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MOTIVATION



Why look for physics beyond the Standard Model (SM)?

• The SM  is currently the best fitting physical description of the world 

around us.

• So far successfully explained the majority of observed natural 

phenomena and  has strong predictive power (Higgs boson, top quark, 

tau neutrino)

• But… it is incomplete



Why look for physics beyond the Standard Model (SM)?

• Extensions to the SM attempt to fill these knowledge gaps.

• Grand Unified Theories, String Theory, SUSY, …

• These extensions predict new physical phenomena beyond the SM.

• Variation of fundamental constants (VFC)

• Violation of fundamental symmetries (CP, P,T)

• (non) discovery of these phenomena allows to discriminate between

extensions or new theories.



Why look for physics beyond the SM with atoms and molecules?

• Accelerator research (LHCb, T2K, etc.)

• Table-top experiments



Why look for physics beyond the SM with atoms and molecules?

• Table-top experiments: promising alternative to high energy research

• Versatile, sensitive to different phenomena

• Parity violation

• EDMs (electron, hadronic)

• Variation of fundamental constants

• Dark matter

• ..

• Various enhancement effects→ high sensitivity

• Small scale

• (Relatively) inexpensive



How can (atomic and molecular) theory be of use?

• Insight into effect on molecular properties

• Identification of promising candidates for measurements

• High sensitivity

• Experimental considerations (stability, laser-coolability, etc.)

• Practical parameters for experiments

• Parameters for the interpretation of the results



How can (atomic and molecular) theory be of use?

• Insight into effect on molecular properties

• Identification of promising candidates for measurements

• High sensitivity

• Experimental considerations (stability, laser-coolability, etc.)

• Practical parameters for experiments

• Parameters for the interpretation of the results

For use in experiments:
• Reliable predictions based on high accuracy calculations

• Preference for ab initio methods (predictive power)

• Possibility of assigning uncertainties

Choice of computational method becomes important



COMPUTATIONAL METHODS

Figure courtesy of P. Schwerdtfeger
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What do we want to calculate?

• Coupling parameters describing the effect of P(T)-violating phenomena (or variation 

of constants) on electronic structure

• Relativistic in nature, hence relativistic methods

• Atomic and molecular parameters needed in experiments

• (usually) heavy (radioactive) systems, hence relativistic methods

• High accuracy

• State-of-the-art treatment of correlation, large basis sets

• Uncertainty estimates

• Robust, transparent methods



Relativistic coupled cluster

• Based on the 4c Dirac Hamiltonian

• Accurate, size-consistent

• CCSD(T) - single reference coupled cluster 

Closed shell systems/systems with one dominant configuration (good example: BaF, X 2Σ)

• FSCC – multireference Fock space coupled cluster

Open shell systems, excited states, bond dissociation (good example: ThO 3Δ1 or any atomic 

spectrum)

Use the suitable method, or both in complementary manner.



Basis sets

• Sets of (Gaussian) functions that are used to represent the electronic WF. 

• Atom specific, different basis sets for different properties

• Dyall’s relativistic basis sets; augmented and extended to convergence

(K.G. Dyall, Theor. Chem Acc. 2002, 2004, 2006, 2007, 2009, 2011,2012,  etc.)



Relativistic coupled cluster



How do we assign uncertainties?

?

?

?



Software

• Tel Aviv atomic computational package (TRAFS-3C)

Tel-Aviv Relativistic Atomic Fock-Space coupled cluster code, written by E.Eliav and U.Kaldor, with 

contributions from Y. Ishikawa, A. Landau, A. Borschevsky and H. Yakobi.

• DIRAC18 computational package

DIRAC, a relativistic ab initio electronic structure program, release DIRAC18 (2018)

and:

• MRCC code of Kallay et al., www.mrcc.hu (higher excitations)

• CFOUR package, http://www.cfour.de (geometry optimisation of polyatomic molecules)

http://www.mrcc.hu/
http://www.cfour.de/


What can we calculate?

• Atomic properties: energies, IPs, EAs, spectra, hyperfine structure parameters, polarisabilities

• Molecular properties: geometries, spectroscopic constants, electronic structure, Franck-

Condon Factors (FCFs), transition strengths

• Specific properties:

• Wd, Ws (eEDM experiments)

• WA (NSD-PV, nuclear anapole moments)

• WM (nuclear magnetic quadrupole moments)

• Sensitivity to variation of α

• ...

• CCSD(T), FSCC (applicable to different systems/states)

• Expected accuracy: ~10 meV for energies

• Systematic investigation of effect of computational parameters and uncertainty evaluation
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Any drawbacks?

 Computationally expensive

 FSCC is limited to systems with up to two valence electrons/holes

 Some properties not (yet) available, e.g. Schiff moment sensitivity factors
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APPLICATIONS

• Search for eEDM in BaF molecules:

• Laser cooling scheme

• Sensitivity to eEDM: new method + uncertainty evaluation

• Sanity check: HFS constants in BaF

• Same methods, new stuff:

• IP of RaF

• Polyatomic molecules





Electron EDM

• Standard Model prediction: ~10-38 e*cm

• SM extensions predict much larger values  

• Measurement will provide signal of new physics

• Use a molecule!

• YbF, ThO, HfF+,…

• Upper limit 10-29 e*cm, with ThO*

• … and BaF

• Experimental advantages (laser cooling, Stark deceleration)



The experiment: 

• The EDM signal is detectable through a difference in the total accumulated phase for the parallel and the 

antiparallel orientation of the external magnetic and the electric fields.
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The experiment: 

• The EDM signal is detectable through a difference in the total accumulated phase for the parallel and the 

antiparallel orientation of the external magnetic and the electric fields.

Eeff=2Wd



Laser cooling:

• Using light to slow transverse motion of the molecules

• We need to identify the optimal cooling scheme (transition):

• Short lifetime (efficient cooling)

• Diagonal Frank-Condon factors (FCFs), to avoid leaks

• Needed: potential energy curves, spectroscopic constants, FCFs, transition dipole moments, etc. 



Laser cooling:

Relativistic FSCC calculations for the 6 lowest electronic states of CaF, SrF, and BaF



Laser cooling:

• Two possible cooling schemes:

X 2Σ1/2→ B 2Σ1/2 (CaF)

X 2Σ1/2 → A 2Π1/2 (CaF and SrF)

• Use calculated FCFs (measure of overlap of vibrational wavefunctions) to determine the 

appropriate scheme

• Diagonal FCFs→ efficient cooling
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Laser cooling:

• Two possible cooling schemes:

X 2Σ1/2→ B
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• Diagonal FCFs→ efficient cooling



Laser cooling:

• Two possible cooling schemes:

X 2Σ1/2 → A
2Π1/2 (CaF and SrF)?

• Diagonal FCFs→ efficient cooling



Laser cooling:

• Two possible cooling schemes:

X 2Σ1/2 → A
2Π1/2 (CaF and SrF)?

Yes! ☺

• Diagonal FCFs→ efficient cooling



Cooling scheme:

Yongliang Hao
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Interpreting the experiment

de- electron EDM, κs - S-PS electron-nucleon interaction

Wd, Ws- molecule (and state) specific enhancement factors; depend on electronic structure and must 

come from theory. 



Interpreting the experiment

de- electron EDM, κs - S-PS electron-nucleon interaction

Investigations of optimal combinations of molecules:
• K. Gaul, S. Marquardt, T. Isaev, and R. Berger, Phys. Rev. A 

99, 032509 (2019)

• A . Sunaga,  M. Abe,  V. S. Prasannaa,  T.  Aoki,   and M. 

Hada, J. Phys. B 53, 015102 (2019)



Interpreting the experiment

• Use relativistic CCSD(T) to calculate Wd and Ws.

• Systematically improve the calculation up to convergence

• Perform an extensive computational study to estimate uncertainties

Wd

κs

κs
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Interpreting the experiment

• Use relativistic CCSD(T) to calculate Wd and Ws in BaF

• Systematically improve the calculation up to convergence

• Perform an extensive computational study to estimate

uncertainties



Interpreting the experiment

• Final recommended values:

•

Pi Haase
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• Final recommended values:

•

Pi Haase

Accepted to JCP ☺



Interpreting the experiment

• Is the uncertainty estimate realistic?

• Use a similar property, where comparison to experiment is possible, as a sanity check

• Magnetic hyperfine structure constants
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• Is the uncertainty estimate realistic?

• Use a similar property, where comparison to experiment is possible, as a sanity check

• Magnetic hyperfine structure constants Pi Haase



NEW STUFF



IP of RaF

•



IP of RaF

• Aim for highest accuracy: 4c CCSD(T)+higher order corrections  

Method/contribution IP (eV) Contribution (eV)

4c-CCSD (s-cv4z) 4.926

4c-CCSD(T) (s-cv4z) 4.972 0.046

4c-CCSD(T) (CBS) 4.978 0.006

4c-CCSDT (CBS) 4.980 0.002

4c-CCSDT (CBS)+Breit* 4.982 0.002

4c-CCSDT (CBS)+Breit+QED* 4.970 -0.012

Correction for final active space 4.977 0.007

Final prediction 4.977

*Obtained for Ra+



IP of RaF

• Uncertainty evaluation 

Type Source IP (eV) How?

Basis set Extrapolation error 0.003 (CBS- s-cv4z)/2

Diffuse functions 0.001 (d-v4z – sv4z)/2

Basis type 0.003 v3z vs. ae3z

Relativity Higher order QED 0.005 Δlamb/2

Correlation Correlation space 0.002 all e- vs. 35 e

Higher excitations 0.001 (T-(T))/2

Total 

uncertainty

0.010



IP of RaF

• Final recommended value for adiabatic IP: 4.977+/- 0.010

• Waiting for experimental confirmation (or disproof) 

Aleksandra Kiuberis



Polyatomic molecules

• On Monday we learned: polyatomic molecules are awesome

• We agree

• Molecules to investigate:

• BaCH3, YbCH3: symmetric top molecules 

• AcOH+: linear system

• Could be used in experiments to measure eEDM (but also NMQM, or anapole 

moments, etc.)

• Investigate sensitivity to eEDM



Polyatomic molecules

• For polyatomic molecules computational costs play an important role

• Two step process:

• Geometry optimisation: scalar relativistic approach, pseudopotentials, CCSD(T)

• Calculations of sensitivity parameters: 4c-CCSD(T)/FSCC, error estimate

• Makes the calculations feasible
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Aleksandra Kiuberis



CONCLUSIONS

• State of the art high accuracy computational approach

• Versatile method: many possible applications 

• Reliable predictions, uncertainty estimates possible

• Close collaborations with experimental groups

• These are very exciting times!



Ephraim Eliav Miroslav Ilias

Peter Schwerdtfeger

Victor Flambaum

Lukas Pasteka



• Based on the 4c Dirac Hamiltonian

• Exponential wave operator:

• S is the excitation operator:

• CC energy equations: 

• Accurate, all-order in PT, size-extensive, and size-consistent

RELATIVISTIC COUPLED CLUSTER



Reaching meV accuracy 

Complete basis set limit extrapolation

V. Vasilyev, http://sf.anu.edu.au/∼vvv900/cbs




