

RMo1A-4

S. Mohin, S. Araei, M. Barzgari, and N. Reiskarimian

Radius Lab, Massachusetts Institute of Technology

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase-Shifter
- Implementation
- Measurement Results
- Conclusion

Motivation

- mm-Wave Transceiver
 - High RF bandwidth
 - On-chip beamforming
 - Spatial multiplexing

- Application
 - 5G New Radio
 - Automotive radar
 - Satellite communication

	Analog Beamformer	Digital Beamformer		
Support Multiple Streams	× No	✓ Yes		
Power Consumption	✓ Low	× High		
Resistant to Spatial Blockers	✓ Yes	× No		

3

IEEE SOLID-STATE

RCUITS SOCIETY

T-S

EEE MICROWAVE THEORY &

NG ACROSS THE

· Stream₂

Stream_{Ns-1}

· Stream_N

mm-Wave RX with SNF

CUITS SOCIETY"

mm-Wave RX with SNF

- Spatial notch filtering at the output of PSs.
- × Amplified spatial blockers appear at the LNA outputs limiting the in-notch P_{1dB} .
- PS inputs are susceptible to amplified spatial blockers.

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase-Shifter
- Implementation
- Measurement Results
- Conclusion

Proposed Architecture

- Support MIMO
- Blocker-resilient due to the spatial filtering
- Highly-linear due to the blocker , cancellation at the output of LNAs
- SNF can be turned off in the absence of blockers, reducing the number of components in the main path.

Proposed Spatial Notch Filter

Blocker-Cancellation Operation

8

RMo1A - 4

- Antennas are spaced by $\frac{\lambda}{2}$.
- θ_B : Incident angle
- φ_B : Phase difference
- Relative phase is used

Blocker-Cancellation Operation

- The first and second phase shifters rotate the phase of the second input signal by $\phi_B + 180^\circ$.
- Voltage contribution of the second input signal at the first LNA output:

$$\frac{1}{3}A_{V}V_{B} \sphericalangle \left(\frac{1}{2}\phi_{B} + 90^{\circ} - \frac{1}{2}\phi_{B} + 90^{\circ} + \frac{3}{2}\phi_{B}\right)$$

Superposition of incoming signals

Superposition of incoming signals

10

SOLID-STATE

CUITS SOCIETY"

Blocker-Cancellation Operation

- Blockers cancelled at LNA outputs.
- Requires lossless nonreciprocal phase-shifters.
 - Lossy PSs result in partial spatial blocker cancellation

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase Shifter
- Receiver Implementation
- Measurement Results
- Conclusion

Quadrature Hybrid

Depending on the excitation port, either the IN or ISO port, the phase difference between THR and CPL ports is different.

Reflection-Type Phase-Shifter

$$\Delta \phi_F = \Delta \phi_R = 90^\circ + 2 \tan^{-1} \left(\frac{Z_0}{X_L} \right)$$

X_L: Reactance of the load

An RTPS provides a reciprocal phase-shift with a value dependent on the imaginary load.

Forward Phase-Shift

SOLID-STATE

ITS SOCIETY

MTT-S

Applying an input signal to P_1 .

Forward Phase-Shift

17

MTT-S IEEE MICROWAVE THEORY &

$$\Delta \phi_F = 90^\circ + 2 \tan^{-1}(z_0 g_m)$$

18

MTT-S IEEE MICROWAVE THEORY &

Reverse Phase-Shift

Applying an input signal to P_2 .

19

SOLID-STATE

JITS SOCIETY"

MTT-S

Reverse Phase-Shift

$$\Delta \phi_R = 90^\circ - 2 \tan^{-1}(z_0 g_m)$$

20

IEEE SOLID-STATE CIRCUITS SOCIETY"

MTT-S

Non-Reciprocal Phase-Shifter

21

SOLID-STATE

CUITS SOCIETY

Non-Reciprocal Phase-Shifter

22

NRPS	Dinc, JSSC17	This Work	
Freq. Range [GHz]	23 to 27	27 to 31	
Tunable	No	Yes	
Area [mm ²]	1.3 ¹	0.21	
Power [mW]	78	<14	
IL [dB]	-4.5 ²	-0.8 to 0 ²	

SOLID-STATE

SOCIETY

- ¹ Estimated from figures.
- ² From simulation.

Inverter-Based Phase-Shifter

Inverter-Based Phase-Shifter

24

SOLID-STATE

ITS SOCIETY

Inverter-Based Phase-Shifter

Linearity performance can be improved by using inverters.

Blue inverters operate in the linear region due to their small output swing. Gray inverters do not contribute non-linearity as their input is silent.

26

SOLID-STATE

Phase shift is offset by parasitic capacitors.

27

ITS SOCIETY

Parallel inductors can resonate with the parasitic capacitors.

28

ILID-STATE

SOCIETY

Adding inductors can create an LC oscillator.

29

SOLID-STATE

ITS SOCIETY

We can add a resistor to solve the problem.

30

OLID-STATE

ITS SOCIETY

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase-Shifter
- Implementation
- Measurement Results
- Conclusion

32

• LNA

- Single-stage LNA
- High linearity performance
- Changing the polarity to cover 360°

33

MTT-S

IEEE Solid-State <u>Circuits s</u>ociety" • NRPS

Cover 360°

- Active Quadrature Mixer
 - g_m-boosting
 - Inter-stage peaking network
 with transmission line

35

<u>olid-state</u>

SOCIETY

- IF beamformer
 - High linearity due to the feedback loop

36

SOLID-STATE

ITS SOCIETY

- LO Generation
 - Quadrature All-pass Filter (QAF)

Die Micrograph

37

- Technology
 - 45nm SOI
 GlobalFoundries
- Silicon Area
 - 3.2 mm²
- Power Supply
 - 0.9V for LNA
 - 1.2V for others

OLID-STATE

ITS SOCIETY

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase Shifter
- Implementation
- Measurement Results
- Conclusion

39

IEEE SOLID-STATE CIRCUITS SOCIETY[™]

MTT-S

Frequency (GHz)

RMo1A - 4

RFIC

Up to two spatial notches can be created by independently tuning SNF and IFBF.

40

IEEE SOLID-STATE

RCUITS SOCIETY'

MTT-S

Linearity Test

SNF: OFF

- SNF & IFBF off:
- IFBF on:
- SNF on:
- SNF & IFBF on:

-30 dBm

-22 dBm

-13 dBm

-7.8 dBm

EEE SOLID-STATE

2-D SNF

This receiver structure can support 2-D MIMO.

42

SOLID-STATE CIRCUITS SOCIETY

MTT-S

Comparison Table

	M. Huang, TMTT19 [2]	M. Huang, JSSC19 [3]	R. Garg, ISSCC20	L. Zhang, ISSCC22 [4]	T. Huang, TMTT23	This Work
Technology	130nm SiGe	45nm SOI	65nm	40nm	45nm SOI	45nm SOI
Frequency Range [GHz]	23-30	27-41	28	23-29	23-37	27-31
Spatial Blocker Suppression Dimension	1-D	1-D	1-D	1-D	2-D	1-D and 2-D
NF _{DSB,eq} [dB]	4.2-6.3	4.3-6.3	6.0-7.8	4.8-7.1	4.8-5.9	5.4-9.7
In-Notch IP1dB [dBm]	N/A	- 1 9¹	N/A	-14	-20 ¹	-7.8
Out-of-Notch/In-Notch OIP3 [dBm]	N/A	9/27	N/A	N/A	N/A	14.1/30.1
Max RF/IF Notch Depth [dB]	41	62	37	40	43.6	41
Min >10dB Cancellation Spatial Notch width [°]	48-58 ¹	27-32 ¹	~11 (CH1&4) ¹ ~22 (CH2&3) ¹	8.5-14 (CH1&4) 22-24 (CH2&3)	28-51 ²	8.7-13 (CH1&4) 23-25 (CH2&3)
Power Cons./RX element [mW]	70	70-85	112.4	56.1	132.2-200.3	62.8-71.4
Modulation	100 MS/s 256 QAM	100 MS/s 256 QAM	100 MS/s 16 QAM	100 MS/s 64 QAM	100 MS/s 64 QAM	100 MS/s 256 QAM
Desired Signal EVM after Blocker Suppression [dB] (Input SINR [dB])	-32.6 (-10)	-32.8 (-8)	-20.3 ³ (0)	-27.9 (-15)	-26.3 ¹ (-3 ¹)	-32.6 (-8)
Area [mm ²]	21.6	23.4	10.6	2.8	18.4	3.2

¹ Estimated from figures. ² Calculated the real angles from figures. ³ Over-the-air (OTA) measurement results.

4x higher spatial blocker tolerance than fully-integrated prior work ([Zhang, ISSCC'22])

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase-Shifter
- Implementation
- Measurement Results
- Conclusion

Conclusion

- A novel non-reciprocal low-loss and compact phaseshifter is proposed.
- By taking advantage of non-reciprocity, spatial notch filtering is achieved at the LNAs' outputs.
- Non-reciprocal phase-shifters can be disabled in the absence of blockers.
- Compared to prior fully-integrated mm-wave receivers, this work achieves the highest in-notch input P_{1dB}.

45

RM01A - 4

Acknowledgments

- The authors thank Dr. Qingyun Xie, Eunseok Lee, Jessica Kedziora and Yidong Fang for their assistance during measurements and the MIT MTL faculty for equipment assistance.
- The chip fabrication was financially supported by MIT Center for Integrated Circuits and Systems (CICS).

Thank you for your attention.

RM01A - 4

NRPS Setting

47

IEEE Solid-State <u>Circuits</u> Society[™]

MTT-S

RMo1A - 4

48

IEEE SOLID-STATE CIRCUITS SOCIETY"

MTT-S IEEE MICROWAVE THEORY &

33

