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Abstract

We analyze a model of optimal gerrymandering where two parties receive a noisy

signal about voter preferences from a continuous distribution and simultaneously design

districts in di¤erent states and in which the median voter in a district determines the

winner. The form of the optimal gerrymander involves �slices�of extreme right-wing

voters that are paired with �slices� of left-wing voters, as in Friedman and Holden

(2008). We also show that, as one party controls the redistricting process in more

states, that party designs districts so as to spread out the distribution of district me-

dian voters from a given state. (JEL D72, H10, K00).
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1 Introduction

A growing literature analyzes gerrymandering, the process by which politicians draw the

boundaries of their own electoral districts. To simplify the analysis, however, most papers

have focused on the simplest case�that in which one party controls the redistricting of one

state (Owen and Gro¤man 1988, Gilligan and Matsusaka 1999, Friedman and Holden 2008).

In practice, of course, Republicans and Democrats each control the districting process in a

number of states. Thus the environment is best represented as a two-player game rather

than a control problem. A key feature of this game is the number of states which are

controlled by a given party. For example, in 2002 the G.O.P. gained control of redistricting

in: Florida, Idaho, Kansas, Michigan, Pennsylvania and Texas. This gave them a net gain

of 95 districts in which they controlled the redistricting process1. The Democratic party

had a net gain of just 1 district2. How do shifts like this in control of redistricting a¤ect

equilibrium strategies? This is the question we address in this paper.

We build on our work in Friedman and Holden (2008) to provide a treatment of the

districting game in an environment where the median voter in a district is decisive. The

analysis that follows has two parts. First, we extend the analysis of Friedman and Holden

(2008) to a multi-state, multi-party environment. The key result from this analysis is that

the form of the optimal gerrymander in Friedman and Holden (2008) is the same in the

richer environment. Speci�cally, when signals are su¢ ciently precise, the party in control

forms districts by matching a group of right-wing voters with a group of left-wing voters,

with these �slices�of voters becoming progressively less extreme as the district becomes less

favorable to the redistricting party.

Having established the basic form of the optimal gerrymander in the Friedman-Holden

framework, we then analyze a more abstract model where players simply control district

1They lost control of New Hampshire and its 2 districts.
2See Friedman and Holden (2009) for a detailed breakdown. We treat CA as being previously controlled

by the Democrats since they had partisan control in 1972 and court imposed plans modi�ed this in 1982 and
1992 before partisan control by Democrats in 2002.
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medians subject to constraints. This is a model of the districting game at what is arguably

its most general level. We compute comparative statics on optimal district formation with

respect to key parameters of the redistricting game. Most importantly, we show that as

one party controls the redistricting in more states, that party creates districts that are less

homogenous within a state. Viewed from the speci�c model of redistricting in Section 2, this

implies that a greater number of right-wing voters are matched with more left-wing voters

when the party controls more states. This increases the e¤ective representation of extreme

supporters of both parties.

The work most closely related to ours is an elegant paper by Gul and Pesendorfer (2008).

They characterize the set of equilibria using an ingenious argument which restates the game

as a control problem involving maximization of the number of seats won at cuto¤ values of

an aggregate shock to voter preferences. This also allows them to provide the important

comparative static on the consequences for the optimal gerrymander as the number of states

districted by a particular party changes. One simplifying assumption which Gul and Pe-

sendorfer (2008) make is that there are only two types of voters. In a single state model it is

known that the familiar pack-and-crack strategy obtains with only two voter types, but not

with more types (Friedman and Holden 2008, Proposition 3). By contrast, our �rst result on

the matching slices strategy contrasts with this. Despite the additional complexity which

the assumption of a continuum of voter types brings with it, we are also able to analyze

the impact of more general objective functions that the simple majoritarian function Gul

and Pesendorder analyze. We make use of certain useful mathematical results on Pólya

frequency functions to perform this analysis.

The remainder of the paper is organized as follows. Section 2 shows that the matching

slices strategy of Friedman and Holden (2008) obtains in the redistricting game. Section 3

considers a general model of competitive redistricting and shows how the optimal strategy

changes as the proportion of districts controlled by one party changes. Section 4 contains

some concluding remarks.
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2 The Optimal Gerrymander

In this section we extend the model in Friedman and Holden (2008) to include two parties

and many states.

2.1 The Model

There are two parties D and R. In a given state s, there a unit mass of voters with

heterogenous preference points �, but the parties apportioning voters only observe a noisy

signal of this parameter, denoted �.3 We denote the joint distribution as fs (�; �) and

the posterior conditional distribution, or the �conditional preference distribution,�gs (�j�).

The marginal distribution of signals in the state s, or the �signal distribution,� is denoted

hs (�) =
R
fs (�; �) d�. Let �ns denote the median voter in district n in state s, and  ns (�)

denote the mass of voters placed in such a district by the gerrymanderer. Suppose in state

s there are Ns districts. There are two constraints on the formation of districts. First, all

districts in state s must contain the same mass of voters 1
Ns
. Second, each voter in state s

must appear in exactly one district in state s. Aggregate uncertainty in state s occurs with

distribution function B; so that the probability the Republicans win district n in state s is

B (�ns).

We assume that each party redistricts some states. To do so, we assume that there are S

states comprising a total of N districts. Suppose that party D creates the districts in states

1 � s � SD, party R does the same in states SD < s � SR , and states s > SR are redistricted

exogenously to the model; this could represent bipartisan gerrymandering (in which no single

party controls the organs of redistricting in a state) or court-mandated apportionment. Each

party p has value function Wp : [0; 1]! R; whose domain is the fraction of seats (districts)

won in the election. We assume that eachWp is strictly increasing, and that parties maximize

expected payo¤s.
3Note that one can model this reduced form �bliss point�approach as the implication of an assumption

that voters have preferences over policy outcomes that satisfy �single-crossing�and that all candidates from
a given party in a given state share a policy position. See Friedman and Holden (2008) for this treatment.
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We assume that parties move simultaneously. This assumption matches the reality that

49 states must (by state law) redistrict within a window of about six months, after the

release of the preliminary census but in time to organize the next Congressional elections.

Furthermore, redistricting is typically a long and involved process, so that states cannot

a¤ord to wait for other states to complete their redistricting process. We focus on Nash

equilibria of this game. The choice variables of each party are the signal distributions in

their districts; thus, the party R may choose f ns (�)g
s=SD+SR;n=Ns
s=SD+1;n=1

while the democrats may

choose f ns (�)g
s=SD;n=Ns
s=1;n=1 :

Formally, party D faces the problem

max
f ns(�)g

s=SD;n=Ns
s=1;n=1

EWD

 
1

N

 
SDX
s=1

NsX
n=1

dns +

SRX
s=SD+1

NsX
n=1

dns +
SX

s=SR+1

NsX
n=1

dns

!!

s:t:

Z 1

�1
 ns (�) d� =

Ps
Ns

8n; s

NsX
n=1

 ns (�) = hs (�) 8�; s

0 �  ns (�) � hs (�) 8n; �; s:

and party D solves a parallel problem where dns is a dummy variable equal to one if party D

wins the election in district n in state s. Party R faces a similar problem but with di¤erent

state districting schemes as the choice variables.

We now make two assumptions about the nature of the relationship between the signal

� and the true voter preference �. First, we require that the signal � is informative about

the underlying preference �, in a speci�c sense.

Condition 1 (Informative Signal Property) Let @Gs(�j�)
@�

= zs (� j �). Then

zs (� j �0)
zs (� j �)

<
zs (�

0 j �0)
zs (�

0 j �) ; 8�0 > �; �0 > �; s
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This property is similar to the Monotone Likelihood Ratio Property, and if a the signal shifts

only the mean of the conditional preference distribution, then this property is equivalent to

MRLP.4

Second, we require a form of unimodality.

Condition 2 (Central Unimodality) For all s, gs (� j �) is a unimodal distribution where

the mode lies at the median.

Note that, without loss of generality (given Condition 1), we can �rescale� � such that

� = max� gs (� j �). The two parts of Condition 2 essentially require that � is distributed

�near��, and not elsewhere.5

2.2 The Form of the Optimal Gerrymander

We can now state the �rst of two main results of this section.

Proposition 1 Suppose that Conditions 1 and 2 hold. Then for a su¢ ciently precise signal

the optimal districting plan in any equilibrium, for each party p, in each state s, can be

characterized by breakpoints funsgNsn=1 and flnsg
Ns
n=1 (ordered such that u1s > u2s > : : : >

uNs�1;s > lNs�1;s > : : : > l1 � �1) such that

 1s =

8><>: h (�) if � < l1 or � > u1

0 otherwise
;

 ns =

8><>: h (�) if ln�1 < � < ln or un�1 > � > un

0 otherwise
for 1 < n < N;

and  Ns;s =

8><>: h (�) if � > lN�1 or � < uN�1

0 otherwise
:

4See footnote 11 of Friedman and Holden (2008) for a simple proof of this.
5For a more detailed discussion on this property, see Friedman and Holden (2008).
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This result establishes that �cracking� is not optimal, so that parties �nd it optimal to

group the most partisan voters into one district within a given state. Parties still may wish

to �pack� those least favorable voters into segregated districts, though. We now provide

conditions under which packing too is not optimal.

Proposition 2 Suppose that Conditions 1 and 2 hold, and the signal is of su¢ ciently high

quality. Then in any set of equilibrium redistricting strategies, there exists n and � < �0

such that �ns > �Nss and � 2  ns; �0 2  Nss for all n; s:

Thus, in Proposition 2, we rule out the possibility of �packing�as well. We refer to this

strategy, in its purest form (as in Proposition 2), as a �matching slices�strategy, since the

parties �nd it optimal to match slices together from extreme ends of the signal distribution,

working in to the middle of the distribution. Figure 1 is an example of a strategy (in a

single state with �ve districts) that satis�es the conditions in Propositions 1 and 2.

1 12 23 345
4

1 12 23 345
4

Figure 1: The form of the optimal gerrymander

These results extend those in Friedman and Holden (2008) to the richer setting in which

parties do not control all districts, but instead control only a fraction of the relevant districts.
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Furthermore, parties must apportion voters within preexisting states, which further limits

their �exibility. To understand intuitively why the original results extend to this broader

case, consider the gain to party D from winning a given district, as opposed to losing it.

If the value function is non-linear, this value may change greatly depending on the party

R�s districting plan for their states, the nature of the exogenous redistricting, or the set of

states controlled by the party R. But holding all else �xed�which is precisely what happens

at Nash equilibrium�an increase in the probability of winning the given district increases

the value function linearly. Thus, the trade-o¤s between districts in this more complicated

model di¤er only from those in a simpler model (in which a party maximizes the sum of

the probabilities of winning districts, or the expected number of districts won) by constant

terms. A party may adjust by altering the number of right-wingers in the upper �slice�of

each district in a given state, but the fundamental characterization of the optimal strategy,

as described in Propositions 1 and 2, remains the same.

3 A Generalized Model

The above model is useful for characterizing equilibrium strategies, but it can be abstracted

from to some degree when considering comparative statics. At the most basic level, each

party constructs districts so as to choose median voters in those districts, subject to con-

straints given by the primitives of the problem.

3.1 The National Model and Party Preferences

Denote the median voter in a district n in state s by �ns: Let the feasible set of medians

for player R be 
R: There are two types of shocks: national and district-speci�c, denoted

� and  respectively, with cdfs B and C: These shocks are mean zero and symmetrically
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distributed. Party R�s vote-share in district n in state s is

Vns = V (�ns +  ns + �)

where V is a strictly increasing function and V (0) = 1
2
. Party R wins such a district if

and only if Vns > 1
2
. Thus, the probability of winning such a district, conditional on the

aggregate shock, is

Pr (win) = C (�+ �) :

There are two parties, R and D. Party R may design the districts in fraction � of the

continuum of states6, and party D controls redistricting in the other 1� �. Thus, suppose

that (after redistrictings) the distribution of median voters in the population isM (�). Then

party R wins

X (�) =

Z
C (�+ �)M (�) d�

districts. The party values the fraction of seats won by the functionW (�), which is a weakly

increasing function.

3.2 A Special Case

Suppose that we make the strong assumption that C is a uniform distribution, so that

c (�) = k for some constant. Then we can rewrite the expected number of seats won by

party R as

X (�) = k

Z
(�+ �)M (�) d�

= k (���R + (1� �) ��D + �) :

6The assumption that there are a continuum of states is important in that it allows us, by the law of
large numbers, to treat C as the proportion of districts won, not just the probability of so doing. We view
this, however, as a technical assumption.
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and the expected value function for party R as

EW =

Z
W (k���R + (1� �) ��D + �) b (�) d�:

But here it clear that each party does best simply to maximize the average of the median

voters in the districts in their control. Note that there is no strategic interaction at all

between the parties in this special case�or at least the game is dominance solvable. As a

result, the share of states � under the control of party R can have no impact on the optimal

gerrymander.

3.3 The General Case

By assumptions made above, all states are the same, so the optimal gerrymander will be

identical across them. Denote by f�dRg and f�dDg the medians of the districts in states

controlled by party R or D, respectively, and denote by NR and ND the total number of

districts controlled by parties R and D. We then have

X (f�nRg ; f�nDg ;�) = �

"
NRX
n=1

C (�nR + �)

#
+ (1� �)

"
NDX
n=1

C (�nD + �)

#
:

Parties then maximize their value function, as weighted by the di¤erent possible outcomes

of the aggregate shock �.

We can restate the problem that the parties solve. Proposition 3 shows that the parties

act as though they maximize vote shares over a weighted average of di¤erent situations.

Proposition 3 Suppose that W (x) is continuous. As a function of the strategies chosen

by the parties f�nDg and f�nRg, de�ne �� (f�nDg ; f�nRg ; x) such that

�
X
n2R

C (�n + ��) + (1� �)
X
n2D

C (�n + ��) = x.
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Then the optimal gerrymander f�nRg will satisfy the necessary conditions to the problem

max
f�nRg

Z h
W 0 (x) b (�� (x))

X
C (�n + �� (f��nDg ; f��nRg ; x))

i
dx(1)

such that f�nRg 2 
R:

Each party thus acts as though it maximizes the number of seats won across a weighted

average of values of � (which does not depend on the strategies).

Note that the alternative maximization above does not involve anything about the dis-

tricts designed by the opponent party D, conditional on �� (x). If we can specify the set

of �� (x) values, then Proposition 3 allows us to restate the maximization problem in a way

that does not involve the other party�s choices. This simpli�es the analysis greatly. Of

course, the optimal sets of district medians f��nDg and f��nRg and the set of �� (x) values are

jointly determined. But if we can identify variables that shift the �� (x) values, for instance,

then we can trace through the implications for the optimal district medians.

This result is a generalized version of Theorem 1 in Gul and Pesendorfer (2007), we

focus on the case where parties care only about winning a majority in the legislature. The

following Corollary links our result above to theirs.

Corollary 1 Suppose that the party�s value function over seats won is

W (x) =

8>>>><>>>>:
1 x > 1

2

1
2

x = 1
2

0 x < 1
2

:

Then

f��nRg = arg maxf�nRg

X
C

�
�n + ��

�
1

2

��
so that parties simply maximize the share of seats won at one speci�c value of the aggregate

shock, which is the �pivotal value.�
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These two results are, at some level, quite intuitive. If, for instance, a party controls

very few states, then it must turn out to be an extremely favorable state of the world in

order for it to win. And in such a setup, it is natural for the party to simply assume that

it receives such a shock when redistricting.

But these results are also far more precise than the preceding intuition might suggest.

Suppose, for instance, that two parties control the same number of states, and so the aggre-

gate shock must simply be above average for a given party to win. Corollary 1 shows that

parties do not maximize over all such winning values of the shock; rather, they do so only

with respect to the one pivotal value at which the parties are evenly matched.

3.4 Comparative Statics

We wish to know whether parties that control the redistricting in more states will act di¤er-

ently in equilibrium than a party that controls fewer states. Given Proposition 3, we can

rephrase the problem faced by each as maximizing the vote-share conditional on the pivotal

value ��. Of course, this requires knowing ��, which is jointly determined with the optimal

strategy. But we do know that, as � increases, �� will decrease, since a party needs less

luck from the aggregate shock because it has more districts gerrymandered to it�s advantage.

Thus, we can solve for the comparative static of � by solving for the comparative static on

��. And even though one cannot actual solve for ��, we can simply assume a value of ��

and then see what changing that value does to the districting scheme.

3.4.1 Two Districts per State

Suppose that there are only two districts per state. Proposition 4 then shows how parties

alter their optimal redistricting strategies when they control more states.
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Proposition 4 Assume that

W (x) =

8>>>><>>>>:
1 x > 1

2

1
2

x = 1
2

0 x < 1
2

;

that there are only 2 districts per state and that c is log-concave. Then as � increases, and

party R controls more districts, ��1 increases, so that party R includes a larger upper slice in

the �rst district. This increases the disparity between �1 and �2.

The intuition behind this result stems from the fact that parties optimize their districts

relative to the marginal value of the aggregate shock. If parties control an equal number of

states, then the aggregate must be better than average for that party to win. In this case,

both the favorable and unfavorable districts may be in play, since the local shock necessary to

tip a district to one party or another is not so big. But if a party controls many states, then

the aggregate shock will have to be quite negative for the party to lose the election. And in

such a situation, the trade-o¤ between favorable districts and unfavorable districts is much

di¤erent. Since the aggregate shock is so negative, unfavorable districts are now essentially

unwinnable, and so increasing the median voter helps very little. Favorable districts are

still very winnable, and so parties choose to increase the median voter in district 1 (in our

two-district example) at the cost of lowering that in district 2.

This result implies that the control of redistricting matters crucially for the nature of

representation in the legislature. There are two e¤ects. First, parties redistrict so as to

maximize their own representation, so more equal control of state districting has a straight-

forward e¤ect on the balance of representation in the legislature. But Proposition 4 shows

that there is another e¤ect as parties change the way they draw districts in states they do

control. As one party controls more states, it draws districts with median voters that are

further from the overall median voter, thus increasing both the polarization of the legislature

and the representation of extreme voters in the population.
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3.4.2 Many Districts

When there are many districts per state and the objective function remains a simple step

function, the intuition from the previous section still holds. When the share of states

apportioned by R increases, there is a force pulling each pair of district medians. But

suppose there are three districts; the middle median should move down relative to the upper

median, but up relative to the lower median. These competing forces make the direction of

movement for this middle median theoretically ambiguous. As before, the uppermost median

must increase, while the lowermost median must decrease. Proposition 5 characterizes this

situation more generally.

Proposition 5 Suppose there are N districts per state. Assume that

W (x) =

8>>>><>>>>:
1 x > 1

2

1
2

x = 1
2

0 x < 1
2

and that c is log-concave. Then as � increases so that party R controls more districts, ��1

increases and ��N decreases.

Intuitively, these forces tend to stretch out the distribution of district medians within a

given state, but the complexity of the dynamics prevents a more systematic characterization.

Table 1 and Figure 2 present a numerical example that illustrates these forces. In this

example, we suppose that there is mass one of identical states with �ve districts each. In

each state, both the signal distribution H (�) and the conditional preference distribution

G (� j �) are Normals with mean 0 and variance 2:5. We assume that B (�) and C ( )

are Normal distributions with mean 0 and variance 1
4
. Each row of Table 1 presents the

equilibrium strategy given a share of control �. As we increase �, the medians are pulled

further apart. Both ��1 and �
�
2 increase monotonically in this example; �

�
4 and �

�
5 each

decrease as � increases. The middle median sometimes moves up and sometimes moves
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down as party R�s state control increases. In this example, district 2 exhibits a monotonic

increase and district 4 a monotonic decrease. We do not believe this to be a general result�

all districts other than the top and bottom could move ambiguously�but we do not have a

counterexample.

[Table 1 and Figure 2 about here]

3.4.3 Generalizing the Objective Function

The above results have focused on the case when the objective function is a step function with

a single discontinuity. With a more complex objective function, each �rst order condition

becomes the ratio R
W 0 (x) b (�� (x)) c (�i + �� (x)) dxR
W 0 (x) b (�� (x)) c

�
�j + �� (x)

�
dx
= lim

"!0

�j

�i

:

Analyzing this expression is di¢ cult in general. In order to sign a similar comparative

static with respect to �; this ratio must be weakly monotonic in �. Intuitively, we need

more than log-concavity of c; instead, we need log-concavity in a weighted average of c. It

is certainly not the case that this holds for all increasing functions W ; for instance, if the

value function were a step function with two discontinuities, then the e¤ective bimodality of

W 0 (x) can counterbalance the log-concavity if c: We can, however, provide a condition on

the objective function under which Proposition 4 generalizes. This involves so-called Pólya

frequency functions and hence a couple of de�nitions are in order before we state our result.

De�nition 1 Let X and Y be subsets of R and let K : X � Y ! R: We say that K is

totally positive of order n (TPn) if x1 < ::: < xn and y1 < ::: < yn imply:����������
K(x1; y1) � � � K(x1; ym)

...
...

K(xm; y1) � � � K(xm; ym)

����������
� 0
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for each m = 1; :::; n:

Total positivity has wide applications in economics. When K is a density TP2 is equiv-

alent to the monotone likelihood ratio property.

De�nition 2 A Pólya frequency function of order n (PFn) is a function of a single real

argument f(x) for which K (x; y) = f (x� y) is TPn; with �1 < x; y <1:

Proposition 6 Suppose that there are N districts per state, that W 0 (x) is PF2; that b is the

uniform distribution and that c is log-concave. Then as � increases, and party R controls

more districts, ��1 increases and �
�
N decreases.

This proof of this result is closely related to the observation that the convolution of two

log-concave densities is itself log-concave. W 0 (x) is clearly not a density, but the appropriate

generalization is that it must be PF2 (a condition which log-concave densities satisfy).

A natural question to ask is what objective functionsW (x) have derivatives which satisfy

this requirement, and how economically reasonable are they.

As the de�nition of PF2 makes clear, there is a wide variety of functions in this class.

Here we provide one simple example of interest. It is easy to verify that the function

W 0 (x) = e�
x
2
is PF2 (see Karlin 1968, p.30 for a proof). Integrating over x yields

W (x) =

p
�ERF

�
x
p


�

2
p



;

where ERF is the �error correction function�(i.e. the integral of the Normal distribution

function). The following graph illustrates this function for 
 = 3:
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Example of an Objective Function Satisying the

Conditions of Proposition 6

This objective function is clearly increasing and strictly concave in the number of districts

won. It is easy to see that 
 parameterizes the degree of concavity, with a higher value of 


corresponding to a more concave objective function. This is only one function in the class

of functions satisfying the conditions of Proposition 6, but this demonstrates that there are

plausible objective functions in that class.

Another function that satis�es De�nition 2, of course, is the Normal cumulative distrib-

ution function.7 This class of functions have a great deal of intuitive appeal as a continuous

legislative value function, since the marginal value of a seat is greatest at 50% and falling as

one party has a larger and larger majority.

7Of course, � : R! [0; 1] while our W : [0; 1]! R. But the range restriction is unimportant, and since
De�nition 2 is una¤ected by scale changes, we can de�ne

W (x) =
�
�
x� 1

2

�
� (1)� � (0)

for any Normal CDF � (x).
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It is also informative to think about objective functions W that do not satisfy this

de�nition. One simple example is the double-discontinuity function

W (x) =

8>>>>>>>>>><>>>>>>>>>>:

0 x < 1
3

1
4

x = 1
3

1
2

1
3
< x < 2

3

3
4

x = 2
3

1 x > 2
3

:

Assume that there are two districts per state and that �� is distributed uniformly, for sim-

plicity. Suppose that C is log-concave. Then by Proposition 3, we know that the ratio

(2) DDR =
c
�
�1 + ��

�
1
3

��
+ c
�
�1 + ��

�
2
3

��
c
�
�2 + ��

�
1
3

��
+ c
�
�2 + ��

�
2
3

��
must be monotone in � for the comparative static to hold. From log-concavity, we know

that the ratio c(�1+�
�(x))

c(�2+�
�(x)) is increasing in � for all x: But it will not generally be the case that

the combined ratio in expression (2) is increasing. For instance, suppose that the following

values hold for �H > �L:

c(�+��( 13))
c(�2+��( 13))

c(�+��( 23))
c(�2+��( 23))

DDR

�H
8
2

100
100

108
102
� 1

�L
3
1

1
2

4
3
> 1:

Intuitively, the double-discontinuity objective function is an extreme example of a func-

tion that is not PF2; since it is the limit of an extremely bimodal function. When �convo-

luted�withW 0; C loses its log-concavity, and so a fall in �� is no longer enough to guarantee

an increase in the value of the higher median.
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4 Discussion and Conclusion

We have presented a model of competitive gerrymandering in which two parties control

redistricting across many states. After con�rming that the �matching slices�strategy from

Friedman and Holden (2008) obtains in this richer setting, we showed that this redistricting

game can be restated as a control problem, in the manner of Gul and Pesendorfer (2008). We

then showed that an increase in the number of states controlled by a party in the redistricting

game tends to spread out the distribution of optimal district medians. This shift increases

the representation of extreme voters of both parties at the expense of moderates, especially

those in the party gaining power.

These results bear on a number of broader topics in American politics. In recent years,

Republicans have gained control of a number of key state legislatures, allowing them to design

partisan gerrymanders in large states such as Pennsylvania, Florida and Texas. As a result

of new partisan gerrymanders in these states in 2002 (and 2004, in Texas), the Republicans

increased their majority of representatives from these states from 11 to 32.8 Our results

imply that this shift in power may well have a¤ected the nature of representation in other

states as well.

Our results also speak to the phenomenon of independent redistricting commissions.

Such non-partisan bodies handle apportionment in Iowa, Arizona, and now California. Al-

though they failed to pass, ballot initiatives in Florida and Ohio recently considered this

change too. Our results imply that there is both a direct and an indirect e¤ect of adopt-

ing such an institution. That is, with California�s districts constructed by an independent

commission then the strategies of Democrats and Republicans should change in other states.

In principle, such e¤ects could be large�particularly since the state in question has a large

number of districts. Since the change in strategies leads to districts being constructed with

less extreme median voters in other states, this may be seen as an additional bene�t of

independent commissions.

8Due to reapportionment, these states collectively gained one representative in 2002.
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5 Appendix

Proof of Proposition 1 This result follows the proof of Proposition 6 in FH (2008). Note

that objection function, for each district a party p must create, can be factored such that

EVp = Bs (�ns)Kns + (1�Bs (�ns))Lns

where Kns = E [Vpjdns = 1] and Lns = E [Vpjdns = 0] denote the expected value if party p

were to win or lose district n in state s, respectively. Now, �x the districting plan (for

both parties) and consider the change in the objective function resulting from small deviation

from the existing plan in district n with an o¤setting change in district m, with both districts

in state s. The derivative of the value function, with respect to this change (which, in

shorthand, we denote �), is

@E [Vp]

@�
= bs (�ns) (Kns � Lns)

@�ns
@�

� bs (�ms) (Kms � Lms)
@�ms
@�

= 0

which must equal 0 for the plan to be optimal. At this point, we note that, but for the

constants Kns, Lns, Kms, and Lms, this expression is identical to that in equation (7) of

FH (2008). Thus, we can directly apply Lemmas 1 through 3 from that paper, which imply

Propositions 1 that paper, which is the result here. Since any optimal strategy must have

this form, it must be that all equilibria must be such that each party employs a strategy of

this form.

QED

Proof of Proposition 2 The proof follows exactly along the lines of Proposition 2

from FH (2008). Since all optimal districting schemes have this feature, it must be that all

equilibria involve strategies with this feature.

QED
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Proof of Proposition 3 De�ne the function �� (f�nRg ; f�nDg ;x) such that

X (f�nRg ; f�nDg ; ��) = �
X
n2R

C (�n + ��) + (1� �)
X
n2D

C (�n + ��) = x:

The maximization problem for party R can then be written as

max
f�nRg

Z
W 0 (x) [1�B (�� [f�nRg ; f�nDg ;x])] dx

such that f�dRg 2 
R:

In words, the party gets W 0 (x) if the aggregate shock is higher than �� (x), and we must add

up across all of the values x. At an optimum it cannot be the case that reallocating voters

with positive mass between (say) district i to district j increases the value function and is

still within the constraint set. However, consider such a reallocation and denote the increase

in the median of district i as �i and the decrease in the median of district j as �j: Since

the value function is di¤erentiable it must be that for any two districts i and j in the same

state R
W 0 (x) b (�� (x)) @�

�(x)
@�i

dxR
W 0 (x) b (�� (x)) @�

�(x)
@�j

dx
= lim

"!0

�j

�i

;

where the limit is taken such that the pro�le of switching voters is held constant. But, by

our de�nition of �� above, we know that

@��

@�i
=

c (��i + �� (x))

�
P

n2R c (�
�
nR + ��) + (1� �)

P
n2D c (�

�
nD + ��)

:

Therefore the above ratio can be rewritten as

R
W 0 (x) f (�� [f��nRg ; f��nDg ;x]) c (�i + �� [f��nRg ; f��nDg ;x]) dxR
W 0 (x) f (�� [f��nRg ; f��nDg ;x]) c

�
�j + �� [f��nRg ; f��nDg ;x]

�
dx
= lim

"!0

�j

�i

;

where �� is that value associated with the equilibrium strategies. But these are the just the

necessary conditions to the problem in which the gerrymanderer maximizes the alternative
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objective function

max
f�nRg

Z
W 0 (x) f (�� [f��nRg ; f��nDg ;x])

X
n

C (�n + �� [f��nRg ; f��nDg ;x]) dx:

such that f�nRg 2 
R:

QED

Proof of Corollary 1 Consider the situation in which party R�s value function is

Wn =
xn

xn + (1� x)n

W 0
n =

((x� 1)x)n (log x� log (1� x))

(xn + (1� x)n)
2

Note that, as n ! 1; W limits to the desired function. By Proposition 3, party R solves

the alternative maximization

max
f�dRg

Z "
W 0
n (x)

W 0
n

�
1
2

�b (�� (x))XC (�d + �� (f��dDg ; f��dRg ; x))
#
dx

such that f�nRg 2 
R:

which is identical to equation (1) above but for scaling by the constant term W 0
n

�
1
2

�
. But

as n!1, the weights

lim
n!1

W 0
n (x)

W 0
n

�
1
2

� !
8><>: 0 x 6= 1

2

1 x = 1
2

:

Thus the necessary conditions are simply that

c (�i + ��)

c
�
�j + ��

� = ��j
��i

These are the same necessary conditions as if party R simply maximized the number of seats
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won at critical value ��
�
f��nDg ; f��nRg ; 12

�
, which could be written

max
f�nRg

X
n2R

C

�
�n + ��

�
f��nDg ; f��nRg ;

1

2

��
such that f�nRg 2 
R:

QED

Proof of Proposition 4 Following Corollary 1, there are two FOCs that combine to

imply
c (�1 + ��)

c (�2 + ��)
=
��2
��1

:

Writing �2 (�1) one can substitute into the objective function above, so that the FOC becomes

��1 = argmax
f�1g

�
C
�
�
1
+ �
�
+ C

�
�2
�
�
1

�
+ �
�	

) c (�1 + ��)

c (�2 + ��)
= �d�2 (�1)

d�1
:

Of course, d�2(�1)
d�1

< 0. Then, by the implicit function theorem, we know that @��1
@�� < 0 if

and only if the LHS is decreasing in ��; which is true if and only if

c0 (�1 + ��)

c0 (�2 + ��)
<
c (�1 + ��)

c (�2 + ��)

Note that by the equal mass constraint it must be that @�2
@�� is of the opposite sign as

@��1
@�� .

Moreover, @��1
@�� depends entirely on whether the ratio

c0( )
c( )

is increasing or decreasing in  :

This ratio being decreasing is precisely the de�nition of log concavity and hence @��1
@�� < 0:

QED

Proof of Proposition 5 Following Corollary 1, we maximize the objective function

max
f�nRg

X
n2R

C (�n + ��) :
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Consider a deviation in which one shifts �1 upwards by amount ��1 and then shifts all other

medians down by ���1. The no-bene�t condition from such a deviation is

(3)
c (�1 + ��)P
n6=1 c (�n + ��)

=
���1
��1

:

Note, at this point, that the medians f�2; : : : ; �Ng are chosen optimally. Therefore, we can

implicitly di¤erentiate this expression to obtain the impact of �� on �1, since all deviations

within the medians f�2; : : : ; �Ng have a second order impact on the value function, by the

Envelope Theorem. From Proposition 4, we know that the ratio c(�1+�
�)

c(�n+�
�) is falling with �

�;

and therefore we know that the LHS of equation (3) is also decreasing in ��. Therefore, we

know that @��1
@�� < 0: A parallel argument establishes that

@��N
@�� > 0:

QED

Proof of Proposition 6 Karlin (1968, p.30) shows that the convolution h = f � g is

PFn if f and g are PFn: By a theorem of Schoenberg (1947, 1951), PF2 of a density is

equivalent to log-concavity. The assumption of uniformity of b means that we are left with

the term
R
W 0 (x) c (�i + �� (x)) dx; which is PF2 since W 0 (x) is PF2 and c is log-concave:

Since W 0 (x) is PF2 it is integrable and hence continuous. Now the proof of Proposition 5

applies.

QED
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