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(Received 9 June 1976) 

We investigate the Iahn-Teller effect for strong coupling between a triply degenerate electronic state and 
a triply degenerate vibrational mode (TX t). We derive approximate analytical expressions for the lowest 
energy levels for finite but large coupling constant k, and have calculated the splitting between these levels. 
Our splitting between the lowest T and A states agrees well with the numerical data. We also have derived 
approximate analytical expressions for the absorption spectrum for all k. Our spectra are in reasonable 
agreement with the numerically calculated spectra. 

I. INTRODUCTION 

The Jahn-Teller effect is a member of a larger class 
of physical phenomena which depend on the interaction 
between the nuclear and electronic motions for their 
existence. Also included in this class are the relaxa­
tion of spins in a lattice, superconductivity, and non­
radiative transitions. The theoretical treatment of 
these problems is difficult owing to the breakdown of 
the traditional Born-Oppenheimer or adiabatic approxi­
mation. In this paper, we will calculate the energy lev­
els and absorption spectrum of a Jahn-Teller system, 
using the many-body techniques developed to under­
stand other similar phenomena. 

In 1937, Jahn and Teller i showed that if a nonlinear 
polyatomic system has a degenerate electronic state, 
then there exists at least one asymmetric displacement 
of the nuclei which will lower the energy of the system. 
The Jahn-Teller effect arises from the fact that for all 
nonlinear molecules, there is at least one non-totally­
symmetric vibrational mode whose irreducible repre­
sentation is contained in the symmetric square of the 
irreducible representation of the degenerate electronic 
states. Thus, there exists a nonzero matrix element 
between the degenerate electronic states which splits 
the degeneracy in first order. The result is a mixing 
of the electronic and vibrational motions accompanied 
by an alteration of the energy levels. 

In this paper we are interested in the Jahn-Teller 
coupling between a triply degenerate electronic state 
and a triply degenerate vibrational mode (T x t). This 
problem arises, for example, when an electronic p 
state occurs in octahedral symmetry. A number of in­
vestigators have looked at this problem. Van Vlec}{2 
and Opik and Pryce3 calculated the static potential sur­
face; Moffitt and Thorson4 calculated the eigenvalues 
for weak coupling using perturbation theory; and finally, 
Caner and Englman5a and Englman et al. 5b calculated 
the eigenvalues and absorption spectrum for weak to 
moderate coupling using numerical techniques. We ex­
tend this work with an approximate, yet analytical, cal­
culation of the eigenvalues for strong couplingS· 7C (Sec. 
n) and with an approximate analytical calculation of the 
spectrum for all coupling strengths (Sec. m). 

II. ENERGY LEVELS FOR STRONG COUPLING 

In this section we derive an analytical expression for 
the energy levels in the strong coupling limit. ~ begin 
with a presentation of the Hamiltonian and the infinite 
coupling limit of the eigenvalues in Sec. II. A. In Sec. 
n. B we perform unitary transformations which allow 
the Hamiltonian to be written in a form appropriate for 
strong coupling. Then in Sec. II.C we derive the ex­
pressions for the eigenvalues, and finally, in Sec. n.D 
we calculate the Singlet-triplet splitting. 

A. The Hamiltonian 

The Hamiltonian for the Txt Jahn-Teller problem 
has been calculated using group theory by earlier au­
thors. 2 In the octahedral point group, the triply degen­
erate vibrational mode belongs to the t211 irreducible 
representation which transforms like (yz, xz, xy). 
Therefore, in the T iu (x, y, z) electronic basis the Hamil­
tonian is 

H =[ (1/2) (p~ + P~ + p~) + (1/2) (w2) (~+ cts + «)]1 

+K(Q41'l + Q51'2 + QS1'3) , 

Since the matrices I'll 1'2' and 1'3 do not commute, this 
Hamiltonian entails a nontrivial coupling between the 
electronic and vibrational modes. 

We begin our calculation by second quantizing this 
Hamiltonian. That is, define 

hj = (1/i'2W) (wQj +iPj ) 

and 

br = (1/i'2W) (wQj - iPj) , 

where bj(b;) creates (destroys) an excitation in mode i. 
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FIG. 1. (a) Octahedron enclosed in a cube with the (1,1,1) 
vibration indicated. (b) Distorted octahedron in an equilibrium 
position for large finite k. 

With these definitions the Hamiltonian becomes 

H= w(b:b 4 +b; bs +b; bs +t)1 

+[kw/f2)]{(b4 +b:hl + (bs +b;h2 + (bs +b;h3 }. (1 ) 

We also define electronic state creation and destruction 
operators, Cj and C/, where the index i(=1, 2, 3) refers 
to the Tlu electronic basis. 

The asymptotic eigenvalues of this Hamiltonian have 
been known since the calculation of the static potential 
surface. 2.3 The potential surface has four minima in 
Q4, Qs, Qs space displaced from the origin in the direc­
tions 1=(1,1,1),11=(-1, -1,1), 1II=(-1, 1, -1), and 

where 

f'{~ 
0 

~J f'{ 
1 

-~l T,=[: -12 0 

0 12 -12 

N = (1, - 1, - 1) by an amount proportional to k and 
separated by a barrier of height proportional to k 2 • 

Thus, for infinite k, the four minima are well separated 
and the eigenvalues are those of a three-dimensional 
harmonic oscillator. Physically, these minima corre­
spond to a distortion of the octahedron by squeezing the 
axes toward one of the four diagonals of the cube as il­
lustrated in Fig. 1. For infinite k, the molecule then 
vibrates about one distorted configuration with no inter­
configurational conversion. The ratio of the oscillation 
frequency in the direction of the displacement to the 
oscillation frequency perpendicular to the displacement 
may be calculated by perturbation theory, and is 
1 : /273. Therefore, the asymptotic eigenvalues are 

E - (nil + 1/2)w + (n~ + 1)/273w - (2/3) k2w . (2) 

For all finite values of k the Hamiltonian has octahe­
dral symmetry; therefore, the lowest state is a triplet 
throughout. When k becomes infinite, however, the 
system assumes a symmetry of C~ along anyone of the 
four body diagonals, the lowest singlet becomes degen­
erate with the triplet, and the lowest state is a quartet. 
Caner and EnglmanSa give the formula O. 8k2 exp(- O. 8k2

) 

as a reasonable fit of their numerical data for kS;2. 5. 
We will now present an approximate calculation of the 
energy levels for k large but finite. Our calculation for the 
separation between the lowest Singlet and triplet states 
agrees reasonably well with the above work, even 
though only the lowest state is taken into account. 

B. The unitary transformations 

For large k, the problem is basically one of four 
weakly interacting wells. We will therefore solve for 
the motion in a single well, e. g., 1= (1, 1, 1), and treat 
the interwell interaction as a perturbation. 

First we change the origin of the vibrational coordi­
nant system to (1, 1, 1) with the unitary transformation 
exp(SI), where 

SI = [- k(2)1/2/3][ (b 4 - b:) + (bs - b;) + (bs - b;)] . 

To perform the unitary transformation, we use the fact 
that 

1 
exp(S) Jeexp(- S) =Je+[S, Jel + 2! [S, [s, Jell + .0 •• 

Also, for notational Simplicity, we define new electronic 
and vibrational coordinates as follows: 

and 

CI = (1/v'3) (CI + C2 + C3 ), C2 = (1/12) (CI - C3) , 

C3 = (1 /ffi) (CI - 2C2 + C 3) , 

a l = (1/[6) (- b4 +2bs - bs) , 

a 3 = (1 /v'3) (b4 + bs + bs). 

Then 

0 

~l -1 

0 -1 
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Notice that ct has no linear interaction with the vibrations. To remove the linear interaction between the states 
C; and C; and the 0'3 vibrational mode, we further transform the Hamiltonian with eS2 , where 

S2 = (- k/,,(6) (T3 - 2) (0'3 - 0';) 

Then, H =Ho + V, where 

( 
+ + + 3) k

2
w_ 2 Ho=W 0'10'1+0'20'2+0'30'3+2 -6 T3 (3a) 

and 

V = (kw/i6)[ (Cic3e + e'" c; Cl ) (0'1 + O'r) + (ct c2e + e+c; Cl ) (0'2 + 0';) - ,(2 (C; C2 - C; C3 ) (0'1 + 0'1) - ,(2(C; C3 + C; C2 ) (0'2 + 0';)] , 

where 

e =exp[(- 3k/i6) (0'3 - O'i)] 
The eigenstates of Ho are easily seen to be 

<Plnml = (O't)n(O';)m(O';)1 Cj 10) Iv' n I mIll, 

and the eigenvalues are 

i=l 

i = 2, 3 

C. The asymptotic eigenvalues 

Observe that the separation between the states <Plnm 1 

and <P2nml or <P3nml is proportional to k2• Therefore, for 
k»l, the lowest states are <Plnml' Proceeding with per­
turbation theory, we notice that the first order correction 

EI = (<Plnm/l V I <PIn .. I) = 0 

for all n, m, and l. A lengthy but straightforward cal­
culation shows 7c that 

1
. -1' " l(lnmll Vljn'm'l') 12 
1mE2 = 1m ~ 

k~.o k .. ao irf m' I' E 1mn 1- E !n'm' I' 

=-(1/6)(n+m+l)w . 

Thus, E2 is small for n +m small, and the energy cor­
rect to the second order is 

E~~/=(l+i)w+(n+m+1)(1-i)w-tk2w. (4) 

It is instructive to compare this energy with the k = 00 

energy levels known from the static calculation [Eq. (2)]. 
First notice that the Jahn-Teller stabilization energy, 
- (2/3)k2w, appears explicitly in the second order ener­
gies [Eq. (4)]. Observe further that the static calcula­
tion shows that the frequency of the perpendicular mode 
is 1\273)"-,, while Eq. (4) has the frequency shifted from 
unity to 1-t '" O. 834, which is reasonably close to f273 
'" O. 827. 

Continuing with higher order perturbation theory 
shows that all odd orders vanish. The fourth order cor­
rection, which is calculated in the same manner as E2, 

is 

lim E4 =- (1/72) (n +m +l)w . 
~~ ~ 

The higher order corrections become very difficulty to 
calculate. However, it is easily seen that we have the 
first three terms in the expansion of 

(3b) 

f273=v'1-(1!3)=1-t-7!-"· . 

Using a slight variation on Brillouin-Wigner perturba­
tion theory, Beers7a has shown that the frequency of the 
perpendicular mode converges to f273 + 0 (k-2). Thus 
the k = <X) energy levels are well accounted for using the 
separate well model. 7b 

D. Singlet-triplet splitting 

For k = 00 there is no interaction between the wells and 
the lowest state is a quartet. However, if k is large but 
finite, the electron may tunnel between the wells. This 
tunneling will split the degeneracies. To obtain the 
splitting, we first form approximate eigenfunctions 
which transform as irreducible representations of the 
octahedral group from the separate well wavefunctions, 
then we calculate the Hamiltonian and overlap matrices 
and finally calculate the energy matrix. 

To calculate the eigenfunctions near a trigonal dis­
tortion, we use the states appropriate to infinite k, 
which are localized in a single well (e. g., I) (i. e., ei­
genfunctions of Ho) as a basis. We then calculate the 
wavefunction to second order in V and find, for example, 

<Px ={c; + (k/i6) ta (- 3k/i6)11/ni (n + 1 + i k2
)] 

x (O'inc; 0'; + C; at)} 10) 

Note that this wavefunction has a zero-point energy of 
(3/2 - 1/6)w instead of the exact k = 00 value of (f273 
+1/2)w. Second order solutions in the other wells are 
similarly constructed. We now form appropriate (un­
normalized) functions which transform as irreducible 
representations of the octahedral group by combining 
the lowest states of the four wells. For the lowest A2 
and TI states we have 

1 
</!x + <PU-<PIII-</!xV! 

CPTI =~ <fix -</!xx + </!xII - </!xv , 

</!x - <PII - <PxII + <Pxv 

(5) 

and 

<PA2 = i(<PI + </!xx +</!xrr + </!xv) • 

We now calculate the Singlet and triplet energies using 
the second order wavefunctions from each well. For 
example, 

J. Chern. Phys., Vol. 65, No. 11, 1 December 1976 

Downloaded 21 Oct 2012 to 18.189.110.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



4378 M. J. Shultz and R. Silbey: Strongly coupled Jahn-Teller system 

E(2) (<PA2 IHI <pA2) 
A2 (<PA2 1 <PA2) 

(6) 

The normalization factor (<PAZ I <PAZ) is not unity; thus, it 
is important to include it. Now we let 10,) be the zeroth 
order wavefunction in well J and 11,) be the first order 
correction, then using Eq. (5) above, Eq. (6) becomes 

E(2) Eo(O, +1, 10,+1,> +E2 +3Ep(0, +1, 10K +lK) +3K +3K' 
AZ (0,+1,10,+1,)+3(0,+1,IOK+1K) , 

where~o=(1-1/6)w, K=(OKIVI1 K), andK'=(lK IV,11 J ). 

K and K are calculated in Ref. 7(c), where they are 
found to be 

Thus, to second order the singlet energy is 

Elzi = Eo + Ez +m kZw e-8k2 / 9 • 

Similarly, the triplet energy is found to be 

E~~ =Eo + Ez -jA kZw e-SkZ / 9 

Thus the splitting is 

If we neglect the first order correction to the wavefunc­
tion, we find 

E(O) _ E(O) =J2 kZw e-SkZ/9 
AZ Tl Z7 • 

This agrees with Judd's calculation. 7b 

Finally, we note that if the approximate ground state 
wavefunctions localized in each trigonal well, i. e., the 
if!1> etc., are chosen to be harmonic oscillator functions 
with the exact k =00 frequencies w, f2T3 w, and f2T3 w, 
the singlet triplet splitting is 

E -E =1 26kzwe-o·S27kZ Ag Tl • • 

We note that these approximate results are very close 
to the numerical calculations for kS 2. 3 of Caner and 
Englman given above. Since the present calculation is 
correct asymptotically for k- "", we see that the major 
effect of the mixing of higher states is to push the A 
and T states closer together while keeping the same 
form for the interwell overlap, and lowering all states 
by the same small amount. 

Since the weakly interacting well model has succeeded 
in calculating the energy levels and the splittings for 
large k, we will now use this model for calculating the 
spectral line shape. 

III. SPECTRAL LINE SHAPE 

In this section we consider the absorption line shape 
for transition from a nondegenerate ground state to a 
triply degenerate excited state in octahedral symmetry. 
For example, this could correspond to an S- P electron­
ic transition localized on the central ion of an octahe­
dral molecule. The triply degenerate excited state ~ill 
interact with the vibrational modes of the octahedron, 
giving structure to the absorption spectrum. It is 
known8 that the triply degenerate excited state will cou­
ple to the all, e,., and t21 vibrational modes. However, 

since coupling to the al,. and the e, modes is trivial, we 
will treat coupling to the t21 vibrational mode only. In 
this case, the Hamiltonian for the excited state is given 
by (1) above. 

In this section, we will calculate the spectral density 
USing Green's function techniques. Section III. A will 
give the relationship between the Green's function and 
the spectral density and also will indicate how the pro­
jection operator technique of Zwanzig9 may be used to 
make a perturbation expansion of the Green's function. 
In Sec. III. B this projection operator technique is used 
to calculate the line shape for small coupling strength, k. 
Then in Sec. III. C we will calculate the line shape for 
large k using two techniques. The first, an equations 
of motion technique, is an approximate method which is 
given for illustrative purposes. The results derived by 
this first method are confirmed by the second, more 
accurate but more complicated, projection operator 
technique. Finally, Sec. III.D discusses these results. 
Those readers not interested in the mathematical details 
may go directly to Sec. III. D . 

A. Spectral density, Green's functions, and projection 
operators 

The absorption line shape for a dipole transition is 
given by 

len) = I~ dte iUt 
E,.· (~(t)~(o)· Ev , 

-~ 

where E,. (Ev) is the polarization of the outgoing (incom­
ing) radiation, and (~(t) ~(O) is the dipole moment auto­
correlation function. Since the dipole moment autocor­
relation function is difficult to calculate directly,it is 
useful to relate the integrand to the Green's function 
G jj(t) and to calculate the spectral density using the 
well-known relationship7c.10 

I
~ 3 

1(n)=2Re 0 dteiUt~Gjj(t), 

where 

and 

G jj(t) = - iO(t) (C j(t) C;> 

o(t) ={~ t> 0 

t< 0 . 

(7a) 

(7b) 

Thus the line shape is just the Fourier transform of a 
sum of Green's functions. The Green's functions in 
turn are related to the time evolution of the electronic 
states. Owing to the form of the Hamiltonian, this time 
evolution is very complicated, so it may appear that we 
have gained very little. However, as Eq. (7b) indicates, 
we are only interested in the vibrational (phonon) aver­
age of the evolving electronic state. Thus, by making 
suitable approximations to the electronic autocorrelation 
functions and by using the projection operator technique 
of Zwanzig, 9 we will be able to calculate an analytical 
expression for the line shape. 

We will use the prOjection operator technique to sepa­
rate the evolution of the electronic state into a relevant 
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and an irrelevant part, and to make a perturbation ex­
pansion of the relevant part (for a cliscussion of the use 
of this technique in other many body problems, see 
Haakell). Briefly, we define the projection 

_ TrL(e-BHL ••• ) 
p •• • = TrL(e-/JIh) 

The equation of motion for the relevant part, PCj(t), 
can be shown to be9 

t -I dTPL'e lT(1-PlL(1_P)L'PC,(t_T), 
o 

where L' ... = [v, ... ]. If <v> = 0, this equation is exact, 
but it contains the modified propagator exp[iT(1 - P)L]. 
We will now expand this exponential keeping only the 
leading term. Then, 

t 

PCj(t)=i[PH, PCJ(t)]- I dTPL'eITLoL'PCI(t-T) , (8) 
o 

where Lo ••• = [Ho, ... J. This equation for the relevant 
part keeping all terms to the second order in the per­
turbation will be the starting point of our line shape cal­
culation. 

B. Small k line shape 

We will exhibit the method for small k first since this 
is the simpler case. For small k, the term in curly 
brackets in Eq. (1) is small and is chosen to be the per­
turbation V. In this case <v> =0, and Eq. (8) is the sec­
ond order perturbation equation. Further, since 
[(H) (CI (t»] = 0, Eq. (8) simplifies to 

pCl(t)=- It dr{[V,[V(r), (Cl(f-r»]]) , 
o 

where V(t) = elHot V e-liJlot . A sort of closure holds here 
because, for example, 

(Cl(t» = f(t) Cl +g(t) C2 +h(t) C3 , 

wheref, g, and h are unknown functions of time. Now, 
the line shape is related to LI (0 I (C I (t» Cj 10), so we 
look, for example, at 

(0 I <Cl(t» C; I 0) = j(t) 

where 

=_ [t dr (ol([v, [V(r), f(t-r)Cl 

+g(t - r) C2 +h(t - r) C3]]) c~1 0) 

k
2
w

2 It = --2- 0 dr <l>o(r) f(t - r) , 

<l>o(r) = «be e-IWT + bs eIWT ) (be + b;» 
+«(b5 e-IWT +b;elwT) (b5 +b;) 

=2(n +l)e-IWT +2ii"e IWT , 

(9) 

and n = (e'l .. - 1 tl . The integrand is computed by using 
the Fermion anticommutation relation {C I , Cj}=6IJ , and 
the fact that CliO) =0. The phonon averages are com­
puted as in Messiah. 12 Laplace transforming both sides 
of (9), we find 

and 

A [n +1 n] <l>0(s)=2 --. +--.- . 
s+tw S-tW 

Therefore, 

j(s) = [s +k2w2(n +~) +k2W2(~)]-1 
S+tu) S-tW 

Due to symmetry, ](s) =g(s) =h(s) and the line shape is 
just proportional to] (s). Now, at low temperature, n 
is small and 

1(s) ~ (s +iw)[s(s +iw) +k2 W2]-1 

Thus, 

I (n) = 3 ~ -=-A; 6(n - AJ + 3 ~+ = ~ 6(n - A.) , 
+ - + -

where A. = t w[1 ± (1 +4k2)1/2]. Thus, to second order in 
k, the zero temperature spectrum consists of two delta 
functions-one relatively intense peak near - k2 w, the 
other much less intense near + w. For finite tempera­
tures the spectrum has three peaks, and as the temper­
ature is raised, the spectrum becomes more symmetri­
cal as expected from the classical results. 8 These re­
sults which hold asymptotically as k- 0, are in qualita­
tive agreement with the exact numerical, k = 1 spectrum 
(the smallest value of k for which a spectrum is re­
ported) of Englman et al. 5b Quantitative comparison of 
calculated and numerical spectra is reserved for the 
next section since the second order perturbation treat­
ment is not expected to be qualitatively good for k 2: 1. 

C. Large k line shape 

As in the energy level calculation, our model for the 
large k spectral calculation is based on the static po­
tential surface. Recall that the static surface has four 
minimum points separated by a distance proportional to 
k and by a potential barrier of height proportional to k2

• 

Thus, as for the energy level calculation, this problem 
is basically one of four weakly interacting wells, and 
we will calculate the spectrum perturbatively starting 
from the infinite k form. 

The energy level calculation for large k indicates that 
the partitioning of the Hamiltonian given in Eqs. (3a) 
and (3b) is very good for determining the energy of the 
lowest vibronic states. However, the line shape also 
depends on the energy of the higher vibronic states; 
thus, the partitioning of the Hamiltonian should be re­
examined. In fact we find that the intraorbital term 
(c; c~ - C; q) makes a large contribution. We might 
have anticipated this since earlier work with a different 
Jahn-Teller problem13 found that the intraorbital cou­
pling played a dominant role in the dynamical Jahn­
Teller effect. This intraorbital coupling is now elimi­
nated with the transformation eS3 , where 

k - - --
S3 = ra(q C2 - C; C3 ) (al - ai) . 

(Notice that S3 does not contam Cl ; therefore, this trans­
formation has no effect on the previous energy level cal­
culation. ) 
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The Hamiltonian is now written as Ho + V, where 

H - (~. • • ~).!. kZ (-C·-C -C·-C) 1 k2 -2 
0- W '"'I a 1 + a 2 a 2 + a 3 a 3 + 2 - 3 W 2 2 + 3 3 - ~ WT 3 

and 
(lOa) 

V= kw/v'6{(C;Csf2 +c. c) + (C~Cd3 +c. c.) + (C;C3il +c. c.)}, 

where 
(lOb) 

il =-v'2exp[(2k/V3) (a 1 - an] (az +a;) , 

i2 =exp[- (3k/v'6) (a3 - a;)] (a 1 +at)exp((k/f3) (a 1 - ai)]. 

i3 = exp[ - (3k/v'6) (a3 - a;)] exp[ -(k/V3)(a 1 - am (a2 + a;) . 

Now the effect of V on all vibronic levels is small, and 
we may proceed. 

As before, the line shape is related to the correlation 
functions (C1 (t)Cj). Since the trace is cyclically invari­
ant and eSe-s = 1, we have 

(C1 (t)C;)H = «(;1 (t)(;j)ii 

where ( .. ')H means trace with respect to the lattice 
variable of H, and ( ... >ii means the trace with respect 
to the lattice variables of ii, 5 is the sum 51 +52 +S3' 

Thus the phonon average of the time evolution of the 
bare electronic state is the same as the phonon average 
of the time evolution of the clothed electronic state. 
Further, the clothed electronic state can be written as 
a combination of the states C/, e.g., 

and 

(;1'" eS [(l/V3)C\ + (1 /v'2) C2 + (1//"6)C3 ] e-s 

= (1/V3) exp [(2k/v'6)(a3 - a;)] C1 + (1/.[2) 

x exp[ - (k/v'6)(a 3 - a;)] exp[ - (k/V3)(a 1 - a;) ]C2 

+ (1/v'6) exp{- (k/v'6)[ (a3 - a;) - v'2(a1 - a~))}C3 

(C1 (t)C;) "" t e1 (t)(CI (t)Gr) + t eZ(t)(C2 (t)C;> 

+t e 3 (t)(C3 (t)C;> , 

where 

e1(t) =exp[ - (t ~)(2n +1)] exp{(t k2)[(n +1)e-1wt +n elwtn, 

e2(t) = e3(t) =exp[ -(t k2)(2n + 1 )]exp{ (tkZ)(n + 1 )e-Iwt +n elwtn. 

In this last equation, we have assumed that the electron 
is clothed by an average phonon cloud so that the phonon 
operators can be removed from the electron correlation 
functions. This assumption is asymptotically correct 
for infinite k because infinite k implies an infinite bar­
rier between equivalent distorted configurations. This 
in turn implies no tunneling between configurations, and 
the molecule will merely oscillate about one distorted 
configuration. The infinite k spectrum will thus be that 
characteristic of the separate wells (at I, IT, nI, and IV) 
and will be given by the Fourier transform of 
exp[ - (t k2)(2n + 1 )I exp {(t ~)[n el wt + (n + 1 )e-1wt ]) e-H(/3)kZwt. 

This leads to the usual Poisson form which is well ap­
proximated by a Gaussian. For k finite but large, we 
expect the spectrum to be perturbed from this form by 
tunneling between the four wells. However, this ap­
proximation is still expected to be fairly good because 
for large k the molecule will most often be found near 

the four minima in configuration space. Each of the 
minima has an average phonon cloud associated with it, 
and it is this average cloud which will dress the elec­
tron and interact only weakly with the rest of the phonon 
bath. With this approximation, the line shape for large, 
finite k becomes 

2 i ro 

1(0) = ~ _~ dte Hlt[e1(t)(C l (t)Ci> 

+e2 (t)(C2(t)Gi) +e3(t)(C3(t)C;)] . 

Owing to the phonon dressing, the calculation of the 
line shape for large k is more complicated than the line 
shape calculation for small k. We will calculate it using 
two methods. The second method is the projection op­
erator technique used previously for small k. This is 
the preferred method since it automatically keeps all 
terms to the same order in the perturbation. However, 
this problem is sufficiently complicated that it is diffi­
cult to see what is going on with this projection operator 
method. Thus, we present the more transparent but 
less rigorous equations of motion technique first. In 
this method, the equation of motion for (C2(t)Q) is cal­
culated by differentiating twice with respect to time, 
decoupling the electron and phonon operators, and final­
ly solving the resulting second order differential equa­
tion. This method will be shown to give a reasonable fit 
to the exact numerical spectra. 5b 

1. Equation of motion method. 

We begin by going into an interaction representation 
with respect to Ho given in Eq. (lOa). In this represen­
tation, the time evoluation of the electronic state is 
given by 

C1(t) = 'f{ exp( i f V(T)dT)} CI'f {exp( i ( V(T)dre-
t6tt

)} , 

where E:l = - (2/3)k2w, E:2 = E:3 = - (1/2)k2w, and V(t) 
= elHot Ve- iHot . Then, differentiating twice with respect 
to time, separating the phonon operators from the elec­
tron operators, and computing the phonon averages, one 
can easily show, for example, 

(11) 

where a;= coth({3w/2). The initial conditions are (G 1 (O)Gi> 
=1 and«\(O)C~>=-iE:l; thus the solution of (11) is 

(C1 (t)Gr> =A1i SinYI t + COSYlt , 

where 

Yl =kw[tk2+ta)1/2 and Al =- E:1jyl . 

The solutions for the other two correlation functions, 
(Cz(t)C;) and (C3 (t)(;;>, are Similarly found to be 

(C2(t)C;> = (C3(t)C;> =A2i sinY2t +COSY2t , 

where Y2 =kwUk2 +t a]1/2 and Az =- E:2 jyz' 

Now remember that the line shape is related to the 
product, 81(t)(CI(t)C~). To calculate the line shape, it 
turnsouttobe convenient to express 81(t) and 8z(t) in 
terms of a sum of modified (hyperbolic) Bessel func­
tions. For example, 
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9 1 (t) = exp[ - (t k2)(2n + 1)] L e-imwl [(n + 1)/n]m/2 Im[ (4/3)k2n l 12(n + 1 )1/2] . 
m=-.o 

With this expansion, the line shape becomes 

= ~2 0xp[ - (t k2)(2n +1)] J;~ [(n +1)/n]m/2 Im[(4/3)k2nI/2 (n +1)112] 

X {[ (AI + 1)/2] 6(0 - mw + YI) +[ (1-A1)/2] 6(0 - mw - YI)} 

+ 2 exp[ - (~k2)(2n +1)],t [(n +1)/n]m/2 1m [k2n I/2 (n + 1)1/2] {[ (A2 + 1)/2] 6(0 - mw +y2)+[(1-A2)/2] 6(0 - mw - Y2n) . 

Although this formula looks somewhat formidable, it is 
really a series of delta functions with intensities de­
pending on k 2 and n. This dependence is complicated in 
general, but simplifies at low temperatures when only 
a few values of m in the sum have a significant intensity. 
For example, at zero temperature only positive values 
of m contribute [because for small Z, Im(Z) - (~Z)m / 
(m + 1) I]. Further, the intensity of the mth line is pro­
portional to (~)m /(m + I)!, so the intensity peaks at m "" ~. 
Figure 2 shows three spectra calculated using this result 
and compares them to numerically calculated spectra of 
Englman et al. 5b We find that the spectra agree reason­
ably well even for fairly small values of k. It should be 
emphasized, however, that this method is not rigorous 
(for example, it does not keep all terms to the same or­
der in the perturbation). We present these results be­
cause they are confirmed by the projection operator 
technique and because it is easier to see where the 
terms are coming from using this method. We postpone 
discussion of the spectra until after completion of the 
projection operator derivation. 

2. Projection operator method 

We now confirm the equations of motion result with 
the more accurate projection operator method. The 
Hamiltonian is partitioned into Ho + V as given in Eqs. 
(lOa) and (lOb). Notice that now (V) *0, but since it is 
proportional to e-k2

, for k very large, it is quite small 
and we therefore set it equal to zero. With (V) = 0, we 
may again use Eq. (8) to determine (CI(t)C~) to second 
order in V. As in the small k case, a sort of closure 
holds and, for example 

(CI (t» =A(t)CI +B(t)C2 +D(t)C3 , 

where A, B, and D are unknown functions of time. Us-

. (12) 

ing this relationship, Eq. (8) becomes 

..!. _. k2w2 i l 

(0 I (C I (t))cr I 0) =A(t) =-iEIA(t)- -3- ~(T)A(t- T)dT, 
o 

(13) 
where 

~(t) = e-1&21 {exp[ - H a~(2 - e1wl -e-1WI)+H k2(e-1wl _ eIWI )]} 

x{2acoswt- 2i sinwt +t k2( (coswt -1) - iasinwt]2}. 

(14) 
Now since the spectral density is related to the real part 
of the Laplace transform of the autocorrelation function 
[see Eq. (7)], and because the right hand side of Eq. (13) 
is a convolution, we evaluate .4(s) by Laplace transform­
ing (13) and find 

(15) 

Thus, we must calculate ~(s). 

As indicated by Eq. (13), ~(s) will be fairly compli­
cated in general and certainly will be much more com­
plicated than its small k counterpart. Thus, for illus­
trative purposes, we will examine ~(s) in the low tem­
perature, moderate k limit where it will simplify great­
ly. For low temperatures, ~(s) may be expanded as a 
series of modified (hyperbolic) Bessel functions: 

NOW, at zero temperature (i. e., n = 0), only the positive 
terms in the sum contribute. Further, if k is moderate, 
only the m = ° term will be important and ~(s) will be 

(17) 

h L. ~" .. 
-I 0 I 2 -5 0 5 -5 0 5 10 

(0) (b) (e) 

FIG. 2. Absorption spectra for large k. Solid lines are the numerical results of Englman et al., 5b and the bar spectra are the 
results of this calculation. Intensity is in arbitrary units; energy is in units of omega. (a) k=l, kBT=O; (b) k=2.3, ksT=O; 
(c) k=2.3, kB T=O.5. 
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A simple limit for .$(s) has been chosen because the 
line shape calculation is much less complicated when 
.$(s) is relatively simple. Now, substituting <1>(s) from 
Eq. (17) into Eq. (15), we have 

A(s) =[s +iEl +tkzwZe-llkZ/1Z(s +iEz)"l]"l . 

Thus, in this limit, A(s) is 

A(s) ~ [(A+ + Ez)/(A. - AJ] 6(s - iA.) 

+[(A_+Ez)/(A_-A.)]6(s-iAJ, 

where 

A± = (E1 + Ez)/2±[t (E1 - (2)2 +t k2u.,ze-<U/12)kZp/Z 

Here we pause a moment to recall that the line shape 
is not simply related to A(s) as in the small k case, but 
rather it is related to the real part of the Laplace trans­
form of 

3 

L (C; (t)Cj) ~ 8 1 (t)A(t) + 8z(t)B(t) + 82 (t)D(t) . 
1=1 

Therefore, in the large k case, the line shape is the 
Laplace transform of a product of functions. This prod­
uct may be computed using the complex convolution 
theorem, 14 i. e. , 

Thus, before computing the line shape, we must evalu­
atee'l (s) in the same limit (i. e., low temperature, 
moderate k) used for A(s). First we expand01(s) as a 
sum of Bessel functions: 

~ 

e1(s) =exp[ - (t kZ)(2ji" +1)] L Un +1),In]m/z 
m=--c 

x Im[(4/3)k2n1 / Z(n +1)1/2] 6(s +imw) . (18) 

Again, for zero temperature and moderate k, only the 
m = 0 term in the sum will be important. Since the m = 0 
term in Ot(s) is just a delta function at s =0, the spec­
trum due to 81A looks like two delta functions, one near 
n = Eh and the other near n = E2, with the peak near E1 
being more intense. (A similar analysis for the spec­
trum due to B and D gives a similar result with the more 
intense peak near E2 .) 

We have given the above heuristic derivati!>n of the 
line shape in order to illustrate calculation of the large 
k line shape using the projection operator formalism. 
It should be emphasized that an actual calculation of the 
spectrum using the above formula is somewhat more 
complicated since these formulae are valid in the large 
k limit. In the large k limit, the functions .$(s) and 8 (s) 
are more complex than in the above example; however, 
the line shape calculation follows the above lines. In 
the next section we will compare spectra calculated us­
ing this formalism with those calculated using the pre­
vious equations of motion method. 

D. Discussion of line shape 

In the previous section, we presented two methods 
for calculating the absorption spectra in the strong cou­
pling limit. In this section we will compare these two 

methods as well as comparing the spectra calculated 
with them to the numerically calculated spectra of Engl­
man et al. 5b 

The spectra (shown in Fig. 2) were calculated using 
the equations of motion results [Eq. (12»). This formula 
has the advantage of being relatively simple. Even for 
fairly large values of k, one may quickly calculate the 
position and intensity of the spectra lines using only a 
slide rule and a table of Bessel functions. [In fact, the 
spectra in Figs. 2(a) and 2(b) were calculated using only 
a slide rule, since for those values of k, the approxima­
tion, Im(Z) - (t Z)m /(m + 1)! is valid.] However, this for­
mula has the disadvantage of being only approximate, 
and in some cases one must use the more complicated 
projection operator from [Eqs. (15), (16), and (18)]. 

The advantage of the projection operator form is that 
it keeps all terms to the same order in the perturbation. 
The major disadvantage is that the functional form is 
fairly complicated even for relatively small k and low 
temperatures, and becomes more complex as k and T 
increase. Thus it is useful to note that in the limit k 

»1, kB T« 1, the projection operator and equations of 
motion forms become equivalent. Therefore, for large 
k and low T, one may use the equations of motion form. 
In fact, for the spectra shown in Fig. 2, the two methods 
give equivalent spectra. 

In Fig. 2 we have also compared our calculated spec­
tra with the exact numerical spectra of Englman et al. 5b 

We find that even for a fairly small value of k (i. e. , 
k = 1) our spectrum agrees reasonably well with the nu­
merical spectrum. For somewhat larger k (k = 2. 3) the 
fit is even better. Also, for finite temperature, we 
find that our agreement with the numerical spectra is 
very good. Further, the analytical formula for the spec­
tra has the advantage of being valid for larger values of 
k. In fact, since the analytical form is valid asymptoti­
cally as k - 00, this form will be more accurate for larg­
er values of k. 

Figure 2 shows that as k increases, the width of the 
spectrum increases. This is very reasonable since a 
larger value of k implies a deeper well and hence a larg­
er average number of phonons in the phonon cloud. Also, 
as the temperature is raised, the spectrum gains in­
tensity on the positive side. This is also reasonable 
because a higher temperature implies that more phonon 
states will be thermally populated and hence there will 
be a greater probability of absorption to the upper leaf 
of the electronic surface. Also, on classical groundS, 
the spectrum is expected to become more symmetrical 
as the temperature is raised. 

IV. SUMMARY AND CONCLUSIONS 

In this work we have applied techniques of many-body 
theory to the problem of the coupling of a triply degen­
erate Boson mode to a triply degenerate Fermion state. 
The particular transformations used in this work were 
chosen so that the wavefunctions generated by them were 
closer to the eigenfunctions expected on physical 
grounds. Alternatively, the transformation can be 
viewed as replacing the description of the motion of the 
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strongly coupled individual electrons and nuclei by a 
description in terms of weakly interacting collective 
modes. After transformation, the perturbation param­
eter is k2 e -112; therefore, even for large k, the perturba­
tion is small. 

Using the transformed representation of the Hamilto­
nian we have derived analytic expressions for the 
asymptotic eigenvalues and find them to be in good 
agreement with the numerical results of Caner and 
Englman. 5a We have also derived an analytic but ap­
proximate expression for the spectral density for strong 
coupling by employing the transformed representation 
of the Hamiltonian and by taking advantage of the rela­
tionship between the spectral denSity and the Green's 
functions, Gjj(t). Line shapes calculated from this ex­
pression are in agreement with the earlier numerical 
results. 5b 

*This work is partially supported by the National Science 
Foundation. 
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