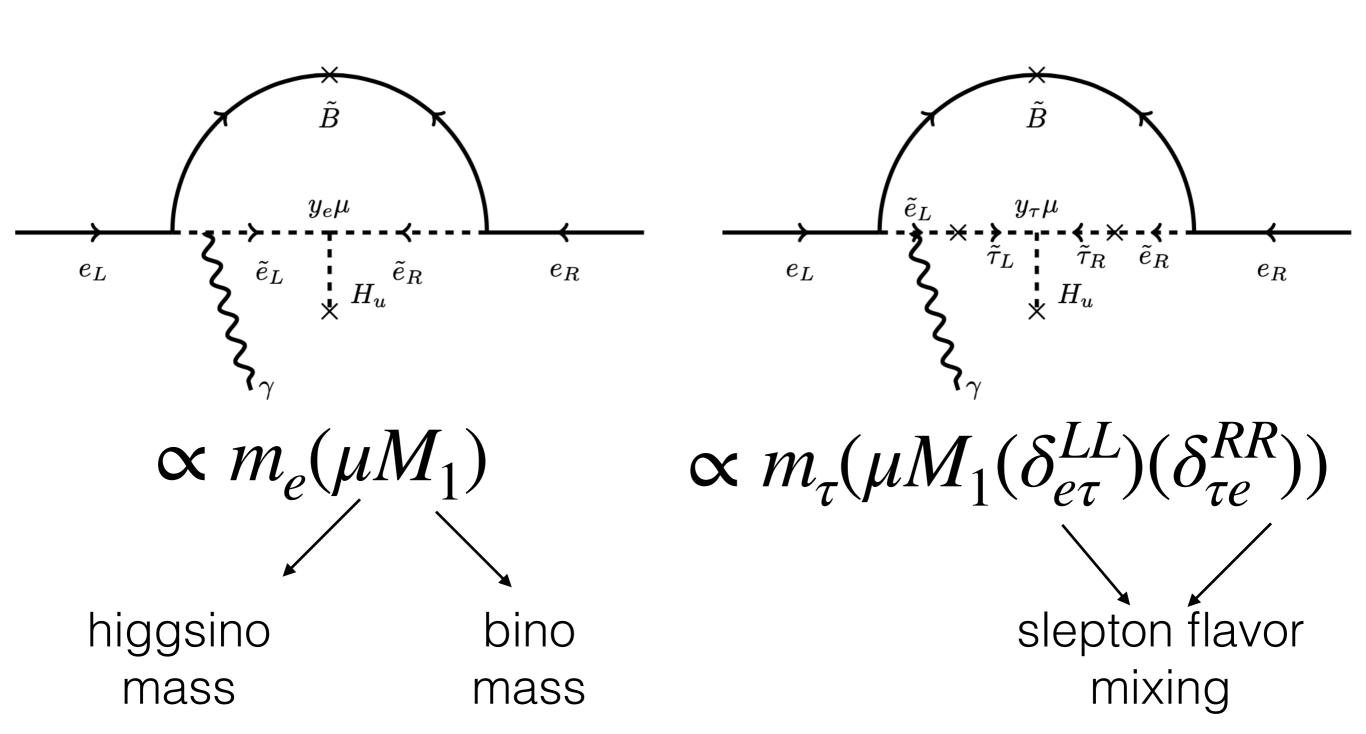
Example: bino dominated loop $\propto \frac{\alpha_Y}{4\pi} \frac{m_\mu^2 M_1 \mu}{m_{\tilde{\mu}_L}^2 m_{\tilde{\mu}_R}^2} \tan \beta$

smuons, bino Escapes LHC discovery so far.

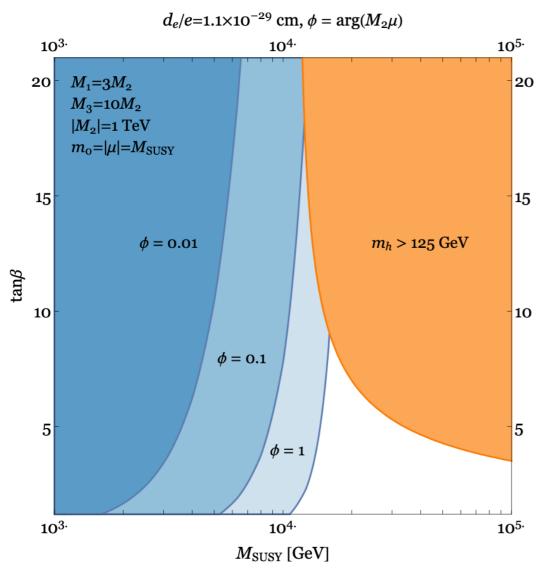


Endo, Hamaguchi, Iwamoto, Kitahara 2104.03217

CP Violation with and without Flavor Violation

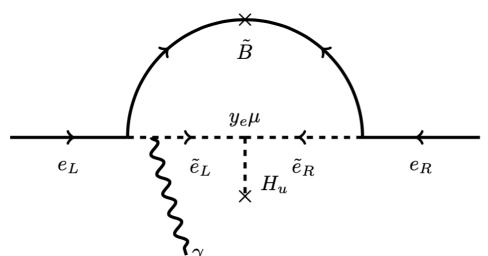


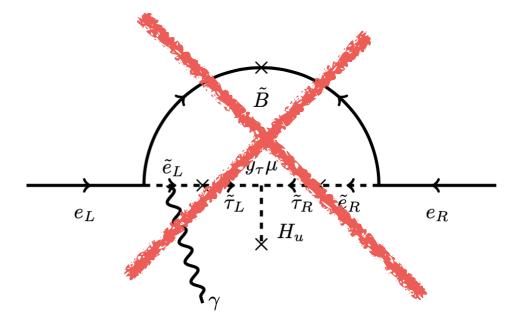
EDM Bounds with CP but no Flavor Violation



In the past, when estimating the mass scale probes by EDMs, I have generally assumed Minimal Flavor

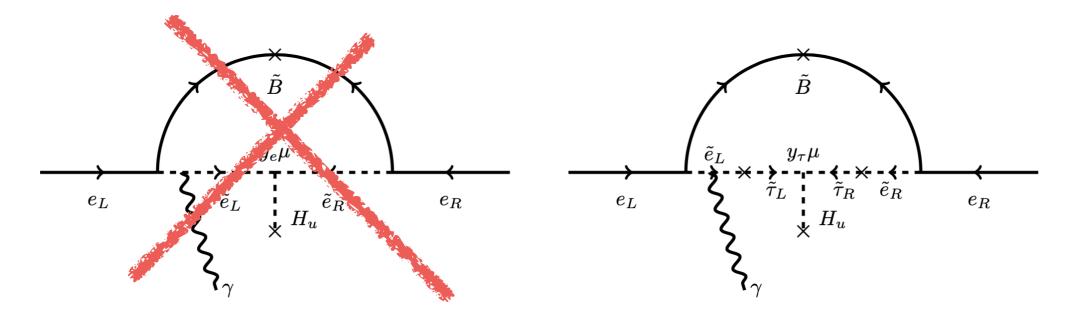
Violation, expecting flavor violation to usually make bounds *stronger*.





EDM Bounds with Correlated Flavor and CP Violation

However, in some models it may be the other way around: flavor-violating interactions can be the **dominant source of CP violation**.



To explain such a model, I should first review the notion of "horizontal symmetries."

Flavor puzzle

Patterns of masses and mixings

$$(Y_u)_{ij}(h \cdot q_i)\bar{u}_j + (Y_d)_{ij}h^{\dagger}q_i\bar{d}_j + (Y_e)_{ij}h^{\dagger}\ell_i\bar{e}_j$$

$${}_{(1,2)_{1/2}(3,2)_{1/6}(\bar{3},1)_{-2/3}} {}_{(1,2)_{-1/2}(3,2)_{1/6}(\bar{3},1)_{1/3}} {}_{(1,2)_{-1/2}(1,2)_{-1/2}(1,1)_1}$$

Mass eigenvalues in GeV:

173, 1.3, 0.002 4.2, 0.093, 0.005

1.8, 0.106, 0.0005

Three to five orders of magnitude spread. Mixings also very structured (in quark sector):

$$\begin{bmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{bmatrix} = \begin{bmatrix} 0.97370 \pm 0.00014 & 0.2245 \pm 0.0008 & 0.00382 \pm 0.00024 \\ 0.221 \pm 0.004 & 0.987 \pm 0.011 & 0.0410 \pm 0.0014 \\ 0.0080 \pm 0.0003 & 0.0388 \pm 0.0011 & 1.013 \pm 0.030 \end{bmatrix}$$

Froggatt-Nielsen models

One or more additional U(1) charges, different in different generations. ("Horizontal symmetry.")

Example:
$$H(h) = 0$$

 $H(q_1) = 3$, $H(q_2) = 2$, $H(q_3) = 0$
 $H(\bar{u}_1) = 4$, $H(\bar{u}_2) = 1$, $H(\bar{u}_3) = 0$

This allows only the top-quark Yukawa coupling,

$$(Y_u)_{33}(h \cdot q_3)\bar{u}_3$$

because it is H-neutral, explaining why the top is so heavy.

Froggatt-Nielsen models

Don't want to *completely* forbid other masses. Suppose the H-symmetry is *spontaneously broken* by the vacuum expectation value of a gauge-singlet scalar *S*:

$$H(S) = -1, \quad \frac{\langle S \rangle}{\Lambda} \sim \lambda \approx 0.2$$

In this way we can reproduce small masses/mixings, e.g., with our charge assignments:

$$c_{22} \left(\frac{S}{\Lambda}\right)^3 (h \cdot q_2) \bar{u}_2 \sim c_{22} \lambda^3 (h \cdot q_2) \bar{u}_2 \sim \mathcal{O}(1) \times (1.4 \text{ GeV}) c\bar{c}$$

$$c_{11} \left(\frac{S}{\Lambda}\right)' (h \cdot q_1) \bar{u}_1 \sim c_{11} \lambda^7 (h \cdot q_1) \bar{u}_1 \sim \mathcal{O}(1) \times (2.2 \,\text{MeV}) u \bar{u}$$

CP as a spontaneously broken symmetry

CP as a fundamental symmetry, spontaneously broken.

Not hard to arrange, e.g., supersymmetric example:

$$W = X(S_1\bar{S}_1 - \lambda^4) + Y(c_1S_2^4 + c_2S_2^3S_1^3 + c_3S_1^6)$$

$$\langle S_1 \rangle = \lambda^2$$
, $\langle S_2 \rangle^2 = \frac{-c_2 \pm \sqrt{c_2^2 - 4c_1c_3}}{2c_1} \langle S_1 \rangle^3 \sim e^{i \times \mathcal{O}(1)} \lambda^6$

Plays a role in some proposed solutions to the Strong CP problem (Nelson / Barr)

CP as a spontaneously broken symmetry

CP as a fundamental symmetry, spontaneously broken.

$$W = X(S_1 \bar{S}_1 - \lambda^2)$$

Not hard to arrange, e.g. Invariant, O(1) CPV phase when solving $W = X(S_1 \bar{S}_1 - \lambda^4)$ for minimum of potential.

$$\langle S_1 \rangle = \lambda^2, \quad \langle S_2 \rangle^2 = \frac{-c_2 \pm \sqrt{c_2^2 - 4c_1c_3}}{2c_1} \langle S_1 \rangle^3 \sim e^{i \times \mathcal{O}(1)} \lambda^6$$

Plays a role in some proposed solutions to the Strong CP problem (Nelson / Barr)

The Nir-Rattazzi Idea

CP as a fundamental symmetry, spontaneously broken, by VEVs of fields carrying flavor (horizontal) charge.

$$H(S_1) = -2$$
, $H(S_2) = -3$

Yukawa terms can acquire CPV phases, e.g.,

$$\left(\frac{S_2}{\Lambda}\right)(h\cdot q_i)\bar{u}_j$$
 allowed if $H(q_i)+H(\bar{u}_j)=3$.

Not hard to build a model that gets the CKM phase right.

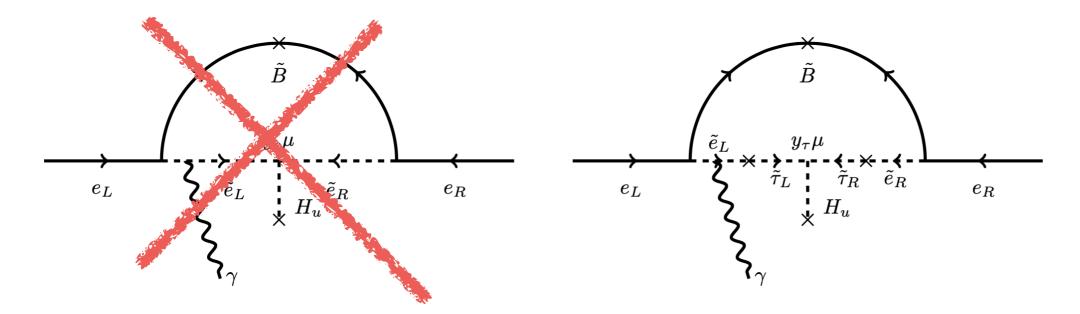
Yosef Nir and Riccardo Rattazzi, arXiv:hep-ph/9603233

Suppressed CPV without Flavor Violation

If CP violation comes only from flavor-violating VEVs, then flavor-conserving CPV is very suppressed.

$$\mu \sim \mu_0 \left[1 + \left(\frac{S_1^{\dagger}}{\Lambda} \right)^3 \left(\frac{S_2}{\Lambda} \right)^2 \right] \sim \mu_0 (1 + \mathcal{O}(10^{-9})i)$$

Can completely change expectations about relative size of EDM contributions, EDMs versus $\mu \to e \gamma$



Our Recent Work

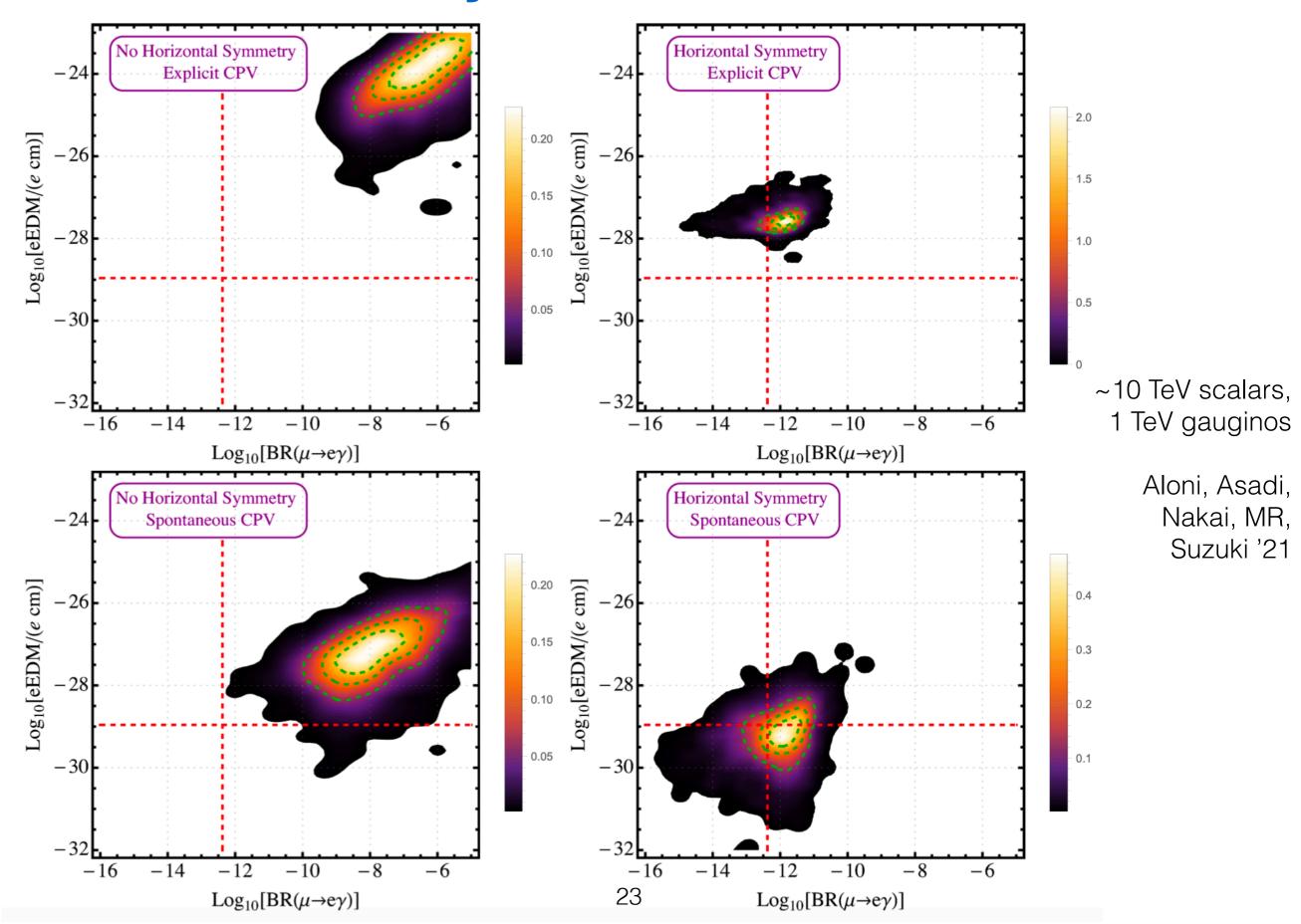
We have extended the Nir-Rattazzi idea to the **lepton** sector, including **Majorana neutrino masses**.

For horizontal charges that achieve the right pattern of masses and mixings, we can compute the electron EDM, charged lepton flavor violation, and muon g-2, and understand the relative reach.

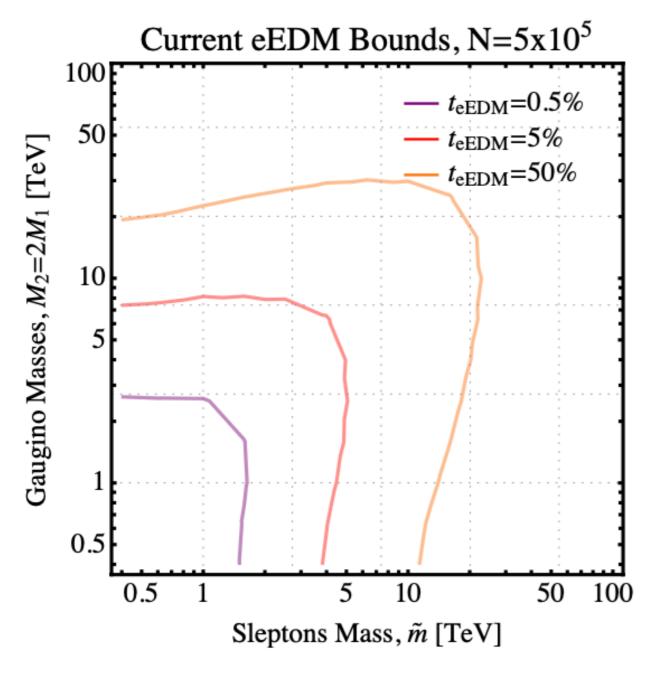
(Simplest models can't fit muon g-2 without substantial fine-tuning; work in progress achieves this.)

arXiv:2104.02679 with Daniel Aloni, Pouya Asadi, Yuichiro Nakai, Motoo Suzuki

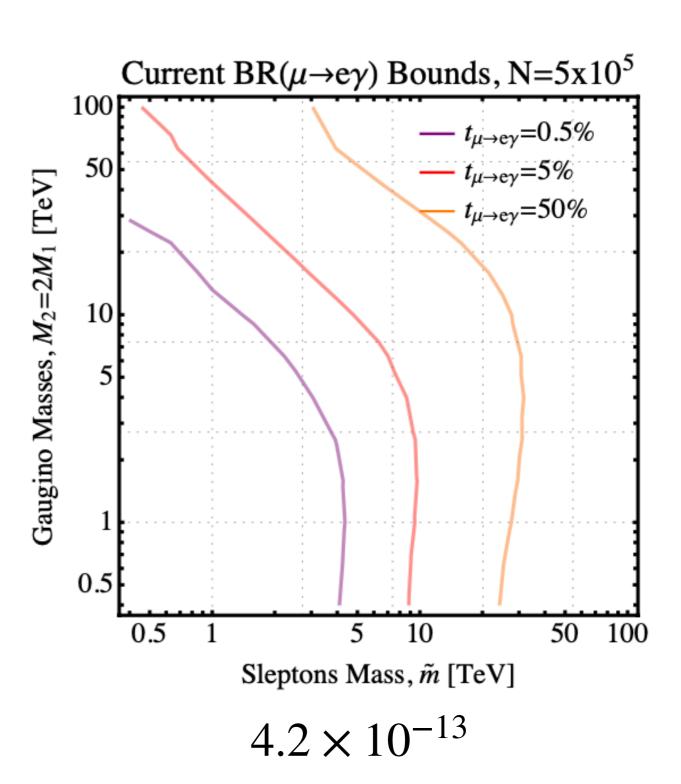
Flavor and CP symmetries



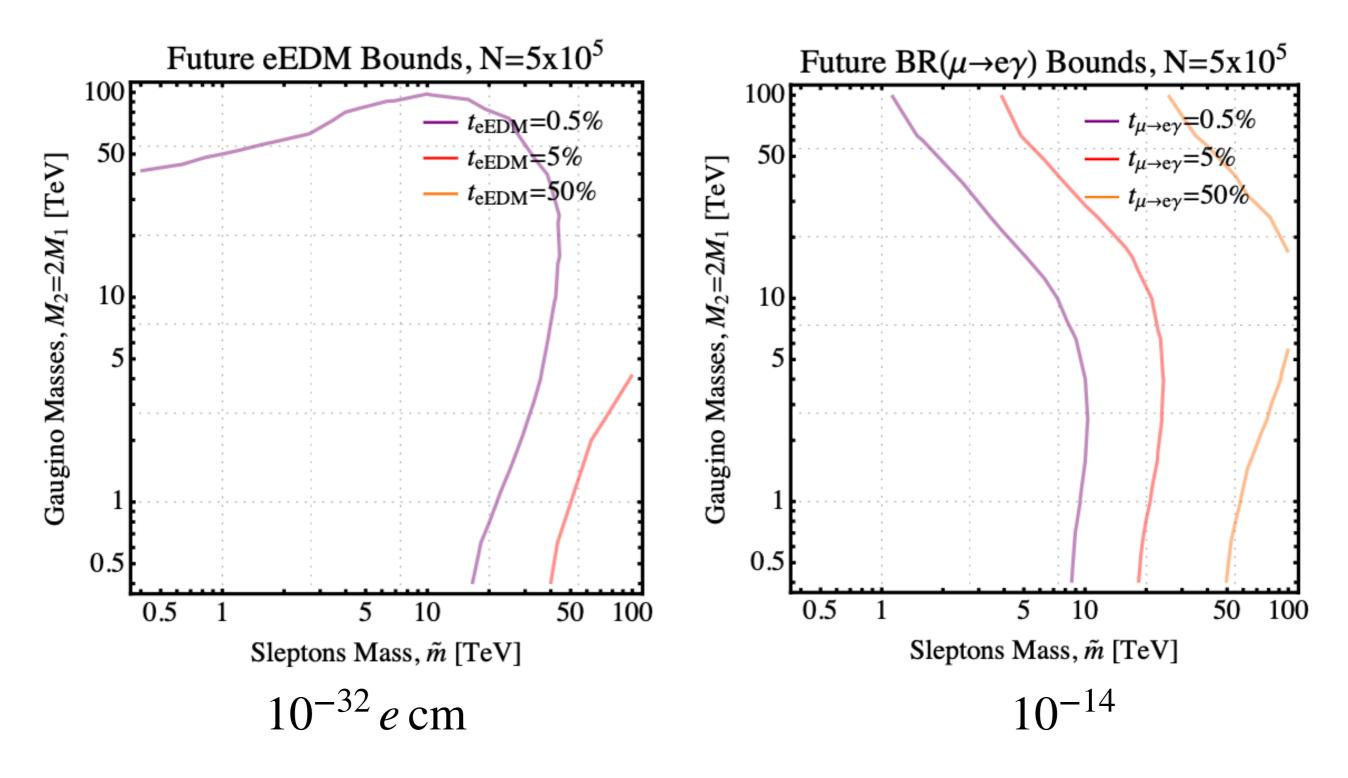
Current Bounds on a Flavor Model



$$1.1 \times 10^{-29} e \text{ cm}$$



Future Bounds on a Flavor Model



Note square-root vs. 1/4-power scaling

Conclusions

EDMs can arise from TeV-scale particles if both flavor and CP are spontaneously broken symmetries.

Conceptual questions: what does it mean for CP to be a gauge symmetry? Cosmological defects?

The coming ~decade of experiments could give rise to **correlated signals** in EDMs, g-2, $\mu \rightarrow e \gamma$, neutrino CP phase. Pattern as "fingerprint" of underlying fundamental physics.