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A theoretical study of the strongly coupled Txt

Jahn-Teller system*
M. J. Shultz' and R. Silbey

Department of Chemistry and Center for Materials Sciences and Engineering, Massachusetts Institute of

Technology, Cambridge, Massachusetts 02139
(Received 9 June 1976)

We investigate the Jahn—Teller effect for strong coupling between a triply degenerate electronic state and

a triply degenerate vibrational mode (TX t). We derive approximate analytical expressions for the lowest
energy levels for finite but large coupling constant k, and have calculated the splitting between these levels.
Our splitting between the lowest T and A states agrees well with the numerical data. We also have derived
approximate analytical expressions for the absorption spectrum for all k. Our spectra are in reasonable

agreement with the numerically calculated spectra.

. INTRODUCTION

The Jahn-Teller effect is a member of a larger class
of physical phenomena which depend on the interaction
between the nuclear and electronic motions for their
existence. Also included in this class are the relaxa-
tion of spins in a lattice, superconductivity, and non-
radiative transitions. The theoretical treatment of
these problems is difficult owing to the breakdown of
the traditional Born—Oppenheimer or adiabatic approxi-
mation. In this paper, we will calculate the energy lev-
els and absorption spectrum of a Jahn—Teller system,
using the many-body techniques developed to under-
stand other similar phenomena,

In 1937, Jahn and Teller! showed that if a nonlinear
polyatomic system has a degenerate electronic state,
then there exists at least one asymmetric displacement
of the nuciei which will lower the energy of the system.
The Jahn-Teller effect arises from the fact that for all
nonlinear molecules, there is at least one non-totally-
symmetric vibrational mode whose irreducible repre-
sentation is contained in the symmetric square of the
irreducible representation of the degenerate electronic
states. Thus, there exists a nonzero matrix element
between the degenerate electronic states which splits
the degeneracy in first order. The result is a mixing
of the electronic and vibrational motions accompanied
by an alteration of the energy levels.

In this paper we are interested in the Jahn—Teller
coupling between a triply degenerate electronic state
and a triply degenerate vibrational mode (TX¢). This
problem arises, for example, when an electronic p
state occurs in octahedral symmetry. A number of in-
vestigators have looked at this problem. Van Vleck®
and Opik and Pryce® calculated the static potential sur-
face; Moffitt and Thorson! calculated the eigenvalues
for weak coupling using perturbation theory; and finally,
Caner and Englman®® and Englman ef al.™ calculated
the eigenvalues and absorption spectrum for weak to
modevate coupling using numerical techniques. We ex-
tend this work with an approximate, yet analytical, cal-
culation of the eigenvalues for strong coupling®’® (Sec.
II) and with an approximate analytical calculation of the
spectrum for all coupling strengths (Sec. OI).
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1. ENERGY LEVELS FOR STRONG COUPLING

In this section we derive an analytical expression for
the energy levels in the strong coupling limit. We begin
with a presentation of the Hamiltonian and the infinite
coupling limit of the eigenvalues in Sec. II. A. In Sec.
II. B we perform unitary transformations which allow
the Hamiltonian to be written in a form appropriate for
strong coupling. Then in Sec. II.C we derive the ex-
pressions for the eigenvalues, and finally, in Sec. II.D
we calculate the singlet-triplet splitting,

A. The Hamiltonian

The Hamiltonian for the 7T'x ¢ Jahn-Teller problem
has been calculated using group theory by earlier au-
thors.? In the octahedral point group, the triply degen-
erate vibrational mode belongs to the ¢,, irreducible
representation which transforms like (yz, xz, xy).
Therefore, in the T,,(x, y, 2) electronic basis the Hamil-
tonian is

H=[1/2)(P%+ P2+ P2 +(1/2) () (@ + @ +@D)]1
+K(QuT) + QsT2 + Q5T3) ,

100 000
1=|o 10|, mn=loo 1],
001 010
001 010
7,=|0 0 0], 73=|1 0 O
100 000

Since the matrices 7, 7,, and T3 do not commute, this
Hamiltonian entails a nontrivial coupling between the
electronic and vibrational modes.

We begin our calculation by second quantizing this
Hamiltonian. That is, define

by = (1N 2@) (wQ, +iP;)
and
b} =1V 2w) (wQ; - iP)

where b,(b]) creates (destroys) an excitation in mode i.

b
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FIG. 1. (a) Octahedron enclosed in a cube with the (1,1,1)
vibration indicated. (b) Distorted octahedron in an equilibrium
position for large finite k.

With these definitions the Hamiltonian becomes
H=w(bib, +btbs+b} bs+ 3N
+{Bw/V2){(by+b]) 7, + (bg +b2) T, + (bg +53) T3} . 1)

We also define electronic state creation and destruction
operators, Ci and C;, where the index i(=1, 2, 3) refers
to the T, electronic basis.

The asymptotic eigenvalues of this Hamiltonian have
been known since the calculation of the static potential
surface.?3 The potential surface has four minima in
Q4, @5, Q¢ space displaced from the origin in the direc-
tions I=(1,1,1), I=(-1, -1,1), li=(-1, 1, =1), and

Iv=(, -1, —1) by an amount proportional to £ and
separated by a barrier of height proportional to 22,
Thus, for infinite %2, the four minima are well separated
and the eigenvalues are those of a three-dimensional
harmonic oscillator. Physically, these minima corre-
spond to a distortion of the octahedron by squeezing the
axes toward one of the four diagonals of the cube as il-
lustrated in Fig. 1. For infinite £, the molecule then
vibrates about one distorted configuration with no inter-
configurational conversion. The ratio of the oscillation
frequency in the direction of the displacement to the
oscillation frequency perpendicular to the displacement
may be calculated by perturbation theory, and is
1:V2/3. Therefore, the asymptotic eigenvalues are

E~(n, +1/2)w+(n, +1)V2/3w - (2/3) FPw . 2)

For all finite values of 2 the Hamiltonian has octahe-
dral symmetry; therefore, the lowest state is a triplet
throughout. When 2 becomes infinite, however, the
system assumes a symmetry of C, along any one of the
four body diagonals, the lowest singlet becomes degen-
erate with the triplet, and the lowest state is a quartet.
Caner and Englman®® give the formula 0. 8%% exp(~ 0. 8%%)
as a reasonable fit of their numerical data for £#52.5.
We will now present an approximate calculation of the
energy levels for klarge but finite, Our calculation for the
separation between the lowest singlet and triplet states
agrees reasonably well with the above work, even
though only the lowest state is taken into account.

B. The unitary transformations

For large %, the problem is basically one of four
weakly interacting wells. We will therefore solve for
the motion in a single well, e.g., I=(1, 1, 1), and treat
the interwell interaction as a perturbation.

First we change the origin of the vibrational coordi-
nant system to (1, 1, 1) with the unitary transformation
exp(S;), where

Sy=[-R(2)/2/3][ (b, — b}) + (b5 — B3) + (bg — b5)] .

To perform the unitary transformation, we use the fact
that

exp(S) Iexp(- §) =3 +[S, 3¢] +2—1![s,[s, Kll+.or .

Also, for notational simplicity, we define new electronic
and vibrational coordinates as follows:

CL=ANB(C,+C+Cy), C=(UND(C-Cy),

Cy=(INB)(C,~2C, +Cy) ,
and

o, =(1/V8) (= by+2b5-b) ,

Qg = (1/\/’5) (b4+ b5+ be) .
Then

o, =(A/V2) (= by +bg) ,

H=w(aja, +aja, +aja, +3/2)1+ (kw/VB) (73 — 2) (a3 + a3) + (2F2w/3) (1 = F) + (kw /N 6) [ (o) + a})T, + (ap + @3)To]

where
0 O 1 0o 1 0
T.=|0 =v2 0], T={1 0 V2|, 7=
1 0 V2 0 -v2 0

0 0
-1 0
0 -1
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Notice that C} has no linear interaction with the vibrations. To remove the linear interaction between the states
C; and Cj and the o, vibrational mode, we further transform the Hamiltonian with e52, where

S,=(=k/V6)(T;- 2) (a3 — a3) .
Then, H=H,+V, where

w
- 3 =2
Hy=wlaja, + aja, + oo, +3) - = 75

and

(3a)

V=(kw/VB)[(C{C46 +6* C; Cy) (@ +a}) +(C; C,6 +6°C4 Cy) (o + a3) = V2 (Cy C, — C3 Cy) (g + ) =V2(Ch Cy + C3 Cy) (ap + 0],

where

6 = expl (- 36/V6) (s - a)] .
The eigenstates of H; are easily seen to be
Piumr = (@) (@3)™ (@) C; [ OY NV Im 11T
and the eigenvalues are
( i=1
i=2,3.

© m+m+l+3w-2krw

inml'{
3
m+m+l+pw-4k2a

C. The asymptotic eigenvalues

Observe that the separation between the states ¥,
and Ypum; OF Y5um; is proportional to #2. Therefore, for
k>>1, the lowest states are ¢,,,;. Proceeding with per-
turbation theory, we notice that the first order correction

€ =<‘/’1mn1] Vl%nmz) =0

for all», m, and /.
culation shows™ that

A lengthy but straightforward cal-

Hnml|Vijn'm'l"y 12
Elmnt - Ejn'm’l’

lim €, =1im
k- o k- rmt

=~ (1/8)(n+m+1)w

Thus, €, is small for » +m small, and the energy cor-
rect to the second order is

EZ =0+ Ho+bem+) 1 -}o=-3rw . )

It is instructive to compare this energy with the k=
energy levels known from the static calculation [Eq. (2)].
First notice that the Jahn-Teller stabilization energy,

— (2/3)k?w, appears explicitly in the second order ener-
gies [Eq. (4)]. Observe further that the static calcula-
tion shows that the frequency of the perpendicular mode
is V(2/3)w, while Eq. (4) has the frequency shifted from
unity to 1 -+ ~0.834, which is reasonably close to v2/3
~ 0, 827,

Continuing with higher order perturbation theory
shows that all odd orders vanish. The fourth order cor-
rection, which is calculated in the same manner as ¢,,
is

lime, =~ (1/72)n+m+1)w .
Rk~ w©

The higher order corrections become very difficulty to
calculate. However, it is easily seen that we have the
first three terms in the expansion of

(3b)

VE/B=VI-(1/3)=1-%=gk—-.-

Using a slight variation on Brillouin-Wigner perturba-
tion theory, Beers’ has shown that the frequency of the
perpendicular mode converges to v2/3 +0(#?). Thus
the k =« energy levels are well accounted for using the
separate well model. ™

D. Singlet-triplet splitting

For k =« there is no interaction between the wells and
the lowest state is a quartet. However, if k is large but
finite, the electron may tunnel between the wells. This
tunneling will split the degeneracies. To obtain the
splitting, we first form approximate eigenfunctions
which transform as irreducible representations of the
octahedral group from the separate well wavefunctions,
then we calculate the Hamiltonian and overlap matrices
and finally calculate the energy matrix.

To calculate the eigenfunctions near a trigonal dis-
tortion, we use the states appropriate to infinite %,
which are localized in a single well {e.g., I) (i.e., ei-
genfunctions of Hy) as a basis. We then calculate the
wavefunction to second order in V and find, for example,

" ={‘5;+ kAE)S (-3 BT1/nl(n+1 + 3 49)]

n=0
x (a3 (Cy a3 +C; oz‘l')} [o) .

Note that this wavefunction has a zero-point energy of
(3/2-1/6)w instead of the exact % = value of (V2/3
+1/2)w. Second order solutions in the other wells are
similarly constructed. We now form appropriate (un-
normalized) functions which transform as irreducible
representations of the octahedral group by combining
the lowest states of the four wells. For the lowest A4,
and T, states we have

P+ Py = Y — Yy
Y=Y+ b v, (5)
he— Yr1— Y+ Uy

1
q)Tl 25

and

By =2 (P + Y1+ P +ay) -

We now calculate the singlet and triplet energies using
the second order wavefunctions from each well, For
example,

J. Chem. Phys., Vol. 65, No. 11, 1 December 1976
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Da, | H|®a,) -

pp {2 lH10) 6
427 (Bay104,) ®)
The normalization factor {$4,®4,) is not unity; thus, it
is important to include it. Now we let 10;) be the zeroth
order wavefunction in well J and [1,) be the first order
correction, then using Eq. (5) above, Eq. (6) becomes

E(z) =£Q<0] +1,f |01'+1J> +€z+3En<0J +1,] IOK +1K> +3K +3K,
4z O, +1,10; +1,)+3(0,; +1, 10, +14) ’

where Eq=(1-1/8)w, k=(0¢1VIly), and k"=l 1V, I1,).
k and & are calculated in Ref. 7(c), where they are
found to be

— -84k2 4 -8k2
K_%gkzwee /9, K =5§§kzwe 8k2/9

Thus, to second order the singlet energy is
EQ =Eg+¢€, +3} k2w 8¥2/9

Similarly, the triplet energy is found to be
Ef) =Ey+ ¢, —ff Pwe /9

Thus the splitting is

2
EZ -EE =+§iFwe™/?

If we neglect the first order correction to the wavefunc-
tion, we find

(] o) - 2 . -8k
EQ) -Ef) =ErPwe™/9
This agrees with Judd’s calculation.™

Finally, we note that if the approximate ground state
wavefunctions localized in each trigonal well, i.e., the
¥, etc., are chosen to be harmonic oscillator functions
with the exact k== frequencies w, v2/3w, and v2/3 w,
the singlet triplet splitting is

E4,=Er, =1.26F2we 82"

We note that these approximate results are very close
to the numerical calculations for 2= 2, 3 of Caner and
Englman given above. Since the present calculation is
correct asymptotically for £~ =, we see that the major
effect of the mixing of higher states is to push the A
and T states closer together while keeping the same
form for the interwell overlap, and lowering all states
by the same small amount.

Since the weakly interacting well model has succeeded
in calculating the energy levels and the splittings for
large 2, we will now use this model for calculating the
spectral line shape.

ill. SPECTRAL LINE SHAPE

In this section we consider the absorption line shape
for transition from a nondegenerate ground state to a
triply degenerate excited state in octahedral symmetry.
For example, this could correspond to an S— P electron-
ic transition localized on the central ion of an octahe-
dral molecule. The triply degenerate excited state will
interact with the vibrational modes of the octahedron,
giving structure to the absorption spectrum. It is
known® that the triply degenerate excited state will cou-
ple io the ay,, ¢,, and {,, vibrational modes. However,

M. J. Shultz and R. Silbey: Strongly coupled Jahn-Teller system

since coupling to the a,, and the e, modes is trivial, we
will treat coupling to the f,, vibrational mode only. In
this case, the Hamiltonian for the excited state is given
by (1) above.

In this section, we will calculate the spectral density
using Green’s function techniques. Section III. A will
give the relationship between the Green’s function and
the spectral density and also will indicate how the pro-
jection operator technique of Zwanzig® may be used to
make a perturbation expansion of the Green’s function.
In Sec. III. B this projection operator technique is used
to calculate theline shape for small coupling strength, %.
Then in Sec. III.C we will calculate the line shape for
large % using two techniques. The first, an equations
of motion technique, is an approximate method which is
given for illustrative purposes. The results derived by
this first method are confirmed by the second, more
accurate but more complicated, projection operator
technique. Finally, Sec. III.D discusses these results.
Those readers not interested in the mathematical details
may go directly to Sec. HI.D.

A. Spectral density, Green's functions, and projection
operators

The absorption line shape for a dipole transition is
given by

1) - f dte'™ e, - (OuO)- &,

where €,(¢,) is the polarization of the outgoing (incom-
ing) radiation, and (u(¢) u(0)) is the dipole moment auto-
correlation function. Since the dipole moment autocor-
relation function is difficult to calculate directly, -it is
useful to relate the integrand to the Green’s function
G,,(f) and to calculate the spectral density using the
well-known relationship’® 1

< 3
- int
1(Q) 2Re£ dte ;G”(t), (7a)
where
G, (D) =-i8(D{(C,(1) CP (7b)
and
1 t>0
e(t)={
0 t<0.

Thus the line shape is just the Fourier transform of a
sum of Green’s functions. The Green’s functions in
turn are related to the time evolution of the electronic
states. Owing to the form of the Hamiltonian, this time
evolution is very complicated, so it may appear that we
have gained very little, However, as Eq. (7b) indicates,
we are only interested in the vibrational (phonon) aver-
age of the evolving electronic state, Thus, by making
suitable approximations to the electronic autocorrelation
functions and by using the projection operator technique
of Zwanzig,® we will be able to calculate an analytical
expression for the line shape.

We will use the projection operator technique to sepa-
rate the evolution of the electronic state into a relevant

J. Chem. Phys., Vol. 65, No. 11, 1 December 1976
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and an irrelevant part, and to make a perturbation ex-
pansion of the relevant part (for a discussion of the use
of this technique in other many body problems, see
Haake!!). Briefly, we define the projection

_Tr (g'B"L...)

The equation of motion for the relevant part, PC,(f),
can be shown to be®

PCy(#) =i[ PH, PC,(1)]

4
- f dr PL' &"PIX(1 — P)L'PC,(t-T),
0

where L'--- =[V,...]. If {(¥)=0, this equation is exact,
but it contains the modified propagator exp[i7(1 - P)L].
We will now expand this exponential keeping only the
leading term. Then,

t
PC,(H =i PH, pc,(t)]-f drPL'e'"™™ L' pC,(t-7), (8)
0

where Ly .-+ =[H,,...]. This equation for the relevant
part keeping all terms to the second order in the per-
turbation will be the starting point of our line shape cal-
culation.

B. Small £ line shape

We will exhibit the method for small & first since this
is the simpler case. For small &, the term in curly
brackets in Eq. (1) is small and is chosen to be the per-
turbation V. In this case {V)=0, and Eq. (8) is the sec-
ond order perturbation equation. Further, since
[(H)(C,#)]=0, Eq. (8) simplifies to

1
Pey(t)=- [ an(ly,[vin), cyt- D),
0
where V(#) =e'fof Ve ¥0f A sort of closure holds here
because, for example,
{CtN=FOIC +8(D) Cy+R(DC;

where f, g, and k are unknown functions of time. Now,
the line shape is related to J; (0 I{C,(#)} C}10), so we
look, for example, at

O, cy|oy=F(t)
=— fotdf ORIV, [V, fiE-7) ¢,
+g(t= 1) Cy+h(t-T7)C5]1) Ct| 0)

- B fu' dr &P f(t-1) (9)
where
®o(T) ={(bg et “T + b} !“T) (b +b}))
+{(bge T +bs '™ (bg +b2)

=2 +1)e T ¢ 2meteT |

and 7 =(e®” — 1)"!. The integrand is computed by using
the Fermion anticommutation relation {C;, Cj}=9;,, and
the fact that C,10)=0. The phonon averages are com-
puted as in Messiah.!? Laplace transforming both sides
of (9), we find

Fls)= [s +%“’a :bo(s)]-l

and

- n+1 n
%(s)—z[s Tiw s—iw] ‘

Therefore,

fs)= [s +kzwz(§:7.lw) +kPu? (ﬁ)]-l .

Due to symmetry, fA(As) =g(s) =h(s) and the line shape is
just proportional to f(s). Now, at low temperature, #

is small and
Fs)= (s +iw)[s(s +iw) + B2 w?]™?

Thus,

L Ww=2A A, -

1(Q)=3 o

. w
Ao

% o@-1),

(Q-2)+3

where A, =5 w[12 (1 +4%%)!/2]. Thus, to second order in
k, the zero temperature spectrum consists of two delta
functions—one relatively intense peak near - k*w, the
other much less intense near +«. For finite tempera-
tures the spectrum has three peaks, and as the temper-
ature is raised, the spectrum becomes more symmetri-
cal as expected from the classical results.® These re-
sults which hold asymptotically as 22— 0, are in qualita-
tive agreement with the exact numerical, 2=1 spectrum
(the smallest value of k for which a spectrum is re-
ported) of Englman ef al.®® Quantitative comparison of
calculated and numerical spectra is reserved for the
next section since the second order perturbation treat-
ment is not expected to be qualitatively good for =1,

C. Large k line shape

As in the energy level calculation, our model for the
large & spectral calculation is based on the static po-
tential surface. Recall that the static surface has four
minimum points separated by a distance proportional to
k and by a potential barrier of height proportional to 2,
Thus, as for the energy level calculation, this problem
is basically one of four weakly interacting wells, and
we will calculate the spectrum perturbatively starting
from the infinite % form,

The energy level calculation for large # indicates that
the partitioning of the Hamiltonian given in Eqs. (3a)
and (3b) is very good for determining the energy of the
lowest vibronic states. However, the line shape also
depends on the energy of the higher vibronic states;
thus, the partitioning of the Hamiltonian should be re-
examined. In fact we find that the intraorbital term
(C; C; - C} C3) makes a large contribution. We might
have anticipated this since earlier work with a different
Jahn—Teller problem'® found that the intraorbital cou-
pling played a dominant role in the dynamical Jahn-
Teller effect. This intraorbital coupling is now elimi-
nated with the transformation %, where

B EeE TG .
Sy=75(C2C = C3Cy) (g - ai) .
(Notice that S, does not contain C,; therefore, this trans-

formation has no effect on the previous energy level cal-
culation. )

J. Chem. Phys., Vol. 65, No. 11, 1 December 1976
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The Hamiltonian is now written as H,+ V, where

3 1 =T e -
Hy=w(o]a, +0} a, +aj a; +3) — 5 Pw(CiC, + CiCy) — kwT 2

and (10a)
V=kwNB{(CICsfs +c.c) +(CiCyfs +c.c.) +(C3Cy fy +c.c.)},

(10b)
where

Si=- V2 E‘XP[(Zk/ﬁ) (a, - 0‘;)] (Olz +a£) ,

fr=exp[- (3k/V6) (a; - a3)] (a; + af) exp[(R/V'3) (a, - a})].
fy=expl- (8 /V8) (a; — aj) ] exp[-(/V3)a; - )] (ay + a}) .
Now the effect of V on all vibronic levels is small, and
we may proceed.

As before, the line shape is related to the correlation
functions (C,(¢)C}). Since the trace is cyclically invari-
ant and ¢~ =1, we have

(Ci()CHy = <C—i (ﬂé:)ﬁ

where (- +-), means trace with respect to the lattice
variable of H, and {---); means the trace with respect
to the lattice variables of H, S is the sum §, +§, +8§;.
Thus the phonon average of the time evolution of the
bare electronic state is the same as the phonon average
of the time evolution of the clothed electronic state.
Further, the clothed electronic state can be written ag
a combination of the states C;, e.g.,

C,=eS[A/N3)C,+(L/N2)Cy+(LNB)C;le™s
=(IAN D) exp (2N 6) ;- af)ICy+ (L /V2)
x expl— (k/V6)(a; — a)] expl~ (#/V3Na, - o})]C,
+(1/V6) exp{— (&/VB) (a; - a3) - VE(a, - aDI}C,
and
(C,L(DCY ~ 3 0,(N(C, ()T + 1 6,((C, ()T

+40,((C, (DT
where

01(8) =expl - ()@ +1)] exp G K[ (7 +1)e™* sz e'! ]},

6,(8) = 6,(f) =exp - (3 ¥*) (27 + 1) exp{(; K*) (7 + 1)e ™ +iT e},

In this last equation, we have assumed that the electron
is clothed by an average phonon cloud so that the phonon
operators can be removed from the electron correlation
functions. This assumption is asymptotically correct
for infinite k2 because infinite % implies an infinite bar-
rier between equivalent distorted configurations. This
in turn implies no tunneling between configurations, and
the molecule will merely oscillate about one distorted
configuration. The infinite 2 spectrum will thus be that
characteristic of the separate wells (at I, I, III, and IV)
and will be given by the Fourier transform of

exp[- G £ (27 + Dexp{E ¥#)i e “t + (7 +1)e™* ! [} et @/amtut
This leads to the usual Poisson form which is well ap-
proximated by a Gaussian. For % finite but large, we
expect the spectrum to be perturbed from this form by
tunneling between the four wells. However, this ap-
proximation is still expected to be fairly good because
for large %, the molecule will most often be found near

M. J. Shultz and R. Silbey: Strongly coupled Jahn-Teller system

the four minima in configuration space. Each of the
minima has an average phonon cloud associated with it,
and it is this average cloud which will dress the elec-
tron and interact only weakly with the rest of the phonon
bath, With this approximation, the line shape for large,
finite 2 becomes

1(Q)= i‘-; f ) dte'®e,(t)(C,()C)

+6,((Co(NCY +6,(NC4(NT] .

Owing to the phonon dressing, the calculation of the
line shape for large % is more complicated than the line
shape calculation for small 2, We will calculate it using
two methods, The second method is the projection op-
erator technique used previously for small k. This is
the preferred method since it automatically keeps all
terms to the same order in the perturbation. However,
this problem is sufficiently complicated that it is diffi-
cult to see what is going on with this projection operator
method. Thus, we present the more transparent but
less rigorous equations of motion technique first. In
this method, the equation of motion for (C,(f)C}) is cal-
culated by differentiating twice with respect to time,
decoupling the electron and phonon operators, and final-
ly solving the resulting second order differential equa-
tion. This method will be shown to give a reasonable fit
to the exact numerical spectra.®®

1. Equation of motion method.

We begin by going into an interaction representation
with respect to H, given in Eq. (10a). In this represen-
tation, the time evoluation of the electronic state is
given by

C,()= ‘T{exp<i Lt V(T)dT)} —é,‘r{exp(i J;‘ Viekr e-idn)} :

where €, =— (2/3)F%w, €,=¢; =~ (1/2)k*w, and V(?)

=gtfo? yeiot  Then, differentiating twice with respect
to time, separating the phonon operators from the elec-
tron operators, and computing the phonon averages, one
can easily show, for example,

%(El(t)é; = — (e + PPwo/3) (C, (DT} (11)

where o=coth(Bw/2). The initial conditions are {C,(0)CD
=1 and (C4(0)C}) = — i€,; thus the solution of (11) is
(C()CY) =A,isiny, t +cosy,t ,
where
kel 2+50]V2 and 4, =- €/, .

The solutions for the other two correlation functions,
{C,(t)C;) and (C,(#)C}), are similarly found to be

(Co(6)C3) =(C4(1)Cs) = Ayi siny,t +cosY,t |
where v, =ko[1 k2 +L 0112 and A, =— €,/7;.
Now remember that the line shape is related to the
product, 6,(t)C,(:)C}). To calculate the line shape, it
turns out tobe convenient to express 6,(¢) and 6,(¢) in

terms of a sum of modified (hyperbolic) Bessel fune-
tions. For example,
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0,(t) =exp[- G rA)(27 +1)] D e ™ [Gr+1)/m]" 21, [ 4/ 7} 2 +1)12]
With this expansion, the line shape becomes

()= —‘;—z f ) dte'®t[ 6,(tXC,()CY) +26,(t)(C,()CTY)

)
x{{(4;+1)/2] (@ -mw+7,) +[(1 - 4,)/2] 8(Q - mw - )}

== (oxp[ G ¥¥)(2n +1)] ij (62 +1)/m)™ 2 1,[(4/3)% 7 /2 + 1)/ 2]

+2exp[- (2k2)2n+1)i (G +1) /a2, (B rt 2+ 1)1 2){ (4, +1) /2] 6(Q - mw +7,) +[(1 - Az)/z]é(ﬂ mw— 72)})

Although this formula looks somewhat formidable, it is
really a series of delta functions with intensities de-
pending on k% and #. This dependence is complicated in
general, but simplifies at low temperatures when only

a few values of m in the sum have a significant intensity.

For example, at zero temperature only positive values
of m contribute [because for small Z, I,(Z)~(32)"/

(m +1)1]. Further, the intensity of the mth line is pro-
portional to (¥)™/(m +1)!, sothe intensitypeaks at m =~ ##,
Figure 2 shows three spectra calculated using this result
and compares them to numerically calculated spectra of
Englman et al.®™ We find that the spectra agree reason-
ably well even for fairly small values of £, It should be
emphasized, however, that this method is not rigorous
(for example, it does not keep all terms to the same or-
der in the perturbation)., We present these results be-
cause they are confirmed by the projection operator
technique and because it is easier to see where the
terms are coming from using this method. We postpone
discussion of the spectra until after completion of the
projection operator derivation,

2. Projection operator method

We now confirm the equations of motion result with
the more accurate projection operator method. The
Hamiltonian is partitioned into H,+ V as given in Egs.
(10a) and (10b). Notice that now (V) +#0, but since it is
proportional to e"‘z, for k very large, it is quite small
and we therefore set it equal to zero. With (V)=0, we
may again use Eq. (8) to determine {C,(#)C}) to second
order in V. As in the small 2 case, a sort of closure
holds and, for example

(C,(0) =A@)C, + B(t)C, + D()C; ,

where A, B, and D are unknown functions of time. Us-

M

!
(a) (b)

FIG. 2. Absorption spectra for large k. Solid lines are the numerical results of Englman ef al .,
Intensity is in arbitrary units; energy is in units of omega.

results of this calculation.
(c) k=2.3, kgT=0.5.

12)

ing this relationship, Eq. (8) becomes

<o[(5l(t)>5;lo> =A(t)=-icAt) - 52312 ft (T)A(t-T)dr
0

(13)
where

(1) =2 {exp[ - 4} ok2(2 — &'t —g-19t)+ f KP(e 19" — 1))}
x{20 coswt - 2i sinwt +} ¥4 (coswt - 1) — iosinwt]?} .
14)
Now since the spectral density is related to the real part
of the Laplace transform of the autocorrelation function
[see Eq. (7)], and because the right hand side of Eq. (13)

is a convolution, we evaluate A(s) by Laplace transform-
ing (13) and find

A(s)=[s +i€, + 5 F2w2B(s)] . (15)
Thus, we must calculate $(s).

As indicated by Eq. (13), &(s) will be fairly compli-
cated in general and certainly will be much more com-
plicated than its small 2 counterpart. Thus, for illus-
trative purposes, we will examine &(s) in the low tem-
perature, moderate k2 limit where it will simplify great-

ly. For low temperatures, &(s) may be expanded as a
series of modified (hyperbolic) Bessel functions:

&(s) = = gr11#2/12 Z <n +1)m/z

xI,[(11/8)k272Y 2(n +1)*/2][s +i(mw + &)] . (16)

Now, at zero temperature (i.e., #=0), only the positive
terms in the sum contribute. Further, if % is moderate,
only the m =0 term will be important and &(s) will be

B(s) e MR/ 12(5 4 )T | (17

AMMAKHM_

% and the bar spectra are the
(a) k=1, kgT=0; (b) k=2.3, kgT=0,
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A simple limit for &(s) has been chosen because the
line shape calculation is much less complicated when
$(s) is relatively simple, Now, substituting &(s) from
Eq. (17) into Eq. (15), we have

A(s)=[s +ig, +%k2w2e'“k2/lz(s +i€) ",
Thus, in this limit, A(s) is
Al =[{A, +&)/(A - A 8(s - iA,)
+{(A.+€)/(A.~A)] (s —iA)
where
A= (€ + Ez)/Zi[% (e, - €2)z +%kzwze-<11/1z)kz]1/z

Here we pause a moment to recall that the line shape
is not simply related to A(s) as in the small & case, but
rather it is related to the real part of the Laplace trans-
form of

3
2o COT) = 6,(0) AW + 0,(0B(0) + 6,D(D) .

Therefore, in the large k& case, the line shape is the
Laplace transform of a product of functions. This prod-
uct may be computed using the complex convolution
theorem, * i.e.,

f s, (0AN e dt = [ 6,(VA(s -o)do .
0 =f e

Thus, before computing the line shape, we must evalu-
ate f,(s) in the same limit (i.e., low temperature,
moderate k) used for A(s). First we expand 9.(s)as a
sum of Bessel functions:

8,(s) =expl— G )@ + 1)} 2, [@+1)/alm/2

m=ew

X L[ (4/3)R%7" 27 +1)1/2] 6(s +imw) | (18)

Again, for zero temperature and moderate &, only the

m =0 term in the sum will be important. Since the m =0
term in §,(s) is just a delta function at s =0, the spec-
trum due to 9,4 looks like two delta functions, one near
Q=¢;, and the other near Q=¢,, with the peak near ¢,
being more intense. (A similar analysis for the spec-
trum due to B and D gives a similar result with the more
intense peak near ¢,.)

We have given the above heuristic derivation of the
line shape in order to illustrate calculation of the large
k line shape using the projection operator formalism,

It should be emphasized that an actual calculation of the
spectrum using the above formula is somewhat more
complicated since these formulae are valid in the large
k limit. In the large # limit, the functions &(s) and §(s)
are more complex than in the above example; however,
the line shape calculation follows the above lines. In
the next section we will compare spectra calculated us-
ing this formalism with those calculated using the pre-
vious equations of motion method.

D. Discussion of line shape
In the previous section, we presented two methods

for calculating the absorption spectra in the strong cou-
pling limit. In this section we will compare these two
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methods as well as comparing the spectra calculated
with them to the numerically calculated spectra of Engl-
man et al.*®

The spectra (shown in Fig. 2) were calculated using
the equations of motion results [Eq. (12)]. This formula
has the advantage of being relatively simple. Even for
fairly large values of k2, one may quickly calculate the
position and intensity of the spectra lines using only a
slide rule and a table of Bessel functions. [In fact, the
spectra in Figs, 2(a) and 2(b) were calculated using only
a slide rule, since for those values of &, the approxima-
tion, I,(Z)~(3Z)"/(m +1)! is valid.] However, this for-
mula has the disadvantage of being only approximate,
and in some cases one must use the more complicated
projection operator from [Eqs. (15), (16), and (18)].

The advantage of the projection operator form is that
it keeps all terms to the same order in the perturbation.
The major disadvantage is that the functional form is
fairly complicated even for relatively small # and low
temperatures, and becomes more complex as £ and T
increase. Thus it is useful to note that in the limit 2
>>1, kpT <1, the projection operator and equations of
motion forms become equivalent. Therefore, for large
k and low T, one may use the equations of motion form,
In fact, for the spectra shown in Fig. 2, the two methods
give equivalent spectra.

In Fig. 2 we have also compared our calculated spec-
tra with the exact numerical spectra of Englman ef al. 5
We find that even for a fairly small value of & (i.e.,
k=1) our spectrum agrees reasonably well with the nu-
merical spectrum. For somewhat larger £ (£=2.3) the
fit is even better, Also, for finite temperature, we
find that our agreement with the numerical spectra is
very good. Further, the analytical formula for the spec-
tra has the advantage of being valid. for larger values of
k. In fact, since the analytical form is valid asymptoti-
cally as £~ = this form will be more accurate for larg-
er values of &,

Figure 2 shows that as k increases, the width of the
spectrum increases. This is very reasonable since a
larger value of 2 implies a deeper well and hence a larg-
er average number of phonons in the phonon cloud, Also,
as the temperature is raised, the spectrum gains in-
tensity on the positive side. This is also reasonable
because a higher temperature implies that more phonon
states will be thermally populated and hence there will
be a greater probability of absorption to the upper leaf
of the electronic surface. Also, on classical grounds,
the spectrum is expected to become more symmetrical
as the temperature is raised.

IV. SUMMARY AND CONCLUSIONS

In this work we have applied techniques of many-body
theory to the problem of the coupling of a triply degen-
erate Boson mode to a triply degenerate Fermion state,
The particular transformations used in this work were
chosen so that the wavefunctions generated by them were
closer to the eigenfunctions expected on physical
grounds. Alternatively, the transformation can be
viewed as replacing the description of the motion of the
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strongly coupled individual electrons and nuclei by a
description in terms of weakly interacting collective
modes., After transformation, the perturbation param-
eter is kze‘“z; therefore, even for large k&, the perturba-
tion is small,

Using the transformed representation of the Hamilto-
nian we have derived analytic expressions for the
asymptotic eigenvalues and find them to be in good
agreement with the numerical results of Caner and
Englman.’* We have also derived an analytic but ap-
proximate expression for the spectral density for strong
coupling by employing the transformed representation
of the Hamiltonian and by taking advantage of the rela-
tionship between the spectral density and the Green’s
functions, G;;(#). Line shapes calculated from this ex-
pression are in agreement with the earlier numerical
results. *®

*This work is partially supported by the National Science
Foundation.
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