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Conventional Wisdom in the Classification
of Atomic/Molecular EDM Experiments

Diamagnetic systems (contain no unpaired electrons) are mainly
sensitive to hadronic sources of CP violation — e.g., Hg, Xe, n

Paramagnetic systems (contain one or more unpaired electrons)
are mainly sensitive to leptonic sources of CP violation
—e.g., ThO, HfF*, YbF, Tl, Cs
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Paramagnetic systems (contain one or more unpaired electrons)
are mainly sensitive to leptonic sources of CP violation
—e.g., ThO, HfF*, YbF, Tl, Cs

For semi-leptonic sources of CP violation, the story is more
complicated — the “classification” generally depends on whether
the interactions involve mainly electron spin or nuclear spin
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Leptonic CP Violation in Paramagnetic Molecules

Over the past decade, molecular experiments have improved
the sensitivity to electron EDM d, by more than 100-fold:

232ThO bound: |d,.| < 107%° e cm
[Andreev et al. (ACME collaboration), Nature 562, 355 (2018)]

Sensitivity boost comes from large effective electric field seen
by unpaired electrons*: Eq¢r ~ 10 — 100 GV/cm ~ 10°Ejp max

Small magnetic moment in 3A, ThO state: |0 (3A)| ~ 102 ug
=> |ess sensitive to (stray) magnetic fields

What about sensitivity of paramagnetic
systems to hadronic CP violation?

* Molecules often have pairs of opposite-parity levels with close energies that can
be fully mixed by modest applied electric fields, whereas atoms (usually) don’t
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Nucleon EDMs: [Crewther, Di Vecchia, Veneziano, Witten, PLB 88, 123 (1979)]
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Hadronic CP Violation in Diamagnetic Atoms

Nucleon EDMs: [Crewther, Di Vecchia, Veneziano, Witten, PLB 88, 123 (1979)]
Intranuclear forces: [Haxton, Henley, PRL 51, 1937 (1983)],
[O. Sushkov, Flambaum, Khriplovich, JETP 60, 873 (1984)]
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Hadronic CP Violation in Diamagnetic Atoms

Nucleon EDMs: [Crewther, Di Vecchia, Veneziano, Witten, PLB 88, 123 (1979)]
Intranuclear forces: [Haxton, Henley, PRL 51, 1937 (1983)],
[O. Sushkov, Flambaum, Khriplovich, JETP 60, 873 (1984)]
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lllustrative example: £ = 925 ~GG
321
Nucleon EDMs CP-violating intranuclear forces
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In nuclei, tree-level CP-violating intranuclear forces dominate over
loop-induced nucleon EDMs [loop factor = 1/(81?)].
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Schiff's Theorem

[Schiff, Phys. Rev. 132, 2194 (1963)]

Schiff’s Theorem: “In a neutral atom made up of point-like non-
relativistic charged particles (interacting only electrostatically), the
constituent EDMs are screened from an external electric field.”
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Schiff’s Theorem: “In a neutral atom made up of point-like non-
relativistic charged particles (interacting only electrostatically), the
constituent EDMs are screened from an external electric field.”
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Classical explanation for nuclear EDM: A neutral atom does not
accelerate in an external electric field!



Lifting of Schiff's Theorem

[Sandars, PRL 19, 1396 (1967)],
[O. Sushkov, Flambaum, Khriplovich, JETP 60, 873 (1984)]

In real (heavy) atoms: Incomplete screening of external electric field
due to finite nuclear size, parametrised by nuclear Schiff moment.
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Hadronic CP Violation in Paramagnetic Molecules
[Flambaum, Pospelov, Ritz, Stadnik, PRD 102, 035001 (2020)]

« Hadronic CP-violating effects arise via 2y-exchange starting at 2-loop level
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Hadronic CP Violation in Paramagnetic Molecules
[Flambaum, Pospelov, Ritz, Stadnik, PRD 102, 035001 (2020)]

« Hadronic CP-violating effects arise via 2y-exchange starting at 2-loop level
« One of photons interacts magnetically with nucleus => no Schiff screening
* 0(A)-enhanced CP-odd nuclear scalar polarisability
« Operative even in spinless nuclei (e.g., 232ThO, 180HfF*)

(n — d): O[In(A4)/pr]
[Fermi-gas model]

LO: O(m32) NLO: 0(m;1)

pn) n(p) p(n)

CP-odd nucleon CP-odd nucleon Internal nuclear
polarisabilities (x E- B) polarisabilities («< E - B) excitations



Isoscalar CP-Odd n-N Coupling

[Flambaum, Pospelov, Ritz, Stadnik, PRD 102, 035001 (2020)]
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a “bulk” property of the nucleus that grows with A in a regular manner, with
no contribution from the nuclear Schiff moment mechanism (needs I # 0)
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[Flambaum, Pospelov, Ritz, Stadnik, PRD 102, 035001 (2020)]

LO: 0(m3;?)

L=gh n°NN

n° exchange

In molecules with spinless nuclei (e.g., 232ThO, '80HfF*), effect dominated by
a “bulk” property of the nucleus that grows with A in a regular manner, with
no contribution from the nuclear Schiff moment mechanism (needs I # 0)

=> Clean bounds, since less sensitivity to details of nuclear structure

(cf. strong sensitivity of 19°Hg Schiff moment to assumptions about underlying
nuclear structure — different models give different signs for sensitivity coefficient)
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[Flambaum, Pospelov, Ritz, Stadnik, PRD 102, 035001 (2020)]
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Internal nuclear excitations Continuum Discrete

Excitations to continuum above Fermi surface: ~ In(A)/pg [Fermi-gas model]

Discrete transitions between L-S doublets: ~[0(10)/A] X (1/AE 1)
[Giant resonance model — Flambaum, Samsonov, Tran Tan, JHEP 10 (2020) 077]
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[Flambaum, Pospelov, Ritz, Stadnik, PRD 102, 035001 (2020)]
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Internal nuclear excitations Continuum Discrete

Excitations to continuum above Fermi surface: ~ In(A)/pg [Fermi-gas model]

Discrete transitions between L-S doublets: ~[0(10)/A] X (1/AE 1)
[Giant resonance model — Flambaum, Samsonov, Tran Tan, JHEP 10 (2020) 077]

For A ~ 200 and AE,,q ~ several MeV, the two contributions
are comparable in size (and of the same sign)
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LO: 0(m3;?) NLO: 0(m;1) (u—d): O[In(A) /pg]

\ / [Fermi-gas model]
e
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79,1 contributions: | |
opposite sign

p, n contributions: same sign

For Z ~ 80 & A ~ 200: Csp(8) =~ [0.110 + 1.0n10 + 1.7¢4_ay] X 10726 = 0.036
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2 ~
QCD Vacuum Angle t£=6¢-%_66G
32T
[Flambaum, Pospelov, Ritz, Stadnik, PRD 102, 035001 (2020)]

LO: 0(m;2) NLO: 0(m;Y) (u — d): O[In(A4)/prl
[Fermi-gas model]

\< e
e
> X /e/

n°, 1 contributions: | |

opposite sign p,n contributions: same sign

For Z ~ 80 & A ~ 200: Csp(8) =~ [0.110 + 1.0n10 + 1.7¢4_ay] X 10726 = 0.036

Future work: ' contribution and other N2LO contributions, nuclear
in-medium effects (NLO process), nuclear structure effects [(u — d) process]



Bounds on Hadronic CP Violation Parameters
ThO bounds: [Flambaum, Pospelov, Ritz, Stadnik, PRD 102, 035001 (2020)]

System ‘g_g\?N |du — &d| (cm) |dp| (e cm) |6]
ThO 4 x 1010 2 X 10724 2 x 10723 3x1078
n 1.1 x 10710 5x 10725 — 2.0 x 10710
Hg 1 x 10712 5x 10727 2.0x 102> | 1.5x 10710
Xe 6.7 x 1078 3 x 10722 3.2%x107%%2 | 3.2x107°

* These limits can formally be null within nuclear uncertainties

Current bounds from molecules are ~10 — 100 times weaker than
from Hg & n, but are ~10 — 100 times stronger than bounds from Xe



P, T-Violating Forces Mediated by Dark Bosons

[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)],
[Dzuba, Flambaum, Samsonov, Stadnik, PRD 98, 035048 (2018)]
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[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)],
[Dzuba, Flambaum, Samsonov, Stadnik, PRD 98, 035048 (2018)]
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P, T-Violating Forces Mediated by Dark Bosons

[Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018)],
[Dzuba, Flambaum, Samsonov, Stadnik, PRD 98, 035048 (2018)]
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P, T-violating forces => Atomic and Molecular EDMs

If exchanged boson is sufficiently low-mass, then P, T-violating forces
are long-range on the scale of atom/molecule, and the non-vanishing
contribution arises from the Thomas-Fermi length scale r ~ ag/Z/3



Constraints on Scalar-Pseudoscalar
Electron-Electron Interaction

EDM constraints: [Stadnik, Dzuba, Flambaum, PRL 120, 013202 (2018); arXiv:1708.00486]
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Dark Matter

Strong astrophysical evidence for existence of
dark matter (~5 times more dark matter than
ordinary matter)

dark matter halo

ppm =~ 0.4 GeV/cm?3

f
vpm ~ 300 km/s \Sun bglge disk

Milky Way



Oscillating Electric Dipole Moments
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Oscillating Electric Dipole Moments

Nucleons: [Graham, Rajendran, PRD 84, 055013 (2011)]

Atoms and molecules: [Stadnik, Flambaum, PRD 89, 043522 (2014)];
[Flambaum, Pospelov, Ritz, Stadnik, PRD 102, 035001 (2020)]
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Constraints on Interaction of
Axion Dark Matter with Gluons

nEDM constraints: [nEDM collaboration, PRX 7, 041034 (2017)]
HfF* EDM constraints: [Roussy et al., PRL 126, 171301 (2021)]

Supernova energy—loss bounds

.

QCD axion




Summary

Plethora of opportunities for radioactive molecules in tests of

fundamental symmetries and searches for new physics:

- Paramagnetic molecules sensitive to hadronic sources of CP
violation via two-photon-exchange processes (regardless of nucleus
spin; i.e., operative for spinless nuclei, such as in 232ThO, 180HfF*)

- Exchange of low-mass dark bosons within molecules can induce
“long-range” P, T-violating forces, generating permanent EDMs

- Low-mass bosonic dark matter can induce oscillating-in-time EDMs



Summary

« Plethora of opportunities for radioactive molecules in tests of

fundamental symmetries and searches for new physics:

- Paramagnetic molecules sensitive to hadronic sources of CP
violation via two-photon-exchange processes (regardless of nucleus
spin; i.e., operative for spinless nuclei, such as in 232ThO, 180HfF*)

- Exchange of low-mass dark bosons within molecules can induce
“long-range” P, T-violating forces, generating permanent EDMs

- Low-mass bosonic dark matter can induce oscillating-in-time EDMs

e Further work:
- For two-photon-exchange processes. nuclear structure effects,
nuclear in-medium effects, n’ and other N2LO contributions
- For nucleon-spin-dependent phenomena: improved knowledge of
proton and neutron spin contributions in heavy nuclei
- Improved calculations of Schiff moments of heavy nuclei
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Low-mass Spin-0 Dark Matter

* Low-mass spin-0 particles form a coherently oscillating
classical field ¢(t) = @ocos(m,c?t/h), with energy density

<p<p> ~ mgzoqo(%/z (pDM,local ~ 0.4 GeV/cm3)
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Low-mass Spin-0 Dark Matter

* Low-mass spin-0 particles form a coherently oscillating
classical field ¢(t) = @ocos(m,c?t/h), with energy density
<p<p> ~ mgzo(P(%/z (pDM,local ~ 0.4 GeV/cm3)

* Coherently oscillating field, since cold (E, = m¢c2)

* AE,/E, ~(v3)/c?~107¢ = teop~21/AE, ~ 10°T,g,

Evolution of ¢, with time Probability distribution function of ¢,
(e.g., Rayleigh distribution)

Po
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Low-mass Spin-0 Dark Matter

Low-mass spin-0 particles form a coherently oscillating
classical field ¢(t) = @ocos(m,c?t/h), with energy density
(Pp) = MG05/2 (PpMIocal = 0.4 GeV/cm?)

Coherently oscillating field, since cold (E, = m¢c2)
AE,/E, ~(v3)/c? ~107°% = Top ~21/AE, ~ 106T g,
Classical field for m,, < 1 eV, since n, (Aqp/21)° > 1

107*'eVsSm,Ss1eV & 107" Hz S fpy S 10™* eV

‘ Tysec ~ 1 month IR frequencies

Lyman-a forest measurements [suppression of structures for L < 0(7\(113,<p)]

[Related figure-of-merit: A4g /2T < Lawarfgalaxy ~ 100 pc = m, = 107?' eV]



Low-mass Spin-0 Dark Matter

Low-mass spin-0 particles form a coherently oscillating
classical field ¢(t) = @ocos(m,c?t/h), with energy density
(Pp) = MG05/2 (PpMIocal = 0.4 GeV/cm?)

Coherently oscillating field, since cold (E, = mcpcz)
AE,/E, ~(v3)/c? ~107°% = Top ~21/AE, ~ 106T g,
Classical field for m,, < 1 eV, since n,,(Aqg,/2m)° > 1

107*'eVsm,Ss1eV & 107" Hz S fpy S 10™* eV

Y

Lyman-a forest measurements [suppression of structures for L < O(AdB,(p)]

Wave-like signatures [cf. particle-like signatures of WIMP DM]
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