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Abstract

We analyze a model of optimal gerrymandering where two parties receive a noisy
signal about voter preferences from a continuous distribution and simultaneously design
districts in different states and in which the median voter in a district determines the
winner. The form of the optimal gerrymander involves “slices” of extreme right-wing
voters that are paired with “slices” of left-wing voters, as in Friedman and Holden
(2008). We also show that, as one party controls the redistricting process in more
states, that party designs districts so as to spread out the distribution of district me-

dian voters from a given state. (JEL D72, H10, K00).

*Friedman: University of California at Berkeley, Evans Hall, 5th floor, CA 94720. email: jfried-
man@post.harvard.edu.  Holden: Massachusetts Institute of Technology Sloan School of Management,
E52-410, 50 Memorial Drive, Cambridge MA 02142. email: rholden@mit.edu. Friedman acknowledges
the support of the RWJ Scholars in Health Policy Program.



1 Introduction

A growing literature analyzes gerrymandering, the process by which politicians draw the
boundaries of their own electoral districts. To simplify the analysis, however, most papers
have focused on the simplest case-that in which one party controls the redistricting of one
state (Owen and Groffman 1988, Gilligan and Matsusaka 1999, Friedman and Holden 2008).
In practice, of course, Republicans and Democrats each control the districting process in a
number of states. Thus the environment is best represented as a two-player game rather
than a control problem. A key feature of this game is the number of states which are
controlled by a given party. For example, in 2002 the G.O.P. gained control of redistricting
in: Florida, Idaho, Kansas, Michigan, Pennsylvania and Texas. This gave them a net gain
of 95 districts in which they controlled the redistricting process'. The Democratic party
had a net gain of just 1 district>. How do shifts like this in control of redistricting affect
equilibrium strategies? This is the question we address in this paper.

We build on our work in Friedman and Holden (2008) to provide a treatment of the
districting game in an environment where the median voter in a district is decisive. The
analysis that follows has two parts. First, we extend the analysis of Friedman and Holden
(2008) to a multi-state, multi-party environment. The key result from this analysis is that
the form of the optimal gerrymander in Friedman and Holden (2008) is the same in the
richer environment. Specifically, when signals are sufficiently precise, the party in control
forms districts by matching a group of right-wing voters with a group of left-wing voters,
with these “slices” of voters becoming progressively less extreme as the district becomes less
favorable to the redistricting party.

Having established the basic form of the optimal gerrymander in the Friedman-Holden

framework, we then analyze a more abstract model where players simply control district

!They lost control of New Hampshire and its 2 districts.

2See Friedman and Holden (2009) for a detailed breakdown. We treat CA as being previously controlled
by the Democrats since they had partisan control in 1972 and court imposed plans modified this in 1982 and
1992 before partisan control by Democrats in 2002.



medians subject to constraints. This is a model of the districting game at what is arguably
its most general level. We compute comparative statics on optimal district formation with
respect to key parameters of the redistricting game. Most importantly, we show that as
one party controls the redistricting in more states, that party creates districts that are less
homogenous within a state. Viewed from the specific model of redistricting in Section 2, this
implies that a greater number of right-wing voters are matched with more left-wing voters
when the party controls more states. This increases the effective representation of extreme
supporters of both parties.

The work most closely related to ours is an elegant paper by Gul and Pesendorfer (2008).
They characterize the set of equilibria using an ingenious argument which restates the game
as a control problem involving maximization of the number of seats won at cutoff values of
an aggregate shock to voter preferences. This also allows them to provide the important
comparative static on the consequences for the optimal gerrymander as the number of states
districted by a particular party changes. One simplifying assumption which Gul and Pe-
sendorfer (2008) make is that there are only two types of voters. In a single state model it is
known that the familiar pack-and-crack strategy obtains with only two voter types, but not
with more types (Friedman and Holden 2008, Proposition 3). By contrast, our first result on
the matching slices strategy contrasts with this. Despite the additional complexity which
the assumption of a continuum of voter types brings with it, we are also able to analyze
the impact of more general objective functions that the simple majoritarian function Gul
and Pesendorder analyze. We make use of certain useful mathematical results on Pdlya
frequency functions to perform this analysis.

The remainder of the paper is organized as follows. Section 2 shows that the matching
slices strategy of Friedman and Holden (2008) obtains in the redistricting game. Section 3
considers a general model of competitive redistricting and shows how the optimal strategy
changes as the proportion of districts controlled by one party changes. Section 4 contains

some concluding remarks.



2 The Optimal Gerrymander

In this section we extend the model in Friedman and Holden (2008) to include two parties

and many states.

2.1 The Model

There are two parties D and R. In a given state s, there a unit mass of voters with
heterogenous preference points [, but the parties apportioning voters only observe a noisy
signal of this parameter, denoted 0.>  We denote the joint distribution as f, (3,0) and
the posterior conditional distribution, or the “conditional preference distribution,” g (o5).
The marginal distribution of signals in the state s, or the “signal distribution,” is denoted
hs (o) = [ fs(0,B)dB. Let p,, denote the median voter in district n in state s, and 1, (o)
denote the mass of voters placed in such a district by the gerrymanderer. Suppose in state
s there are Ny districts. There are two constraints on the formation of districts. First, all

Second, each voter in state s

districts in state s must contain the same mass of voters —
S

-
must appear in exactly one district in state s. Aggregate uncertainty in state s occurs with
distribution function B, so that the probability the Republicans win district n in state s is
B (i)

We assume that each party redistricts some states. To do so, we assume that there are .S
states comprising a total of IV districts. Suppose that party D creates the districts in states
1 < s < Sp, party R does the same in states Sp < s < Sk, and states s > Sg are redistricted
exogenously to the model; this could represent bipartisan gerrymandering (in which no single
party controls the organs of redistricting in a state) or court-mandated apportionment. Each
party p has value function W, : [0, 1] — R, whose domain is the fraction of seats (districts)

won in the election. We assume that each W), is strictly increasing, and that parties maximize

expected payoffs.

3Note that one can model this reduced form “bliss point” approach as the implication of an assumption
that voters have preferences over policy outcomes that satisfy “single-crossing” and that all candidates from
a given party in a given state share a policy position. See Friedman and Holden (2008) for this treatment.
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We assume that parties move simultaneously. This assumption matches the reality that
49 states must (by state law) redistrict within a window of about six months, after the
release of the preliminary census but in time to organize the next Congressional elections.
Furthermore, redistricting is typically a long and involved process, so that states cannot
afford to wait for other states to complete their redistricting process. We focus on Nash
equilibria of this game. The choice variables of each party are the signal distributions in
their districts; thus, the party R may choose {1, (0)}22‘;’; ifi:f]\[& while the democrats may
choose {i,, (o)}157 N

Formally, party D faces the problem

1 Sp N, Sk Ns S N;
max EWp <N (ZZdns+ Z Zdns—l— Z Zdns>)

s=Sp,n=N,
{wns(a)}s:LnZI ° s=1 n=1 s=Sp+1n=1 s=Sr+1n=1

Vn, s

=

st. /_ : . (0)do =

N
D (o) = hi(o) Vo,s
n=1

0

IN

wns (U) < hs (U) vn,O',S.

and party D solves a parallel problem where d,,; is a dummy variable equal to one if party D
wins the election in district n in state s. Party R faces a similar problem but with different
state districting schemes as the choice variables.

We now make two assumptions about the nature of the relationship between the signal
o and the true voter preference 3. First, we require that the signal o is informative about

the underlying preference [, in a specific sense.
Condition 1 (Informative Signal Property) Let %{f'(’) =2z(f| o). Then

%(Blo) _ z(6]0)

< Vo' >0, B >0, s

zs (B ] o) z (8" | o)’




This property is similar to the Monotone Likelihood Ratio Property, and if a the signal shifts
only the mean of the conditional preference distribution, then this property is equivalent to
MRLP.

Second, we require a form of unimodality.

Condition 2 (Central Unimodality) Foralls, gs (5 | o) is a unimodal distribution where

the mode lies at the median.

Note that, without loss of generality (given Condition 1), we can “rescale” o such that
o =max, gs (0 | ). The two parts of Condition 2 essentially require that 3 is distributed

“near” o, and not elsewhere.’

2.2 The Form of the Optimal Gerrymander

We can now state the first of two main results of this section.

Proposition 1 Suppose that Conditions 1 and 2 hold. Then for a sufficiently precise signal
the optimal districting plan in any equilibrium, for each party p, in each state s, can be
characterized by breakpoints {uns}nNil and {lm,,}nNi1 (ordered such that uis > ugs > ... >

UN,—1.s > IN,—15 > ... > 11 > —00) such that

h(o) ifo<ly oro>uw
77/}15 - ’

0 otherwise

h(o) ifly1 <o <l, oru,_1>0>u,
Vs = forl<n <N,

0 otherwise

dz/} h(O’) if0>lN_1 or o < un—1
an NS,S ==
0 otherwise

1See footnote 11 of Friedman and Holden (2008) for a simple proof of this.
For a more detailed discussion on this property, see Friedman and Holden (2008).



This result establishes that “cracking” is not optimal, so that parties find it optimal to
group the most partisan voters into one district within a given state. Parties still may wish
to “pack” those least favorable voters into segregated districts, though. We now provide

conditions under which packing too is not optimal.

Proposition 2 Suppose that Conditions 1 and 2 hold, and the signal is of sufficiently high
quality.  Then in any set of equilibrium redistricting strategies, there exists n and o < o’

such that p,, > jy ., and o €1, , o' € Yy for alln,s.

ns?

Thus, in Proposition 2, we rule out the possibility of “packing” as well. We refer to this

“matching slices” strategy, since the

strategy, in its purest form (as in Proposition 2), as a
parties find it optimal to match slices together from extreme ends of the signal distribution,
working in to the middle of the distribution. Figure 1 is an example of a strategy (in a

single state with five districts) that satisfies the conditions in Propositions 1 and 2.

Figure 1: The form of the optimal gerrymander

These results extend those in Friedman and Holden (2008) to the richer setting in which

parties do not control all districts, but instead control only a fraction of the relevant districts.



Furthermore, parties must apportion voters within preexisting states, which further limits
their flexibility. To understand intuitively why the original results extend to this broader
case, consider the gain to party D from winning a given district, as opposed to losing it.
If the value function is non-linear, this value may change greatly depending on the party
R’s districting plan for their states, the nature of the exogenous redistricting, or the set of
states controlled by the party R. But holding all else fixed—which is precisely what happens
at Nash equilibrium—an increase in the probability of winning the given district increases
the value function linearly. Thus, the trade-offs between districts in this more complicated
model differ only from those in a simpler model (in which a party maximizes the sum of
the probabilities of winning districts, or the expected number of districts won) by constant
terms. A party may adjust by altering the number of right-wingers in the upper “slice” of
each district in a given state, but the fundamental characterization of the optimal strategy,

as described in Propositions 1 and 2, remains the same.

3 A Generalized Model

The above model is useful for characterizing equilibrium strategies, but it can be abstracted
from to some degree when considering comparative statics. At the most basic level, each
party constructs districts so as to choose median voters in those districts, subject to con-

straints given by the primitives of the problem.

3.1 The National Model and Party Preferences

Denote the median voter in a district n in state s by pu,,. Let the feasible set of medians
for player R be Q2. There are two types of shocks: national and district-specific, denoted

¢ and 1 respectively, with cdfs B and C. These shocks are mean zero and symmetrically



distributed. Party R’s vote-share in district n in state s is

VTLS = V (lu“ns + wns + gb)

where V' is a strictly increasing function and V (0) = 3. Party R wins such a district if
and only if V,,; > % Thus, the probability of winning such a district, conditional on the
aggregate shock, is

Pr(win) = C(u+ ¢).

There are two parties, R and D. Party R may design the districts in fraction \ of the
continuum of states®, and party D controls redistricting in the other 1 — X\. Thus, suppose
that (after redistrictings) the distribution of median voters in the population is M (x). Then

party R wins
X (6) = [ Cu+ ) M)y

districts. The party values the fraction of seats won by the function W (), which is a weakly

increasing function.

3.2 A Special Case

Suppose that we make the strong assumption that C' is a uniform distribution, so that
¢(-) = k for some constant. Then we can rewrite the expected number of seats won by

party R as

X(9) = k/(uﬂb)M(u)du

— kit (L= N ip+0).

6The assumption that there are a continuum of states is important in that it allows us, by the law of
large numbers, to treat C' as the proportion of districts won, not just the probability of so doing. We view
this, however, as a technical assumption.




and the expected value function for party R as

EW = [ W (g + (1= N + 6)b(6) do.

But here it clear that each party does best simply to maximize the average of the median
voters in the districts in their control. Note that there is no strategic interaction at all
between the parties in this special case—or at least the game is dominance solvable. As a
result, the share of states A under the control of party R can have no impact on the optimal

gerrymander.

3.3 The General Case

By assumptions made above, all states are the same, so the optimal gerrymander will be
identical across them. Denote by {u,r} and {p,p} the medians of the districts in states
controlled by party R or D, respectively, and denote by N and Np the total number of

districts controlled by parties R and D. We then have

X Qi (n} 1) = A S Clmn + )| + 1N |3 Clonp +0)]

Parties then maximize their value function, as weighted by the different possible outcomes
of the aggregate shock ¢.
We can restate the problem that the parties solve. Proposition 3 shows that the parties

act as though they maximize vote shares over a weighted average of different situations.

Proposition 3 Suppose that W () is continuous. As a function of the strategies chosen

by the parties {:unD} and {NnR}i deﬁne gb* ({:unD} ) {IU“nR} 7‘73) such that

A Clpy+ )+ (1=N)Y Cp, + ") =z

ner neD
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Then the optimal gerrymander {iu, p} will satisfy the necessary conditions to the problem

(1) max / W (2)b (6" (@) 32 C (o + 6" Laip} {pie} ,2)| do

{/J‘nR}

such that {p,r} € Qr.

FEach party thus acts as though it maximizes the number of seats won across a weighted

average of values of ¢ (which does not depend on the strategies).

Note that the alternative maximization above does not involve anything about the dis-
tricts designed by the opponent party D, conditional on ¢* (z). If we can specify the set
of ¢* (x) values, then Proposition 3 allows us to restate the maximization problem in a way
that does not involve the other party’s choices. This simplifies the analysis greatly. Of
course, the optimal sets of district medians {y ,} and {p}z} and the set of ¢* (z) values are
jointly determined. But if we can identify variables that shift the ¢* (z) values, for instance,
then we can trace through the implications for the optimal district medians.

This result is a generalized version of Theorem 1 in Gul and Pesendorfer (2007), we
focus on the case where parties care only about winning a majority in the legislature. The

following Corollary links our result above to theirs.

Corollary 1 Suppose that the party’s value function over seats won is

NI~ NI

—~
=
I
N |—=
8
Il

N[ =

Then
* * 1
{115} = arg max » _C (un +¢ (—))
{MTLR} 2
so that parties simply maximize the share of seats won at one specific value of the aggregate

shock, which is the “pivotal value.”
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These two results are, at some level, quite intuitive. If, for instance, a party controls
very few states, then it must turn out to be an extremely favorable state of the world in
order for it to win. And in such a setup, it is natural for the party to simply assume that
it receives such a shock when redistricting.

But these results are also far more precise than the preceding intuition might suggest.
Suppose, for instance, that two parties control the same number of states, and so the aggre-
gate shock must simply be above average for a given party to win. Corollary 1 shows that
parties do not maximize over all such winning values of the shock; rather, they do so only

with respect to the one pivotal value at which the parties are evenly matched.

3.4 Comparative Statics

We wish to know whether parties that control the redistricting in more states will act differ-
ently in equilibrium than a party that controls fewer states. Given Proposition 3, we can
rephrase the problem faced by each as maximizing the vote-share conditional on the pivotal
value ¢*. Of course, this requires knowing ¢*, which is jointly determined with the optimal
strategy. But we do know that, as A\ increases, ¢* will decrease, since a party needs less
luck from the aggregate shock because it has more districts gerrymandered to it’s advantage.
Thus, we can solve for the comparative static of A by solving for the comparative static on
¢*. And even though one cannot actual solve for ¢*, we can simply assume a value of ¢*

and then see what changing that value does to the districting scheme.

3.4.1 Two Districts per State

Suppose that there are only two districts per state. Proposition 4 then shows how parties

alter their optimal redistricting strategies when they control more states.

12



Proposition 4 Assume that

1 >

N[

N[ =

0 z<

N =

that there are only 2 districts per state and that c is log-concave. Then as A increases, and
party R controls more districts, pj increases, so that party R includes a larger upper slice in

the first district. This increases the disparity between p; and fi.

The intuition behind this result stems from the fact that parties optimize their districts
relative to the marginal value of the aggregate shock. If parties control an equal number of
states, then the aggregate must be better than average for that party to win. In this case,
both the favorable and unfavorable districts may be in play, since the local shock necessary to
tip a district to one party or another is not so big. But if a party controls many states, then
the aggregate shock will have to be quite negative for the party to lose the election. And in
such a situation, the trade-off between favorable districts and unfavorable districts is much
different. Since the aggregate shock is so negative, unfavorable districts are now essentially
unwinnable, and so increasing the median voter helps very little. Favorable districts are
still very winnable, and so parties choose to increase the median voter in district 1 (in our
two-district example) at the cost of lowering that in district 2.

This result implies that the control of redistricting matters crucially for the nature of
representation in the legislature. There are two effects. First, parties redistrict so as to
maximize their own representation, so more equal control of state districting has a straight-
forward effect on the balance of representation in the legislature. But Proposition 4 shows
that there is another effect as parties change the way they draw districts in states they do
control. As one party controls more states, it draws districts with median voters that are
further from the overall median voter, thus increasing both the polarization of the legislature

and the representation of extreme voters in the population.
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3.4.2 Many Districts

When there are many districts per state and the objective function remains a simple step
function, the intuition from the previous section still holds. = When the share of states
apportioned by R increases, there is a force pulling each pair of district medians. But
suppose there are three districts; the middle median should move down relative to the upper
median, but up relative to the lower median. These competing forces make the direction of
movement for this middle median theoretically ambiguous. As before, the uppermost median
must increase, while the lowermost median must decrease. Proposition 5 characterizes this

situation more generally.

Proposition 5 Suppose there are N districts per state. Assume that

1 x>%
0 x<%

and that c is log-concave. Then as A\ increases so that party R controls more districts, u}

increases and (1 decreases.

Intuitively, these forces tend to stretch out the distribution of district medians within a
given state, but the complexity of the dynamics prevents a more systematic characterization.
Table 1 and Figure 2 present a numerical example that illustrates these forces. In this
example, we suppose that there is mass one of identical states with five districts each. In
each state, both the signal distribution H (o) and the conditional preference distribution
G (B | o) are Normals with mean 0 and variance 2.5. We assume that B (¢) and C (¢)
are Normal distributions with mean 0 and variance é—i. Each row of Table 1 presents the
equilibrium strategy given a share of control \. As we increase A, the medians are pulled

further apart. Both pj and g5 increase monotonically in this example; p; and pf each

decrease as A increases. The middle median sometimes moves up and sometimes moves

14



down as party R’s state control increases. In this example, district 2 exhibits a monotonic
increase and district 4 a monotonic decrease. We do not believe this to be a general result—
all districts other than the top and bottom could move ambiguously—but we do not have a

counterexample.

[Table 1 and Figure 2 about here]

3.4.3 Generalizing the Objective Function

The above results have focused on the case when the objective function is a step function with
a single discontinuity. With a more complex objective function, each first order condition

becomes the ratio
[ W (@)b (6" (@) e s + ¢ (@) de A,
JW (@) b(¢" (x)) ¢ (p; + ¢" (2)) dx ==0 A

Analyzing this expression is difficult in general. In order to sign a similar comparative

static with respect to A, this ratio must be weakly monotonic in A. Intuitively, we need
more than log-concavity of ¢; instead, we need log-concavity in a weighted average of c. It
is certainly not the case that this holds for all increasing functions W; for instance, if the
value function were a step function with two discontinuities, then the effective bimodality of
W’ (z) can counterbalance the log-concavity if ¢. We can, however, provide a condition on
the objective function under which Proposition 4 generalizes. This involves so-called Pdlya

frequency functions and hence a couple of definitions are in order before we state our result.

Definition 1 Let X and Y be subsets of R and let K : X xY — R. We say that K 1is

totally positive of order n (TP,) if vt1 < ... <z, and y; < ... <y, imply:

K(xlayl) K(xbym)

K(xm,y1) - K(Tm,Ym)

15



for eachm =1,....n.

Total positivity has wide applications in economics. When K is a density T'P, is equiv-

alent to the monotone likelihood ratio property.

Definition 2 A Pdélya frequency function of order n (PF),) is a function of a single real

argument f(z) for which K (z,y) = f (x —y) is TP,, with —oco < x,y < o0.

Proposition 6 Suppose that there are N districts per state, that W' (x) is PFy, that b is the
uniform distribution and that c is log-concave. Then as \ increases, and party R controls

more districts, |1} increases and jiy, decreases.

This proof of this result is closely related to the observation that the convolution of two
log-concave densities is itself log-concave. W' (x) is clearly not a density, but the appropriate
generalization is that it must be PF5 (a condition which log-concave densities satisfy).

A natural question to ask is what objective functions W (z) have derivatives which satisfy
this requirement, and how economically reasonable are they.

As the definition of PF, makes clear, there is a wide variety of functions in this class.
Here we provide one simple example of interest. It is easy to verify that the function

W' (x) = e’ is PF, (see Karlin 1968, p.30 for a proof). Integrating over x yields

_ VAERF (2/7)

W (2) s

where ERF is the “error correction function” (i.e. the integral of the Normal distribution

function). The following graph illustrates this function for v = 3.
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5.z 5.4 5.6 5. 1
Example of an Objective Function Satisying the

Conditions of Proposition 6

This objective function is clearly increasing and strictly concave in the number of districts
won. It is easy to see that v parameterizes the degree of concavity, with a higher value of v
corresponding to a more concave objective function. This is only one function in the class
of functions satisfying the conditions of Proposition 6, but this demonstrates that there are
plausible objective functions in that class.

Another function that satisfies Definition 2, of course, is the Normal cumulative distrib-

ution function.”

This class of functions have a great deal of intuitive appeal as a continuous
legislative value function, since the marginal value of a seat is greatest at 50% and falling as

one party has a larger and larger majority.

TOf course, ® : R — [0,1] while our W : [0,1] — R. But the range restriction is unimportant, and since
Definition 2 is unaffected by scale changes, we can define

®(z—3)

for any Normal CDF @ (x).
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It is also informative to think about objective functions W that do not satisfy this

definition. One simple example is the double-discontinuity function

0 x<%
by

W (z) = % §<1‘<§
e
\1 x>§

Assume that there are two districts per state and that ¢* is distributed uniformly, for sim-

plicity. Suppose that C'is log-concave. Then by Proposition 3, we know that the ratio

@ PP = o (8) + el + o (

must be monotone in A for the comparative static to hold. From log-concavity, we know
that the ratio % is increasing in A for all z. But it will not generally be the case that
the combined ratio in expression (2) is increasing. For instance, suppose that the following

values hold for Ag > M.

c(ptor(3)) | clnter(3))
c(nate™(3)) | e(mate(3)) DDR

8 100 108

AH 2 100 102 ~ 1
3 1 4

AL 1 5 3> 1

Intuitively, the double-discontinuity objective function is an extreme example of a func-
tion that is not PF;, since it is the limit of an extremely bimodal function. When “convo-
luted” with W', C loses its log-concavity, and so a fall in ¢* is no longer enough to guarantee

an increase in the value of the higher median.
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4 Discussion and Conclusion

We have presented a model of competitive gerrymandering in which two parties control
redistricting across many states. After confirming that the “matching slices” strategy from
Friedman and Holden (2008) obtains in this richer setting, we showed that this redistricting
game can be restated as a control problem, in the manner of Gul and Pesendorfer (2008). We
then showed that an increase in the number of states controlled by a party in the redistricting
game tends to spread out the distribution of optimal district medians. This shift increases
the representation of extreme voters of both parties at the expense of moderates, especially
those in the party gaining power.

These results bear on a number of broader topics in American politics. In recent years,
Republicans have gained control of a number of key state legislatures, allowing them to design
partisan gerrymanders in large states such as Pennsylvania, Florida and Texas. As a result
of new partisan gerrymanders in these states in 2002 (and 2004, in Texas), the Republicans
increased their majority of representatives from these states from 11 to 32.* Our results
imply that this shift in power may well have affected the nature of representation in other
states as well.

Our results also speak to the phenomenon of independent redistricting commissions.
Such non-partisan bodies handle apportionment in Iowa, Arizona, and now California. Al-
though they failed to pass, ballot initiatives in Florida and Ohio recently considered this
change too. Our results imply that there is both a direct and an indirect effect of adopt-
ing such an institution. That is, with California’s districts constructed by an independent
commission then the strategies of Democrats and Republicans should change in other states.
In principle, such effects could be large—particularly since the state in question has a large
number of districts. Since the change in strategies leads to districts being constructed with
less extreme median voters in other states, this may be seen as an additional benefit of

independent commissions.

8Due to reapportionment, these states collectively gained one representative in 2002.
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5 Appendix

Proof of Proposition 1 This result follows the proof of Proposition 6 in FH (2008). Note

that objection function, for each district a party p must create, can be factored such that
E‘{l’ = BS (:uns) Kns + (1 - BS (:uns)) LnS

where K,s = E[V,|d,s = 1] and L,s = E[V,|d,s = 0] denote the expected value if party p
were to win or lose district n in state s, respectively. Now, fix the districting plan (for
both parties) and consider the change in the objective function resulting from small deviation
from the existing plan in district n with an offsetting change in district m, with both districts
in state s. The derivative of the value function, with respect to this change (which, in
shorthand, we denote x ), is

OE [V,
x

Oblis

p
- bs Kms - Lms — =
L ) s

5%

= by (:UJns) (Kns - Lns)

which must equal 0 for the plan to be optimal. At this point, we note that, but for the
constants K,s, Lps, Kpns, and Ly, this expression is identical to that in equation (7) of
FH (2008). Thus, we can directly apply Lemmas 1 through 8 from that paper, which imply
Propositions 1 that paper, which is the result here. Since any optimal strategy must have
this form, it must be that all equilibria must be such that each party employs a strategy of
this form.

QED

Proof of Proposition 2 The proof follows exactly along the lines of Proposition 2
from FH (2008). Since all optimal districting schemes have this feature, it must be that all
equilibria involve strategies with this feature.

QED
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Proof of Proposition 3 Define the function ¢* ({it,r}, {it,p} ;) such that

X ({ttnrt s {ttap} s ¢") :/\ZC(Mn+¢*)+(1_)‘)ZC(Mn+¢*) =z

neR neD

The maximization problem for party R can then be written as

max / W (@) [1 = B(&" [{ttar} » {itnp} 5 7)) da

{MnR}

such that {ugz} € Qr.

In words, the party gets W' (x) if the aggregate shock is higher than ¢ (x), and we must add
up across all of the values x. At an optimum it cannot be the case that reallocating voters
with positive mass between (say) district i to district j increases the value function and is
still within the constraint set. Howewver, consider such a reallocation and denote the increase
in the median of district i as A; and the decrease in the median of district j as A;. Since
the value function is differentiable it must be that for any two districts i and j in the same
state
W @)b (" @0) 25w,

= lim =2

JWr@)b (o () %5 dn =0 A

where the limit is taken such that the profile of switching voters is held constant. But, by

our definition of ¢* above, we know that

09" _ ¢ (py+ 0" (x))
Oy A perclng +0") + (1= X)X cpcluip +07)

Therefore the above ratio can be rewritten as

JW' (@) f (& {pnrt Antsz]) e (s + ¢ {unnt  {pnp} s 2]) do — lim A

JW (@) f (0" Huirt {unpts o)) e (uy + " Hpipt s {pip} s o)) de - =0 A

where ¢ is that value associated with the equilibrium strategies. But these are the just the

necessary conditions to the problem in which the gerrymanderer maximizes the alternative
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objective function
max [ W (0) £ 6" (i) i} 0]) 2 C G+ 6 g} i) s do

such that {u,z} € Qg.

QED

Proof of Corollary 1 Consider the situation in which party R’s value function is

o

"+ (1 —x)"

(=)o) (logz —log (1 - 2))
" (a" + (1 —a)")’

W, =

Note that, as n — oo, W limits to the desired function. By Proposition 3, party R solves

the alternative maximization

{1ar} 2

Wi (), . _— .
max/ lwg(l)b(d) (x))zc(ud+¢ (rapt {nar} 2))| dx

such that {u, 5z} € Qg.

which is identical to equation (1) above but for scaling by the constant term W) (%) But
as n — 00, the weights

lim Ty
n=oe Wy (3) 1

NI= N

Tr =

Thus the necessary conditions are simply that

c(pi+07) Ay

¢ (Mj + (75*) Ay

These are the same necessary conditions as if party R simply mazimized the number of seats
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won at critical value ¢* ({p5p}, {1sr} . 3), which could be written

* * * 1
mox 3 (s, + 6 (o) i) 5 ))
{/J‘nR} neR 2
such that {u,z} € Qg.
QED
Proof of Proposition 4 Following Corollary 1, there are two FOCs that combine to
imply

c(p+9¢") _ Ap
clpg+0°)  Apy

Writing iy (pt,) one can substitute into the objective function above, so that the FOC becomes

1

argra&gc {C (1, +9) +C (s (1) +0)}
¢l +9") _ dug ()

c(pg + ¢%) dpy

d
Of course, a2l

s < 0. Then, by the implicit function theorem, we know that Duj

a5 < 0 of
and only if the LHS is decreasing in ¢*, which is true if and only if
d (g + ") <6 (g + ")
<y +¢7)  clpg+¢7)
Note that by the equal mass constraint it must be that ggi 1s of the opposite sign as ggl
Moreover, % depends entirely on whether the ratio c@)

=) 18 increasing or decreasing in 1.
This ratio being decreasing is precisely the definition of log concavity and hence ggi < 0.
QED

Proof of Proposition 5 Following Corollary 1, we mazximize the objective function

max » C(u, +¢").
{MnR} neR
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Consider a deviation in which one shifts j, upwards by amount Ap, and then shifts all other

medians down by Ap_,. The no-benefit condition from such a deviation is

(3) C (ul + Qb*) — A:ufl
Donp iy +07)  Apy
Note, at this point, that the medians {f, ..., ix} are chosen optimally. Therefore, we can

implicitly differentiate this expression to obtain the impact of ¢* on py, since all deviations
within the medians {iy, ..., 1y} have a second order impact on the value function, by the

Envelope Theorem. From Proposition 4, we know that the ratio % is falling with ¢*,

and therefore we know that the LHS of equation (3) is also decreasing in ¢*. Therefore, we

ouy

8¢* > 0-

know that ggi < 0. A parallel argument establishes that

QED

Proof of Proposition 6 Karlin (1968, p.30) shows that the convolution h = f - g is
PF, if f and g are PF,. By a theorem of Schoenberg (1947, 1951), PF, of a density is
equivalent to log-concavity. The assumption of uniformity of b means that we are left with
the term [ W’ (z) ¢ (y; + ¢* (z)) dx, which is PF; since W' (z) is PF, and ¢ is log-concave.
Since W' (x) is PFy it is integrable and hence continuous. Now the proof of Proposition 5
applies.

QED
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