ELECTRONIC STRUCTURE OF EXOTIC ATOMS AND MOLECULES

A. Borschevsky

faculty of science and engineering van swinderen institute for particle physics and gravity

• University of Groningen

Research:

Using computational chemistry tools to address fundamental problems in physics:

- > Search for new physics with low-energy precision measurements
 - > Violation of fundamental symmetries in atoms and in molecules
 - > Search for variation of fundamental constants
- Highly accurate calculations of spectra and properties of heavy and superheavy atoms and highly charged ions

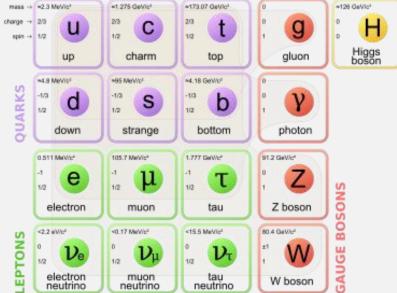
Most work done in collaboration with experimental groups

• University of Groningen

Research:

Using computational chemistry tools to address fundamental problems in physics:

- > Search for new physics with low-energy precision measurements
 - Violation of fundamental symmetries in atoms and in molecules
 - > Search for variation of fundamental constants
- Highly accurate calculations of spectra and properties of heavy and superheavy atoms and highly charged ions

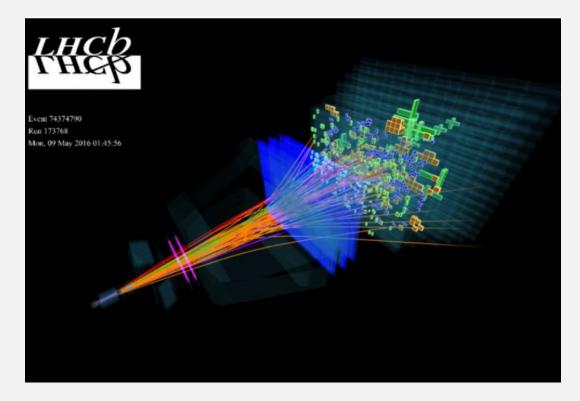

Most work done in collaboration with experimental groups

MOTIVATION

Why look for physics beyond the Standard Model (SM)?

- The SM is currently the best fitting physical description of the world around us.
- So far successfully explained the majority of observed natural phenomena and has strong predictive power (Higgs boson, top quark, tau neutrino)
- But... it is incomplete

Why look for physics beyond the Standard Model (SM)?


- Extensions to the SM attempt to fill these knowledge gaps.
 - Grand Unified Theories, String Theory, SUSY, ...
- These extensions predict new physical phenomena beyond the SM.
 - Variation of fundamental constants (VFC)
 - Violation of fundamental symmetries (CP, P, T)
- (non) discovery of these phenomena allows to discriminate between extensions or new theories.

Why look for physics beyond the SM with atoms and molecules?

- Accelerator research (LHCb, T2K, etc.)
- Table-top experiments

A panoramic picture of the four meter long traveling-wave decelerator that has been built in Groningen. It is in use for decelerating packets of the heavy diatomic molecule SrF, which is a prototypical system for the investigation of broken symmetries.

Why look for physics beyond the SM with atoms and molecules?

- Table-top experiments: promising alternative to high energy research
 - Versatile, sensitive to different phenomena
 - Parity violation
 - EDMs (electron, hadronic)
 - Variation of fundamental constants
 - Dark matter
 - ..
 - Various enhancement effects \rightarrow high sensitivity
 - Small scale
 - (Relatively) inexpensive

Search for new physics with atoms and molecules

M. S. Safronova, D. Budker, D. DeMille, Derek F. Jackson Kimball, A. Derevianko, and Charles W. Clark Rev. Mod. Phys. **90**, 025008 – Published 29 June 2018

A panoramic picture of the four meter long traveling-wave decelerator that has been built in Groningen. It is in use for decelerating packets of the heavy diatomic molecule SrF, which is a prototypical system for the investigation of broken symmetries.

How can (atomic and molecular) theory be of use?

- Insight into effect on molecular properties
- Identification of promising candidates for measurements
 - High sensitivity
 - Experimental considerations (stability, laser-coolability, etc.)
- Practical parameters for experiments
- Parameters for the interpretation of the results

How can (atomic and molecular) theory be of use?

- Insight into effect on molecular properties
- Identification of promising candidates for measurements
 - High sensitivity
 - Experimental considerations (stability, laser-coolability, etc.)
- Practical parameters for experiments
- Parameters for the interpretation of the results

For use in experiments:

- Reliable predictions based on high accuracy calculations
- Preference for *ab initio* methods (predictive power)
- Possibility of assigning uncertainties

Choice of computational method becomes important

COMPUTATIONAL METHODS

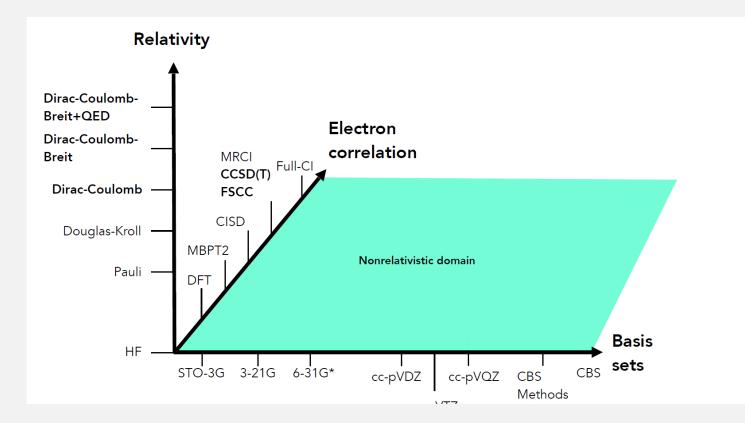
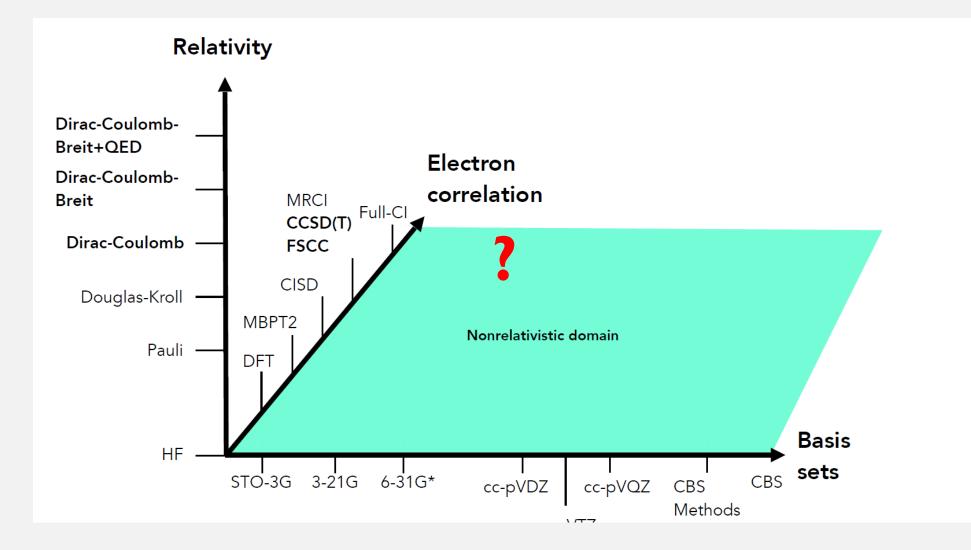



Figure courtesy of P. Schwerdtfeger

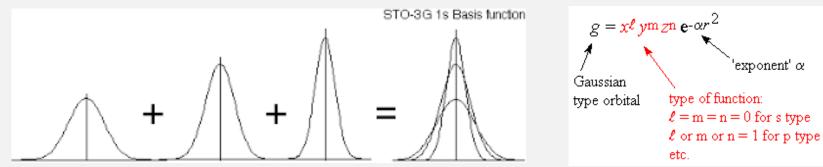
What do we want to calculate?

- Coupling parameters describing the effect of P(T)-violating phenomena (or variation of constants) on electronic structure
 - Relativistic in nature, hence relativistic methods
- Atomic and molecular parameters needed in experiments
 - (usually) heavy (radioactive) systems, hence relativistic methods
- High accuracy
 - State-of-the-art treatment of correlation, large basis sets
- Uncertainty estimates
 - Robust, transparent methods

Relativistic coupled cluster

- Based on the 4c Dirac Hamiltonian
- Accurate, size-consistent
- **CCSD(T)** single reference coupled cluster

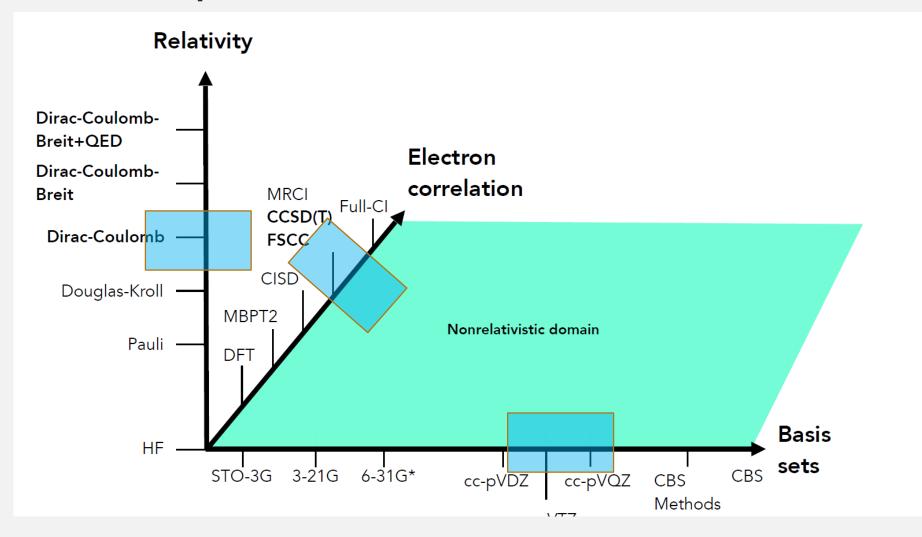
Closed shell systems/systems with one dominant configuration (good example: BaF, X $^{2}\Sigma$)

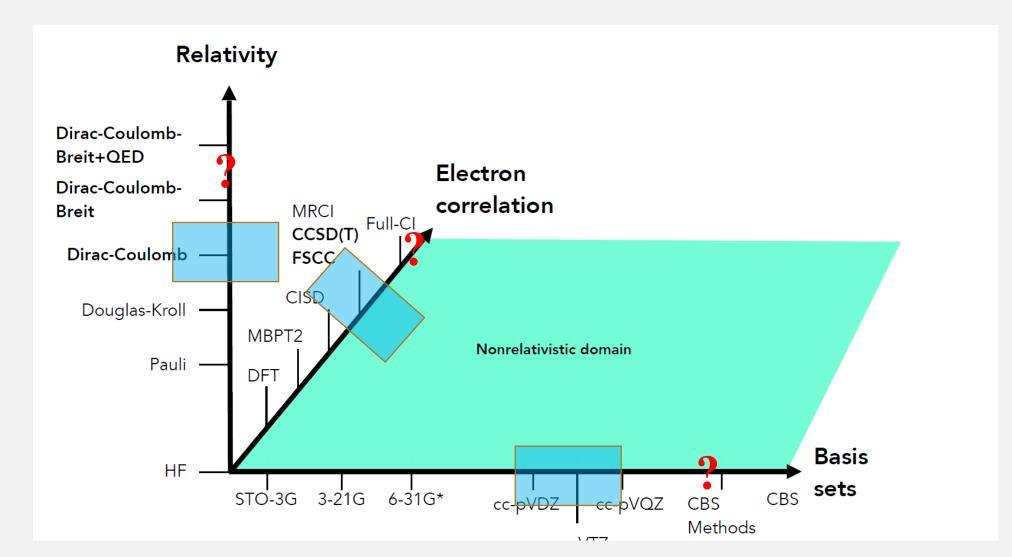

• **FSCC** – multireference Fock space coupled cluster

Open shell systems, excited states, bond dissociation (good example: ThO ${}^{3}\Delta_{1}$ or any atomic spectrum)

Use the suitable method, or both in complementary manner.

Basis sets


- Sets of (Gaussian) functions that are used to represent the electronic WF.
- Atom specific, different basis sets for different properties


• Dyall's relativistic basis sets; augmented and extended to convergence

(K.G. Dyall, Theor. Chem Acc. 2002, 2004, 2006, 2007, 2009, 2011, 2012, etc.)

Relativistic coupled cluster

How do we assign uncertainties?

Software

• Tel Aviv atomic computational package (TRAFS-3C)

Tel-Aviv Relativistic Atomic Fock-Space coupled cluster code, written by E.Eliav and U.Kaldor, with contributions from Y. Ishikawa, A. Landau, A. Borschevsky and H.Yakobi.

• DIRACI8 computational package

DIRAC, a relativistic *ab initio* electronic structure program, release DIRAC18 (2018)

and:

- MRCC code of Kallay et al., <u>www.mrcc.hu</u> (higher excitations)
- CFOUR package, http://www.cfour.de (geometry optimisation of polyatomic molecules)

What can we calculate?

- Atomic properties: energies, IPs, EAs, spectra, hyperfine structure parameters, polarisabilities
- Molecular properties: geometries, spectroscopic constants, electronic structure, Franck-Condon Factors (FCFs), transition strengths
- Specific properties:
 - W_d, W_s (eEDM experiments)
 - W_A (NSD-PV, nuclear anapole moments)
 - W_M (nuclear magnetic quadrupole moments)
 - Sensitivity to variation of α

• ...

- CCSD(T), FSCC (applicable to different systems/states)
- Expected accuracy: ~10 meV for energies
- Systematic investigation of effect of computational parameters and uncertainty evaluation

What can we calculate?

- Atomic properties: energies, IPs, EAs, spectra, hyperfine structure parameters, polarisabilities
- Molecular properties: geometries, spectroscopic constants, electronic structure, Franck-Condon Factors (FCFs), transition strengths
- Specific properties:
 - W_d,W_s (eEDM experiments)
 - W_A (NSD-PV, nuclear anapole moments)
 - W_M (nuclear magnetic quadrupole moments)
 - Sensitivity to variation of α
- CCSD(T), FSCC (applicable to different systems/states)
- Expected accuracy: ~10 meV for energies
- Systematic investigation of effect of computational parameters and uncertainty evaluation

Any drawbacks?

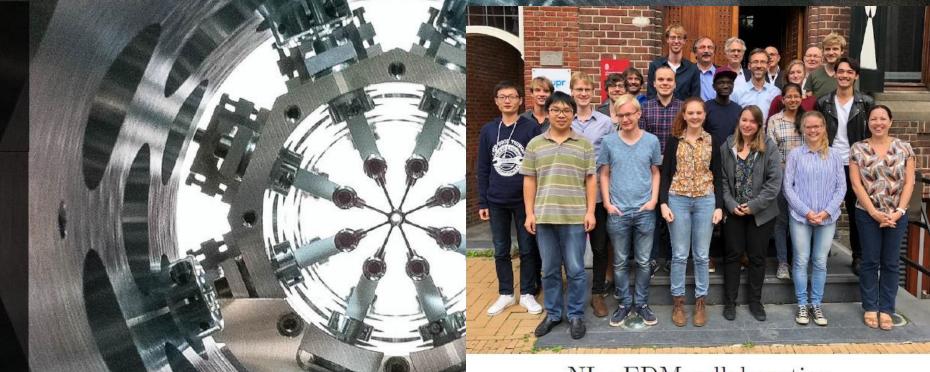
- × Computationally expensive
- **×** FSCC is limited to systems with up to two valence electrons/holes
- × Some properties not (yet) available, e.g. Schiff moment sensitivity factors

What can we calculate?

- Atomic properties: energies, IPs, EAs, spectra, hyperfine structure parameters, polarisabilities
- Molecular properties: geometries, spectroscopic constants, electronic structure, Franck-Condon Factors (FCFs), transition strengths
- Specific properties:
 - W_d,W_s (eEDM experiments)
 - W_A (NSD-PV, nuclear anapole moments)
 - W_M (nuclear magnetic quadrupole moments)
 - Sensitivity to variation of α
- CCSD(T), FSCC (applicable to different systems/states)
- Expected accuracy: ~10 meV for energies
- Systematic investigation of effect of computational parameters and uncertainty evaluation

Any drawbacks?

- × Computationally expensive
- **×** FSCC is limited to systems with up to two valence electrons/holes
- × Some properties not (yet) available, e.g. Schiff moment sensitivity factors

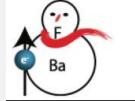

APPLICATIONS

- Search for eEDM in BaF molecules:
 - Laser cooling scheme
 - Sensitivity to eEDM: new method + uncertainty evaluation
 - Sanity check: HFS constants in BaF
- Same methods, new stuff:
 - IP of RaF
 - Polyatomic molecules

NL-eEDM Measuring the electron-EDM with BaF molecules

Scientific staff: Anastasia Borschevsky Rick Bethlem Steven Hoekstra Klaus Jungmann Rob Timmermans Wim Ubachs Lorenz Willmann

PhD students: Parul Aggarwal Alexander Boeschoten Kevin Esajas Pi Haase Yongliang Hao Virginia Marshall Thomas Meijknecht Maarten Mooij Anno Touwen Artem Zapara Postdocs Malika Denis Yanning Yin



NL-eEDM collaboration

VRIJE UNIVERSITEIT

AMSTERDAM

VU

university of groningen van swinderen institute for particle physics and gravity

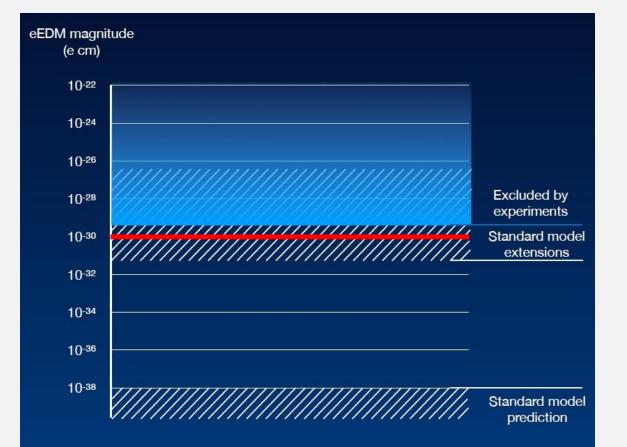
Dutch National Institute for (astro)Particle Physics

Nikhef

Electron EDM

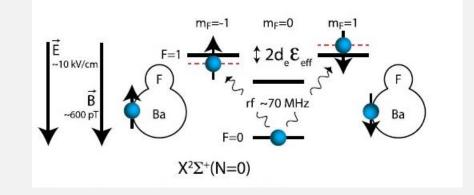
- Standard Model prediction: ~10⁻³⁸ e*cm
- SM extensions predict much larger values
- Measurement will provide signal of new physics
- Use a molecule!
- YbF,ThO, HfF⁺,...
- Upper limit 10⁻²⁹ e*cm, with ThO*

Improved limit on the electric dipole moment of the electron

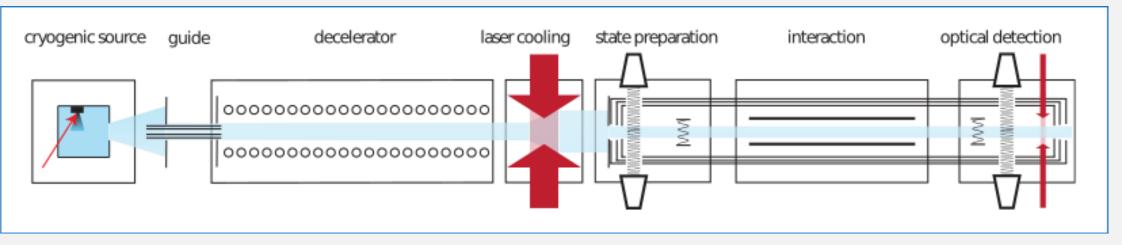

ACME Collaboration

Nature 562, 355–360(2018) Cite this article 17k Accesses 191 Citations 360 Altmetric Metrics

- ... and **BaF**
 - Experimental advantages (laser cooling, Stark deceleration)

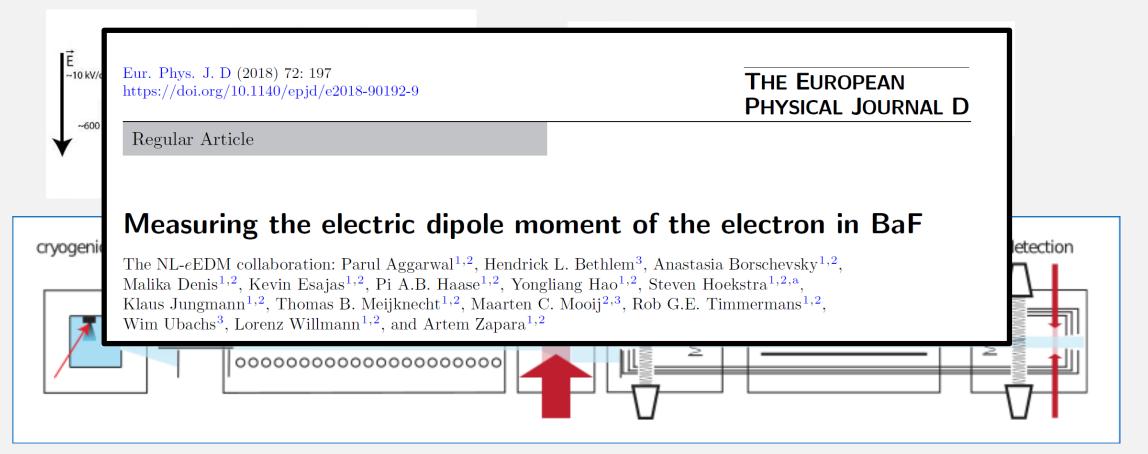

Ba

 E_{ext} **B**

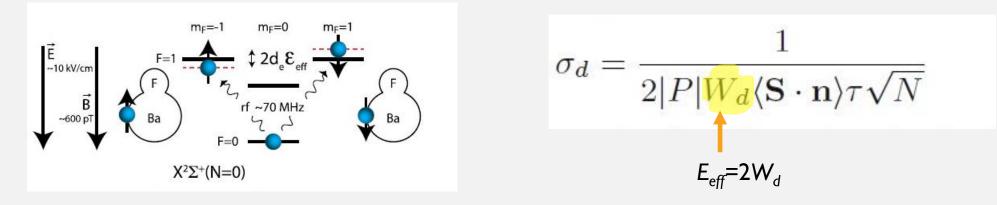


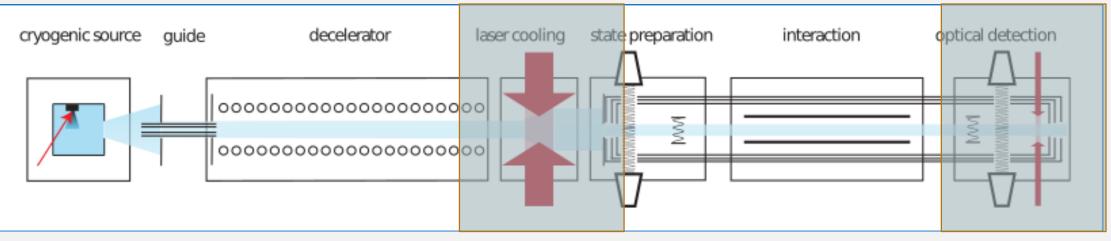
The experiment:

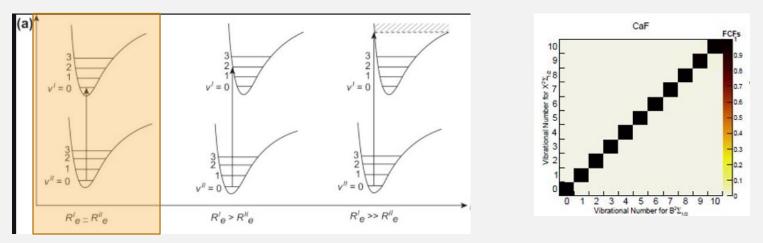
• The EDM signal is detectable through a difference in the total accumulated phase for the parallel and the antiparallel orientation of the external magnetic and the electric fields.



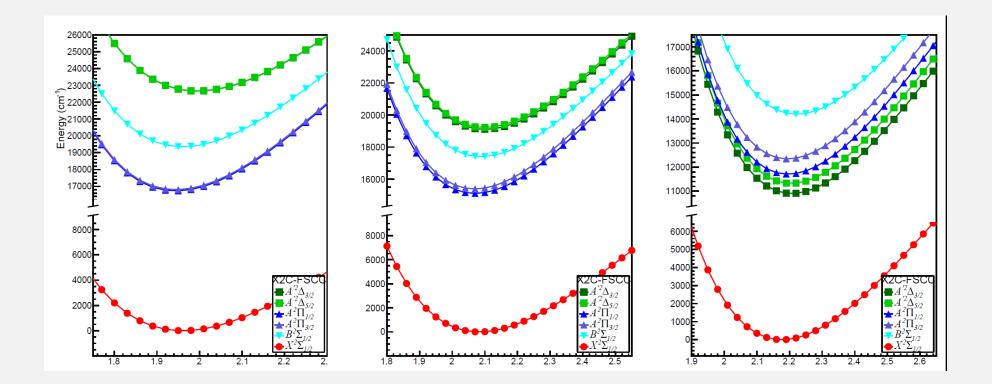
$$\sigma_d = \frac{1}{2|P|W_d \langle \mathbf{S} \cdot \mathbf{n} \rangle \tau \sqrt{N}}$$


The experiment:

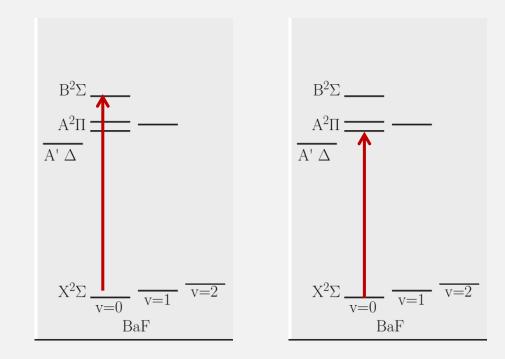

• The EDM signal is detectable through a difference in the total accumulated phase for the parallel and the antiparallel orientation of the external magnetic and the electric fields.


The experiment:

• The EDM signal is detectable through a difference in the total accumulated phase for the parallel and the antiparallel orientation of the external magnetic and the electric fields.

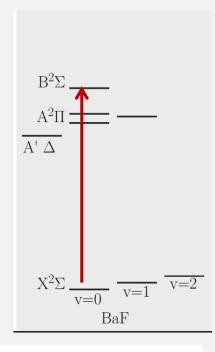


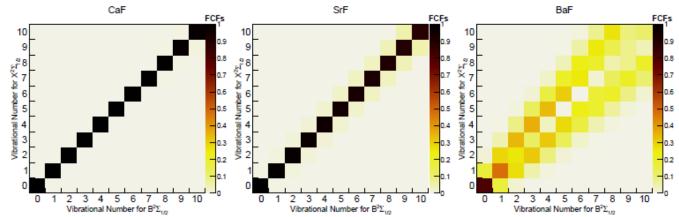
- Using light to slow transverse motion of the molecules
- We need to identify the optimal cooling scheme (transition):
 - Short lifetime (efficient cooling)
 - Diagonal Frank-Condon factors (FCFs), to avoid leaks



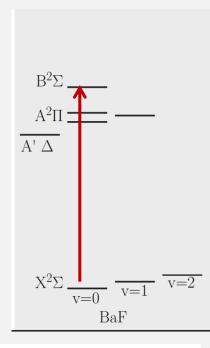
• Needed: potential energy curves, spectroscopic constants, FCFs, transition dipole moments, etc.

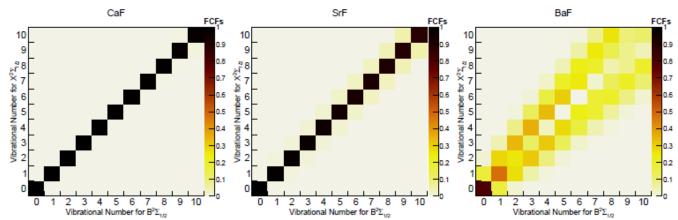
Relativistic FSCC calculations for the 6 lowest electronic states of CaF, SrF, and BaF

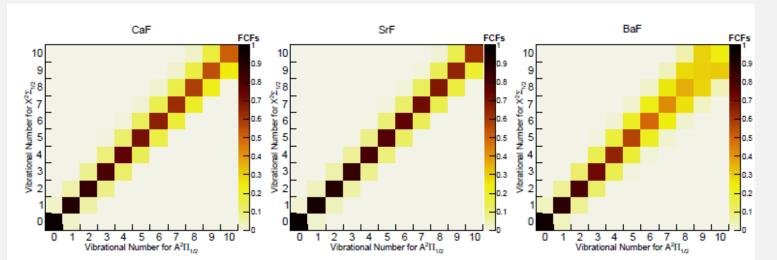


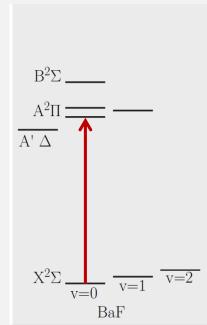

- Two possible cooling schemes:
- $X {}^{2}\Sigma_{1/2} \rightarrow B {}^{2}\Sigma_{1/2} \text{ (CaF)}$ $X {}^{2}\Sigma_{1/2} \rightarrow A {}^{2}\Pi_{1/2} \text{ (CaF and SrF)}$

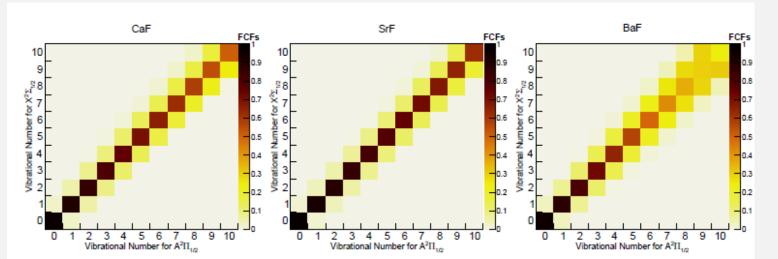
- Use calculated FCFs (measure of overlap of vibrational wavefunctions) to determine the appropriate scheme
- Diagonal FCFs \rightarrow efficient cooling

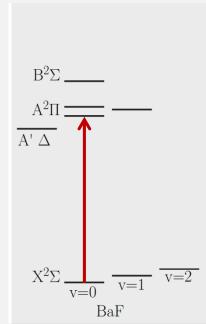

- Two possible cooling schemes:
- $X^{2}\Sigma_{1/2} \rightarrow B^{2}\Sigma_{1/2}$ (CaF)?

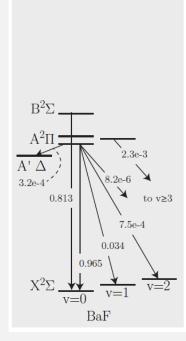


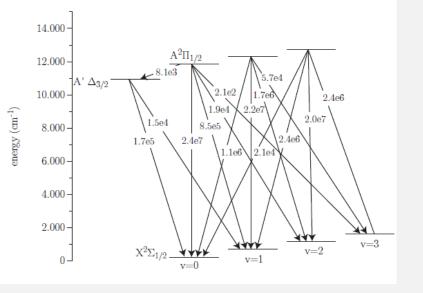

• Two possible cooling schemes:


 $X ^{2}\Sigma_{1/2} \rightarrow B ^{2}\Sigma_{1/2} (CaF)?$ Nope \otimes

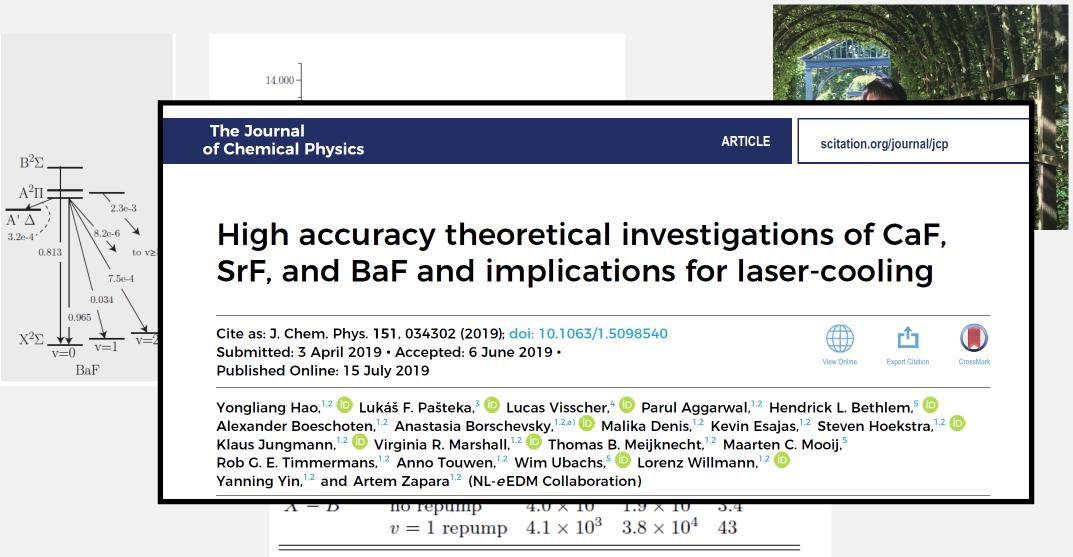

- Two possible cooling schemes:
- $X^{2}\Sigma_{1/2} \rightarrow A^{2}\Pi_{1/2}$ (CaF and SrF)?




• Two possible cooling schemes:


 $X^{2}\Sigma_{1/2}$ → $A^{2}\Pi_{1/2}$ (CaF and SrF)? Yes! ⓒ

Cooling scheme:



Yongliang Hao

Transition	Repump	CaF	\mathbf{SrF}	BaF
X - A	no repump	25	36	19
	v = 1 repump			
	v = 2 repump	2.2×10^4	6.2×10^4	
	Δ repump			7.6×10^4
X - B	no repump	$4.0 imes 10^3$	$1.9 imes 10^2$	3.4
	v = 1 repump	$4.1 imes 10^3$	$3.8 imes 10^4$	43

Cooling scheme:

$$\hat{H}^{\mathrm{P,T}} = (W_d d_e + W_s k_s) \hat{\mathbf{S}} \cdot \hat{\mathbf{n}}$$

 $d_{\rm e}$ - electron EDM, κ_s - S-PS electron-nucleon interaction

 W_d , W_s - molecule (and state) specific enhancement factors; depend on electronic structure and must come from theory.

 $\Delta E = (W_d d_e + W_s \kappa_s) < \hat{S} \cdot \hat{n} > (E_{\text{ext}})$

$$\hat{H}^{\mathrm{P,T}} = (W_d d_e + W_s k_s) \hat{\mathbf{S}} \cdot \hat{\mathbf{n}}$$

$$\Delta E = (W_d d_e + W_s \kappa_s) < \hat{S} \cdot \hat{n} > (E_{\text{ext}})$$

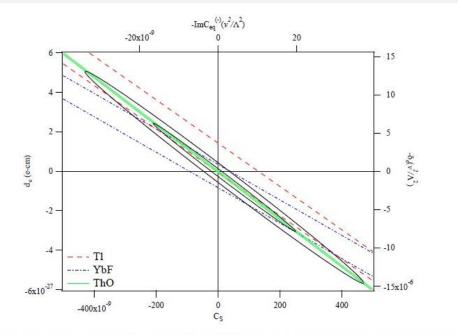
$d_{\rm e}$ - electron EDM, κ_s - S-PS electron-nucleon interaction

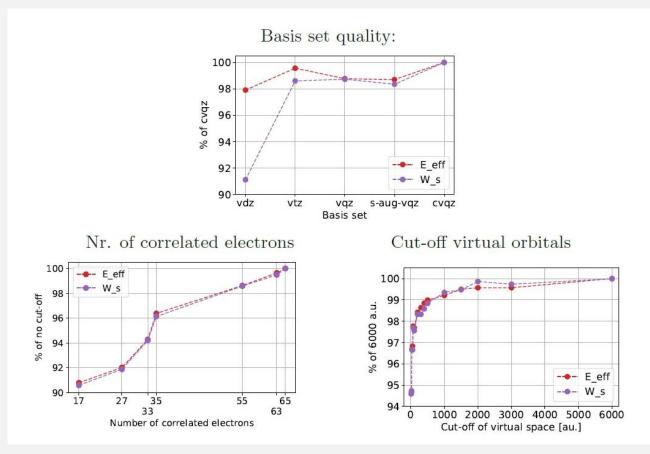
Electric dipole moments: A global analysis

Timothy Chupp and Michael Ramsey-Musolf Phys. Rev. C **91**, 035502 – Published 6 March 2015

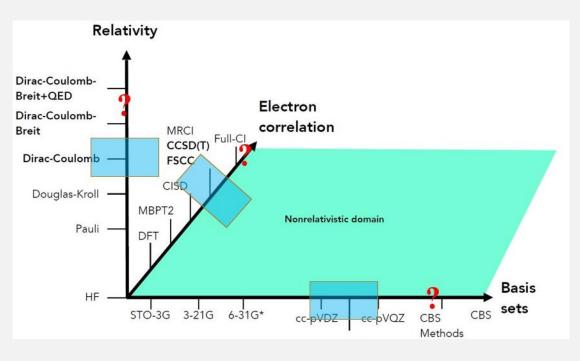
Investigations of optimal combinations of molecules:

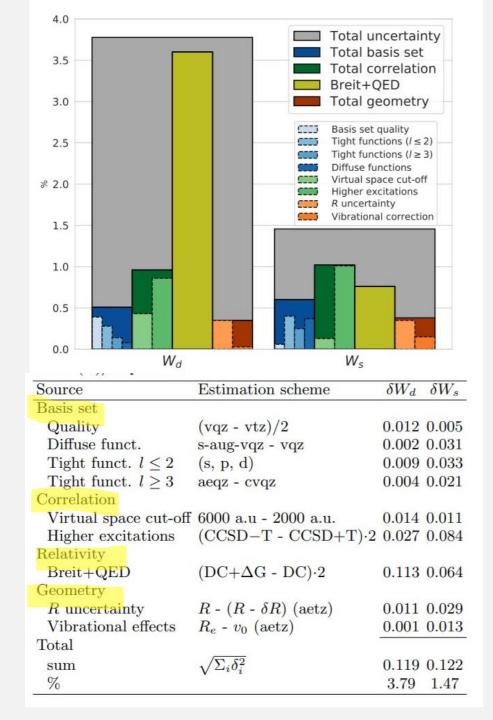
- K. Gaul, S. Marquardt, T. Isaev, and R. Berger, Phys. Rev. A 99, 032509 (2019)
- A. Sunaga, M.Abe, V.S. Prasannaa, T. Aoki, and M. Hada, J. Phys. B 53, 015102 (2019)




FIG. 1: Electron edm d_e as a function of C_S from the experimental results in Tl, YbF and ThO. Also shown are 68% and 95% error ellipses representing the best-fit for the paramagnetic systems and including d_A ⁽¹⁹⁹Hg) as discussed in the text. Also shown are the constraints on the dimensionless Wilson coefficients δ_e and Im $C_{eq}^{(-)}$ times the squared scale ratio $(v/\Lambda)^2$.

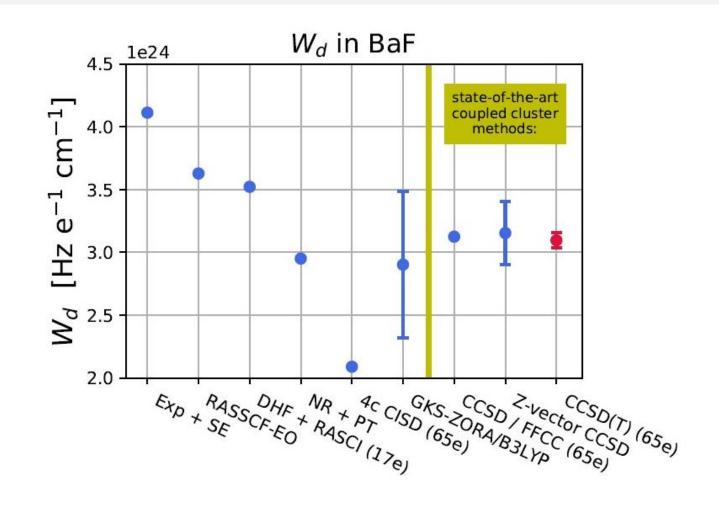
$$\hat{H}^{\mathrm{P,T}} = (W_d d_e + W_s k_s) \hat{\mathbf{S}} \cdot \hat{\mathbf{n}} \qquad H^{\mathrm{EDM}} = 2cd_e \sum_{i=1}^n i\gamma^0(i)\gamma^5(i)\mathbf{p}^2(i) \qquad W_d = \frac{1}{d_e} \langle \psi_{\Omega} | H^{\mathrm{EDM}} | \psi_{\Omega} \rangle$$


$$H_{S} = i \frac{G_{F}}{\sqrt{2}} Z \mathcal{K}_{S} \sum_{i=1}^{n} \gamma^{0} \gamma^{5} \rho_{A}(r_{i}) \qquad \qquad W_{S} = \frac{1}{\mathcal{K}_{S}} \langle \psi_{\Omega} | H_{S} | \psi_{\Omega} \rangle$$

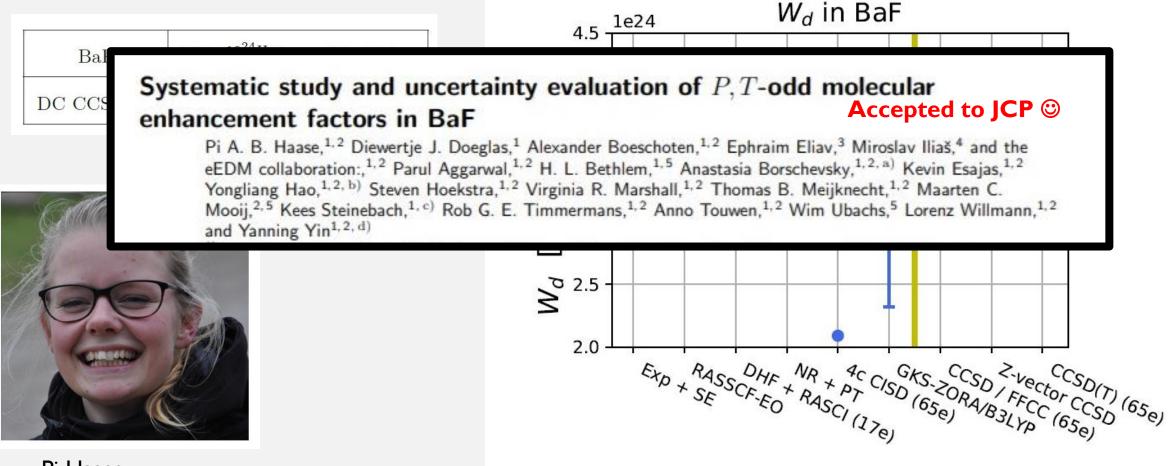

- Use relativistic CCSD(T) to calculate W_d and W_s .
- Systematically improve the calculation up to convergence
- Perform an extensive computational study to estimate uncertainties

- Use relativistic CCSD(T) to calculate W_d and W_s .
- Systematically improve the calculation up to convergence

- Use relativistic CCSD(T) to calculate W_d and W_s in BaF
- Systematically improve the calculation up to convergence
- Perform an extensive computational study to estimate uncertainties

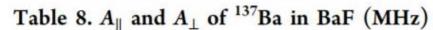


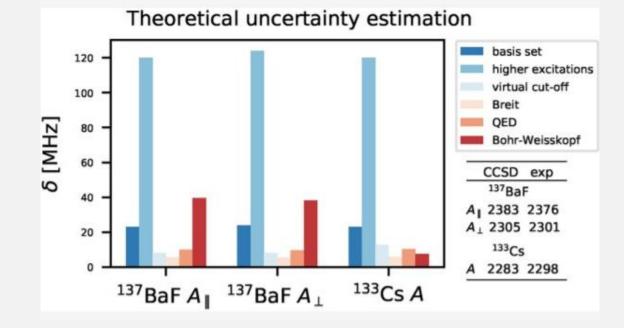
• Final recommended values:


BaF	$W_d^* \left[\frac{10^{24} \text{Hz}}{\text{e cm}} \right] \qquad W_s \text{ [Hz]}$	
DC CCSD(T)	3.13 (3.8%) 8.29 (1.5)	%)

Pi Haase

• Final recommended values:




Pi Haase

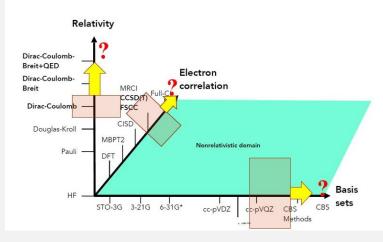
BaF	$W_d^* \left[\frac{10^{24} \text{Hz}}{\text{e cm}} \right] \qquad W_s \text{ [Hz]}$
DC CCSD(T)	3.13 (3.8%) 8.29 (1.5%)

- Is the uncertainty estimate realistic?
- Use a similar property, where comparison to experiment is possible, as a sanity check
- Magnetic hyperfine structure constants

	¹³⁷ BaF			
method	A	%(exp)	A_{\perp}	%(exp)
GRECP SCF-EO ⁹⁰	2264	-4.71	2186	-5.00
GRECP RASSCF-EO ⁹⁰	2272	-4.38	2200	-4.39
DF RASCI ⁹¹	2240	-5.72	2144	-6.82
DF MBPT ⁹¹	2314	-2.61	2254	-2.04
DC CCSD (this work)	2383(129)	0.29	2305(132)	0.17
exp ⁷⁷	2376(12)		2301(9)	

NEW STUFF

IP of RaF	Laser-cooled RaF as a promising candidate to measure molecular parity violation T. A. Isaev, S. Hoekstra, and R. Berger Phys. Rev. A 82 , 052521 – Published 24 November 2010				
Article Open Access Published: 27 M Spectroscopy of sho R. F. Garcia Ruiz , R. Berger , []X. F	rt-lived radioact	ive molecules			
Nature 581, 396–400 (2020) Cite this PHYSICAL REVIEW L	All ature 581, 396–400 (2020) Cite this article m PHYSICAL REVIEW LETTERS		Approaching meV level for transition energies in the radium monofluoride molecule RaF and radium cation Ra ⁺ by including quantum-electrodynamics effects J. Chem. Phys. 154, 201101 (2021); https://doi.org/10.1063/5.0053659		
Accepted Paper ISOTOPE Shifts of rac Phys. Rev. Lett. S. M. Udrescu et al.			ution effect in molecules: Ra ⁺ and RaF		
Accepted 19 May 2021	J. Chem. Phys. 153, 114114 (2020)	cture (); https://doi.org/10.1063/5.00241	D3		


IP of RaF

• Aim for highest accuracy: 4c CCSD(T)+higher order corrections

Method/contribution	IP (eV)	Contribution (eV)
4c-CCSD (s-cv4z)	4.926	
4c-CCSD(T) (s-cv4z)	4.972	0.046
4c-CCSD(T) (CBS)	4.978	0.006
4c-CCSDT (CBS)	4.980	0.002
4c-CCSDT (CBS)+Breit*	4.982	0.002
4c-CCSDT (CBS)+Breit+QED*	4.970	-0.012
Correction for final active space	4.977	0.007
Final prediction	4.977	

*Obtained for Ra⁺

• Accuracy: ~10s of meV Can we do better? Relativity Dirac-Coulomb-Breit+QED Electron Dirac-Coulombcorrelation Breit MRCI Full-CCSD(T) FSCC Dirac-Coulor Douglas-Kroll MBPT Nonrelativistic domain Pauli Basis HF sets STO-3G 3-21G 6-31G* cc-pVDZ cc-pVQZ CBS CBS Methods

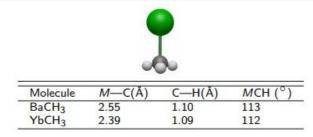


• Uncertainty evaluation

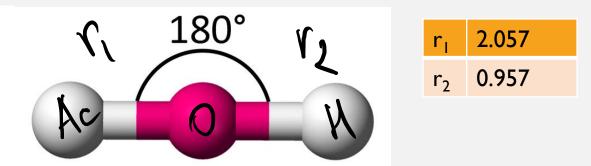
IP of RaF

Туре	Source	IP (eV)	How?
Basis set	Extrapolation error	0.003	(CBS- s-cv4z)/2
	Diffuse functions	0.001	(d-v4z - sv4z)/2
	Basis type	0.003	v3z vs. ae3z
Relativity	Higher order QED	0.005	Δ lamb/2
Correlation	Correlation space	0.002	all e- vs. 35 e
	Higher excitations	0.001	(T-(T))/2
Total uncertainty		0.010	

- Final recommended value for <u>adiabatic IP</u>: **4.977+/- 0.010**
- Waiting for experimental confirmation (or disproof)


Aleksandra Kiuberis

- On Monday we learned: polyatomic molecules are <u>awesome</u>
- We agree
- Molecules to investigate:
 - BaCH₃,YbCH₃: symmetric top molecules
 - AcOH⁺: linear system
- Could be used in experiments to measure eEDM (but also NMQM, or anapole moments, etc.)
- Investigate sensitivity to eEDM



- For polyatomic molecules computational costs play an important role
- Two step process:
 - Geometry optimisation: scalar relativistic approach, pseudopotentials, CCSD(T)
 - Calculations of sensitivity parameters: 4c-CCSD(T)/FSCC, error estimate
- Makes the calculations feasible

- For polyatomic molecules computational costs play an important role
- Two step process:
 - Geometry optimisation: scalar relativistic approach, pseudopotentials, CCSD(T)
 - Calculations of sensitivity parameters: 4c-CCSD(T)/FSCC, error estimate
- Makes the calculations feasible

SR-CCSD(T) level of theory with ANO-RCC-PVnZ basis set; n = 5 for BaCH₃ and n = 4 for YbCH₃.

- For polyatomic molecules computational costs play an important role
- Two step process:
 - Geometry optimisation: scalar relativistic approach, pseudopotentials, CCSD(T)
 - Calculations of sensitivity parameters: 4c-CCSD(T)/FSCC, error estimate
- Makes the calculations feasible

Systematic study and uncertainty eva	aluation of P, T-odd molecular
enhancement factors in BaF	

Pi A. B. Haase, 1,2 Diewertje J. Doeglas, 1 Alexander Boeschoten, 1,2 Ephraim Eliav, 3 Miroslav Iliaš, 4 and the eEDM collaboration:, 1,2 Parul Aggarwal, 1,2 H. L. Bethlem, $^{1.5}$ Anastasia Borschevsky, $^{1,2,a)}$ Kevin Esajas, 1,2 Yongliang Hao, $^{1,2,b)}$ Steven Hoekstra, 1,2 Virginia R. Marshall, 1,2 Thomas B. Meijknecht, 1,2 Maarten C. Mooij, 2,5 Kees Steinebach, $^{1,c)}$ Rob G. E. Timmermans, 1,2 Anno Touwen, 1,2 Wim Ubachs, 5 Lorenz Willmann, 1,2 and Yanning Yin $^{1,2,d)}$

Enhancement factor for the electric dipole moment of the electron in the BaOH and YbOH molecules

Malika Denis,^{1,*} Pi A. B. Haase,¹ Rob G. E. Timmermans,¹ Ephraim Eliav,² Nicholas R. Hutzler,³ and Anastasia Borschevsky¹

	W _d [GV/cm]
BaCH ₃	3.45 (4.5%)
BaF*	3.31 (3.8%)
BaOH**	3.21 (3.2 %)
YbCH ₃	14.0 (3.6 %)
YbF**	11.8
YbOH**	11.7 (4.3%)
AcOH⁺	27.8

- Jalues Jaluportant role For polyatomic molecules computational cor
- Two step process:
 - elimina Geometry optimisation: scalar relativistic
 - Calculations of sensitivity para

ons fr P, T-odd molecular Ephraim Eliav,³ Miroslav Iliaš,⁴ and the stasia Borschevsky,^{1,2,a)} Kevin Esajas,^{1,2} Thomas B. Meijknecht, 1, 2 Maarten C. uwen,1,2 Wim Ubachs,5 Lorenz Willmann,1,2 ole moment of the electron molecules

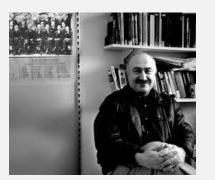
Yuly Andrea Chamorro Mena

er,3 and Anastasia Borschevsky1

W_d [GV/cm] 3.45 (4.5%) BaCH₃ 3.31 (3.8%) BaF* BaOH** 3.21 (3.2 %) YbCH₃ 14.0 (3.6 %) YbF** 11.8 11.7 (4.3%) YbOH** AcOH⁺ 27.8

Jopotentials, CCSD(T)

_SD(T)/FSCC, error estimate



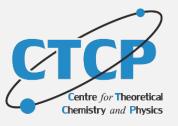
Aleksandra Kiuberis

CONCLUSIONS

- State of the art high accuracy computational approach
- Versatile method: many possible applications
- Reliable predictions, uncertainty estimates possible
- Close collaborations with experimental groups
- These are very exciting times!

Ephraim Eliav

Miroslav Ilias


Lukas Pasteka

Victor Flambaum

Peter Schwerdtfeger

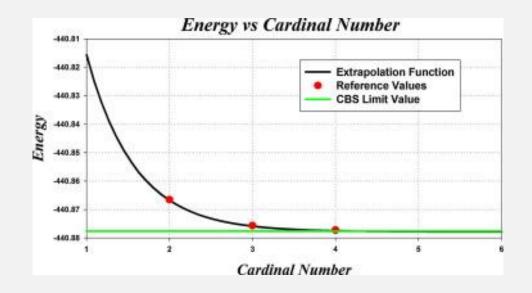
RELATIVISTIC COUPLED CLUSTER

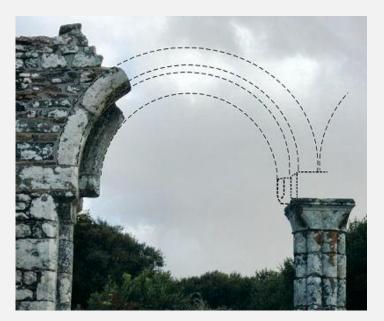
- Based on the 4c Dirac Hamiltonian
- Exponential wave operator:

$$\Psi = \exp(S)\Psi_0 = \left(1 + S + \frac{S^2}{2!} + \cdots\right)\Psi_0$$

• S is the excitation operator:

$$S = S_1 + S_2 + \dots + S_N; \ S_1 = \sum_{ia} s_i^a a_a^{\dagger} a_i; \ S_2 = \sum_{ijab} s_{ij}^{ab} a_a^{\dagger} a_b^{\dagger} a_j a_i$$


• CC energy equations:


$$\langle \Phi_0 | (H - E_{\text{CCSD}}) \exp(S_1 + S_2) | \Phi_0 \rangle = 0$$

• Accurate, all-order in PT, size-extensive, and size-consistent

Reaching meV accuracy

Complete basis set limit extrapolation

V.Vasilyev, http://sf.anu.edu.au/~vvv900/cbs

