

RMo1A-4

S. Mohin, S. Araei, M. Barzgari, and N. Reiskarimian

Radius Lab, Massachusetts Institute of Technology

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase-Shifter
- Implementation
- Measurement Results
- Conclusion

Motivation

- mm-Wave Transceiver
	- High RF bandwidth
	- On-chip beamforming
	- Spatial multiplexing

- Application
	- 5G New Radio
	- Automotive radar
	- Satellite communication

Beamforming RX Structures

||EEE
||SOLID-STATE
| CIRCUITS SOCIETY'''

MTT-S

mm-Wave RX with SNF

RCUITS SOCIETY"

mm-Wave RX with SNF

- \checkmark Spatial notch filtering at the output of PSs.
- **x** Amplified spatial blockers appear at the LNA outputs limiting the in-notch P_{1dB} .
- **x** PS inputs are susceptible to amplified spatial blockers.

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase-Shifter
- Implementation
- Measurement Results
- Conclusion

Proposed Architecture

- Support MIMO
- **Blocker-resilient** due to the spatial filtering
- **Highly-linear** due to the blocker cancellation at the **output of LNAs**
- SNF can be turned off in the absence of blockers, reducing the number of components in the **main path**.

Proposed Spatial Notch Filter

Blocker-Cancellation Operation

- Antennas are spaced by $\frac{\lambda}{2}$
- \cdot $\theta_{\rm B}$: Incident angle
- φ_{B} : Phase difference
- Relative phase is used

Blocker-Cancellation Operation

- The first and second phase shifters rotate the phase of the second input signal by ϕ_B + 180°.
- Voltage contribution of the second input signal at the first LNA output:

$$
\frac{1}{3}A_V V_B \propto \left(\frac{1}{2}\phi_B + 90^\circ - \frac{1}{2}\phi_B + 90^\circ + \frac{3}{2}\phi_B\right)
$$

Superposition of incoming signals

Superposition of incoming signals

| ŠÕLID-STATE
| CIRCUITS SOCIETY''

Blocker-Cancellation Operation

- Blockers **cancelled** at LNA outputs.
- Requires **lossless nonreciprocal** phase-shifters.
	- Lossy PSs result in partial spatial blocker cancellation

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase Shifter
- Receiver Implementation
- Measurement Results
- Conclusion

Quadrature Hybrid

Depending on the excitation port, either the IN or ISO port, the phase difference between THR and CPL ports is different.

Reflection-Type Phase-Shifter

$$
\Delta \phi_F = \Delta \phi_R = 90^\circ + 2 \tan^{-1} \left(\frac{z_0}{X_L}\right)
$$

 X_l : Reactance of the load

An RTPS provides a reciprocal phase-shift with a value dependent on the imaginary load.

Forward Phase-Shift

IEEE
SOLID-STATE

CUITS SOCIETY

MTT-S

Applying an input signal to P_1 .

Forward Phase-Shift

) IEEE
| SOLID-STATE
| CIRCUITS SOCIETY'''

MTT-S

$$
\Delta \phi_F = 90^\circ + 2 \tan^{-1}(z_0 g_m)
$$

木木

) IEEE
| SOLID-STATE
| CIRCUITS SOCIETY'''

Reverse Phase-Shift

Applying an input signal to P_2 .

THE REFELICITY
Section State
Circuits Society

MTT-S

Reverse Phase-Shift

$$
\Delta \phi_R = 90^\circ - 2 \tan^{-1}(z_0 g_m)
$$

) IEEE
| SOLID-STATE
| CIRCUITS SOCIETY'''

MTT-S

木木

Non-Reciprocal Phase-Shifter

||EEE
||SOLID-STATE
| CIRCUITS SOCIETY''

Non-Reciprocal Phase-Shifter

SOLID-STATE

- ¹ Estimated from figures.
- ² From simulation.

Inverter-Based Phase-Shifter

<u>SOLID-STATE</u>

JITS SOCIETY

Inverter-Based Phase-Shifter

<u>SOLID-STATE</u>

JITS SOCIETY

Inverter-Based Phase-Shifter

Linearity performance can be improved by using inverters.

Blue inverters operate in the linear region due to their small output swing. Gray inverters do not contribute non-linearity as their input is silent.

SOLID-STATE

Bias Circuit

Phase shift is offset by parasitic capacitors.

 $MTTS$

SOLID-STATE

JITS SOCIETY

Bias Circuit

Parallel inductors can resonate with the parasitic capacitors.

SOLID-STATE

MTT-S

SOLID-STATE

JITS SOCIETY

Bias Circuit

Adding inductors can create an LC oscillator.

Bias Circuit

We can add a resistor to solve the problem.

T-S

SOLID-STATE

IITS SOCIETY

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase-Shifter
- Implementation
- Measurement Results
- Conclusion

OLID-STATE

• LNA

- Single-stage LNA
- High linearity performance
- Changing the polarity to cover 360°

MTT-S

) IEEE
| SOLID-STATE
| CIRCUITS SOCIETY'''

• NRPS

- Active Quadrature Mixer
	- g_m -boosting
	- Inter-stage peaking network with transmission line

SOLID-STATE

CUITS SOCIETY

- IF beamformer
	- High linearity due to the feedback loop

SOLID-STATE ICUITS SOCIETY

- LO Generation
	- Quadrature All-pass Filter (QAF)

Die Micrograph

- **Technology**
	- 45nm SOI **GlobalFoundries**
- Silicon Area
	- 3.2 mm^2
- Power Supply
	- 0.9V for LNA
	- 1.2V for others

SOLID-STATE

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase Shifter
- Implementation
- Measurement Results
- Conclusion

||EEE
||SOLID-STATE
| CIRCUITS SOCIETY'''

MTT-S

Frequency (GHz)

39 RMo1A - 4

REQR

Up to two spatial notches can be created by independently tuning SNF and IFBF.

) IEEE
|} SOLID-STATE
|} CIRCUITS SOCIETY'''

MTT-S

Linearity Test

SNF: OFF

- SNF & IFBF off: -30 dBm
- **IFBF** on: -22 dBm
- SNF on: -13 dBm
- SNF & IFBF on: -7.8 dBm

IEEE
SOLID-STATE **CIRCUITS SOCIETY**

This receiver structure can support 2-D MIMO.

MTT-S

スシ

Comparison Table

¹ Estimated from figures. ² Calculated the real angles from figures. ³ Over-the-air (OTA) measurement results.

4x higher spatial blocker tolerance than fully-integrated prior work ([Zhang, ISSCC'22])

Outline

- Motivation and Introduction
- Proposed RX Architecture with Spatial Notch Filter
- Proposed Non-Reciprocal Phase-Shifter
- Implementation
- Measurement Results
- Conclusion

Conclusion

- A novel non-reciprocal low-loss and compact phaseshifter is proposed.
- By taking advantage of non-reciprocity, spatial notch filtering is achieved at the LNAs' outputs.
- Non-reciprocal phase-shifters can be disabled in the absence of blockers.
- Compared to prior fully-integrated mm-wave receivers, this work achieves the highest in-notch input P_{1dB} .

Acknowledgments

- The authors thank Dr. Qingyun Xie, Eunseok Lee, Jessica Kedziora and Yidong Fang for their assistance during measurements and the MIT MTL faculty for equipment assistance.
- The chip fabrication was financially supported by MIT Center for Integrated Circuits and Systems (CICS).

Thank you for your attention.

NRPS Setting

IEEE
SOLID-STATE
CIRCUITS SOCIETY™

MTT-S

Bias Circuit

) IEEE
| SOLID-STATE
| CIRCUITS SOCIETY'''

Esscs

MTT-S

木入

 $\overline{}$

