Closure Properties of D_{2p} in Finite Groups

Po-Ling Lon

under the direction of Dr. Michael Aschbacher California Institute of Technology

Abstract

We discuss the generalized version of a question posed by the topologist E. Farjoun about closed embeddings of a finite group H in a finite group G. We study the case $H \cong D_{2p}$ for p an odd prime and determine a sufficient condition for H = G when H is closed in G.

1 Introduction

Group theory is of importance in many fields of mathematics, including topology. The problem discussed in this paper is related to a problem posed by the topologist Farjoun.

Let H and G be objects in a category \mathbb{C} , and let $\iota \in \operatorname{Mor}(H,G)$. Farjoun studies morphisms ι such that for each $\varphi \in \operatorname{Mor}(H,G)$, there exists a unique $\varphi' \in \operatorname{Mor}(G,G)$ such that $\iota \varphi' = \varphi$. In other words, the following diagram commutes.

One special case arises when ${\bf C}$ is the category of groups and group homomorphisms, and ι is an inclusion map. We denote by $\operatorname{Hom}(H,G)$ the set of homomorphisms from H to G and write $\operatorname{End}(G) = \operatorname{Hom}(G,G)$. We say H is closed in G if $H \leq G$ and each $\varphi \in \operatorname{Hom}(H,G)$ extends uniquely to some $\varphi' \in \operatorname{End}(G)$.

Farjoun studies the properties of H that are preserved when H is closed in G. In particular, he asks the following question:

Question. If H is finite, closed, and nilpotent, is H = G?

It is known (cf. Remark 3.7) that if G is nilpotent and H is closed in G, then H = G. Therefore, Farjoun's question can be interpreted as asking whether nilpotence is preserved under the closure of finite groups. For more material related to Farjoun's question, we refer the reader to [3], [5], and [6].

In the discussion that follows, we will remove the condition that H be nilpotent and analyze general closed embeddings of finite groups in finite groups. In Section 2, we will consider the case when H and G are simple. Since H and G have only two normal subgroups apiece, we can more easily study the structure of elements of $\operatorname{Hom}(H,G)$ and $\operatorname{End}(G)$. Specifically, we will show that the closure of H in G is equivalent to three conditions.

If instead $H \cong D_{2p}$ for p an odd prime, then H has three normal subgroups: 1, H, and the derived subgroup [H, H] of order p. Although the discussion is much more involved, we will arrive at the following result in Section 5:

Theorem. If $H \cong D_{2p}$ and H is closed in a finite group G, then either $[G, G] = G^{\infty}$ or H = G.

We also have the following corollary:

Corollary. If $H \cong D_{2p}$ is closed in a finite solvable group G, then H = G.

The condition in the corollary that G be solvable appears to be necessary, and we expect to be able to prove the following conjecture:

Conjecture. For each p > 3, there exists a closed embedding of $H \cong D_{2p}$ in a finite group G, where G^{∞} is a nonabelian finite simple group.

In Sections 3 and 4, we will develop the lemmas necessary to prove the theorem. We will prove several facts about the relationship between H and G, first under the condition that (1) only the zero map 0_H

extends uniquely, and then under the stronger condition that (2) H is closed in G.

We assume that the reader is familiar with concepts in elementary group theory; see [1] and [4] for an introduction.

2 An Example

We begin with an example from Aschbacher's paper [2], supplying a proof of the assertion made there without proof.

Example. Let H and G be simple. Then H is closed in G if and only if

- (i) Aut(G) is transitive on subgroups of G which are isomorphic to H:
 - (ii) $\operatorname{Aut}_{\operatorname{Aut}(G)}(H) = \operatorname{Aut}(H)$; and
 - (iii) $C_{\operatorname{Aut}(G)}(H) = 1$.

Proof. For each $\varphi \in \text{Hom}(H,G)$, we have $\ker \varphi \subseteq H$. Thus, the fact that H is simple implies $\ker \varphi = 1$ or H, and elements of Hom(H,G) are either injective homomorphisms or 0_H . Similarly, $\text{End}(G) = \text{Aut}(G) \cup \{0_G\}$.

Note that if H=1, then H is closed in G if and only if G=H=1, which is trivially equivalent to the given conditions. Thus, we need only consider the case when $1 < H \le G$. Note also that if $G \ne 1$, the map 0_H is the only element of $\operatorname{Hom}(H,G)$ that extends to 0_G , and this extension is always unique.

It is easily verified that the given conditions are necessary for H to be closed in G. If (i) is not satisfied, there are some $K \leq G$ and some $\varphi \in \operatorname{Hom}(H,G)$ such that $H\varphi = K$ but φ does not extend to an element of $\operatorname{Aut}(G)$. If (ii) is not satisfied, there is some $\varphi \in \operatorname{Aut}(H) \leq \operatorname{Hom}(H,G)$ that is not the restriction of an element of $\operatorname{Aut}(G)$, so φ cannot extend to an element of $\operatorname{End}(G)$. If (iii) is not satisfied, there exists $1 \neq \alpha \in C_{\operatorname{Aut}(G)}(H)$, and both α and the identity map 1_G extend 1_H .

Next, we prove that the conditions are sufficient. Define $\theta: N_{\operatorname{Aut}(G)}(H) \to \operatorname{Aut}(H)$ by $\alpha\theta = \alpha|_H$ for each $\alpha \in N_{\operatorname{Aut}(G)}(H)$. Then $C_{\operatorname{Aut}(G)}(H) = \ker \theta = 1$, so θ is injective; hence, every element of $\operatorname{Aut}(H)$ in the image of θ extends uniquely to an element of $\operatorname{Aut}(G)$. Furthermore, (ii) implies θ is surjective. Thus, all elements of $\operatorname{Aut}(H)$ extend uniquely to elements of $\operatorname{End}(G)$.

To see that every element $\varphi \in \operatorname{Hom}(H,G)$ different from 0_H extends to at least one element of $\operatorname{End}(G)$, note that by (i), there exists $\psi \in \operatorname{Aut}(G)$ such that $H\varphi = H\psi$, since $H\varphi \cong H$. Then $\varphi\psi^{-1} \in$

 $\operatorname{Aut}(H)$ extends to $\rho \in \operatorname{Aut}(G)$, and $\rho \psi \in \operatorname{Aut}(G)$ induces φ on H.

To see that every element of $\operatorname{Hom}(H,G)$ different from 0_H extends to at most one element of $\operatorname{End}(G)$, suppose $\varphi', \varphi'' \in \operatorname{End}(G)$ satisfy $\varphi'|_H = \varphi''|_H$. Then $(\varphi'(\varphi'')^{-1})|_H = 1_H$, so $\varphi'(\varphi'')^{-1} \in C_{\operatorname{Aut}(G)}(H) = 1$ by (iii), implying $\varphi' = \varphi''$. Hence, the three given conditions are indeed equivalent to H being closed in G.

3 When 0_H Extends Uniquely

We now prove several facts under the more relaxed condition that the zero homomorphism of a subgroup extends uniquely.

Lemma 3.1. 0_H extends uniquely if and only if $\text{Hom}(G/\langle H^G \rangle, G) = 0$.

Proof. Suppose $\varphi \in \operatorname{End}(G)$ is an extension of 0_H . (Such a map exists because 0_G extends 0_H .) Since $\langle H^G \rangle$ is the normal closure of H in G, $H \leq \ker \varphi$ implies $\langle H^G \rangle \leq \ker \varphi$. Then φ factors through $G/\langle H^G \rangle$, and if $\pi: G \to G/\langle H^G \rangle$ is the canonical homomorphism, the map φ corresponds to a unique $\psi \in \operatorname{Hom}(G/\langle H^G \rangle, G)$ such that $\pi \psi = \varphi$. Hence, if 0_H extends uniquely to 0_G , we clearly have $\operatorname{Hom}(G/\langle H^G \rangle, G) = 0$, and if $\operatorname{Hom}(G/\langle H^G \rangle, G) = 0$, we have $\varphi = 0_G$.

For the remainder of this section, assume $0_H \in \text{Hom}(H,G)$ extends uniquely to $0_G \in \text{End}(G)$.

Lemma 3.2. If G^{∞} is the last term in the derived series of G, then $G = \langle H^G \rangle G^{\infty}$.

Proof. Recall that the derived series $\{G^i\}$ is defined by the rules that $G^0 = G$ and $G^{i+1} = [G^i, G^i]$ for $i \ge 0$. Furthermore G^{∞} is the smallest normal subgroup of G such that G/G^{∞} is solvable.

Now suppose $G \neq \langle H^G \rangle G^{\infty}$, and let the quotient map by G^{∞} be denoted by a star. Then $\langle H^G \rangle \trianglelefteq G$ implies $\langle H^G \rangle^* \trianglelefteq G^*$, and since G^* is solvable, so is $G^*/\langle H^G \rangle^*$. Thus, if $X^*/\langle H^G \rangle^*$ is the last term in a composition series of $G^*/\langle H^G \rangle^*$, we have $|G^*/\langle H^G \rangle^* : X^*/\langle H^G \rangle^*| = |G:X| = p$, where p is a prime factor of |G| and $\langle H^G \rangle \leq X \trianglelefteq G$. (The case G=1 trivially implies $G=\langle H^G \rangle G^{\infty}$.)

By Cauchy's Theorem, there exists $Y \leq G$ with |Y| = p. Then G/X and Y are cyclic groups of the same order, so $G/X \cong Y$, and there exists an isomorphism $\varphi : G/X \to Y$. Since $\langle H^G \rangle \leq X$, there

Po-Ling Loh 3

exists a homomorphism $\psi: G/\langle H^G \rangle \to G/X$. Then $0 \neq \psi \varphi \in \text{Hom}(G/\langle H^G \rangle, G)$, which by Lemma 3.1 contradicts the fact that 0_H extends uniquely.

Remark 3.3. If G is solvable, then $G^{\infty}=1$, so Lemma 3.2 states that if 0_H extends uniquely, then $G=\langle H^G\rangle$. The converse is also true in this case, by Lemma 3.1 and the fact that $\operatorname{Hom}(G/\langle H^G\rangle,G)=\operatorname{Hom}(G/G,G)=0$.

Lemma 3.4. If G is nilpotent and $P \leq G = \langle P^G \rangle$, then G = P.

Proof. We prove for every $K \leq G$ that in fact $K \leq G$. We induct on the index of K in G. If |G:K|=1, then the claim is trivially true. If instead K < G, then the fact that G is nilpotent implies $K < N_G(K)$. Since $K \leq N_G(K)$ and $|G:N_G(K)| < |G:K|$, we have by induction that $N_G(K) \leq G$, so $K \leq G$, as desired. From $P \leq G$ and $G = \langle P^G \rangle$, we then obtain G = P.

Lemma 3.5. Let $N \subseteq G$, and let the quotient map by N be denoted with a star. Then $\langle H^G \rangle^* = \langle (H^*)^{G^*} \rangle$.

Proof. Since $\langle H^G \rangle \subseteq G$, we have $\langle H^G \rangle^* \subseteq G^*$. Also, $H^* \le \langle H^G \rangle^*$, so clearly $\langle (H^*)^{G^*} \rangle \le \langle H^G \rangle^*$. Since $\langle H^G \rangle = \langle h^g : h \in H, g \in G \rangle$ and $(h^g)^* = (g^{-1}hg)^* = (g^{-1})^*h^*g^* = (h^*)^{g^*}$, we also have $\langle H^G \rangle^* \le \langle (H^*)^{G^*} \rangle$, as desired.

Lemma 3.6. If L^{∞} is the last term in the lower central series of G, then $G = HL^{\infty}$.

Proof. Recall that the lower central series $\{L^i\}$ is defined by the rules that $L^0 = G$ and $L^{i+1} = [L^i, G]$ for $i \geq 0$. Furthermore L^{∞} is the smallest normal subgroup of G such that G/L^{∞} is nilpotent.

Since $G^{\infty} \leq L^{\infty}$, Lemma 3.2 implies $G = \langle H^G \rangle G^{\infty} = \langle H^G \rangle L^{\infty}$. Let the quotient map by L^{∞} be denoted by a star, and suppose $\langle (H^*)^{G^*} \rangle = K^* \leq G^*$, where $L^{\infty} \leq K \neq G$. Lemma 3.5 shows that $\langle H^G \rangle^* = K^* \leq G^*$, so $\langle H^G \rangle \leq K \leq G$. Then $\langle H^G \rangle L^{\infty} \leq K L^{\infty} = K \neq G$, a contradiction. Hence $\langle (H^*)^{G^*} \rangle = G^*$.

Since G^* is nilpotent, Lemma 3.4 then implies $G^* = H^*$. Thus, for each $g \in G$, there exists $h \in H$ such that $gL^{\infty} = hL^{\infty}$, so $g \in hL^{\infty}$ and $G \leq HL^{\infty}$. Clearly $HL^{\infty} \leq G$, so $G = HL^{\infty}$, as desired.

Remark 3.7. If G is nilpotent, then $L^{\infty} = 1$, so Lemma 3.6 implies H = G.

Corollary 3.8. G = H[G, G].

Proof. This follows from Lemma 3.6 and the fact that $L^{\infty} \leq [G, G]$.

4 When H is Closed in G

We now prove facts about closed embeddings of groups, which we later apply to the specific case $H \cong D_{2p}$.

Lemma 4.1. Let $P \leq G$, and let 0_P and 1_P extend uniquely to elements of $\operatorname{End}(G)$. Then

- (1) $C_G(P) = Z(G)$, and
- (2) if P is abelian, then G = P.

Proof. Clearly $Z(G) \leq C_G(P)$. For each $g \in C_G(P)$, we have $c_g|_P = 1_P$, where c_g is the inner automorphism on G induced by g. Since 1_P extends uniquely, we have $c_g = 1_G$, so $g \in Z(G)$ and $C_G(P) \leq Z(G)$, proving (1).

If P is abelian, then $P \leq C_G(P) = Z(G)$. Thus $G = C_G(P) = Z(G)$, so G is abelian and therefore nilpotent. Since 0_P extends uniquely, Remark 3.7 implies G = P, as desired.

For the remainder of this section, assume H is closed in G.

Lemma 4.2. Given $\varphi \in \operatorname{End}(G)$, each element of $\operatorname{Hom}(H\varphi, G\varphi)$ extends to at most one element of $\operatorname{End}(G\varphi)$.

Proof. Suppose there exist $\theta, \psi \in \text{End}(G\varphi)$ such that $\theta|_{H\varphi} = \psi|_{H\varphi}$ and $\theta \neq \psi$. Then $\varphi\theta, \varphi\psi \in \text{End}(G)$ and $(\varphi\theta)|_H = (\varphi\psi)|_H \in \text{Hom}(H,G)$, but $\varphi\theta \neq \varphi\psi$, contradicting the fact that H is closed in G.

Lemma 4.3. Let $\varphi \in \operatorname{End}(G)$, and let $H\varphi$ be abelian. Then $G\varphi = H\varphi$.

Proof. By Lemma 4.2, each element of $\operatorname{Hom}(H\varphi, G\varphi)$ extends to at most one element of $\operatorname{End}(G\varphi)$. In particular, $0_{H\varphi}$ and $1_{H\varphi}$ extend to $0_{G\varphi}$ and $1_{G\varphi}$ respectively, so these extensions are unique. The result then follows from part (2) of Lemma 4.1.

Lemma 4.4. Let Δ be a set of cyclic subgroups of G. Let Γ be the set of $K \unlhd H$ such that H/K is isomorphic to an element of Δ . Then $H \cap [G, G] \leq \bigcap_{K \in \Gamma} K$.

Proof. For each $K \in \Gamma$, there exist $X \in \Delta$ and $\varphi \in \text{Hom}(H,G)$ such that $K = \ker \varphi$ and $X = H\varphi$. Then φ extends to $\varphi_K \in \text{End}(G)$, and $K = H \cap \ker \varphi_K$. Also $H\varphi$ is cyclic and therefore abelian, so $G\varphi_K = H\varphi$ by Lemma 4.3.

Since $G\varphi_K$ is abelian, we have $[G, G] \leq \ker \varphi_K$. Thus $[G, G] \leq \bigcap_{K \in \Gamma} \ker \varphi_K$, and

$$H \cap [G,G] \le \bigcap_{K \in \Gamma} H \cap \ker \varphi_K = \bigcap_{K \in \Gamma} K,$$

as desired.

Lemma 4.5. $H \cap [G, G] = [H, H]$.

Proof. Clearly $[H,H] \leq H \cap [G,G]$. To prove the reverse containment, let the quotient map by [H,H] be denoted with a star. Since H^* is abelian, we may write $H^* = R_1^* \times \cdots \times R_n^*$, where the R_i^* 's are cyclic subgroups of H^* . Let K_i be the preimage of $\prod_{j \neq i} R_j^*$, and let $r_i \in H$ be such that $R_i^* = \langle r_i^* \rangle$.

We first show that $|R_i^*|$ divides $|r_i|$. If $|R_i^*| = k$, then k is the smallest positive integer such that $r_i^k \in [H, H]$. If $|r_i| = l$, then $r_i^l = 1 \in [H, H]$, so $k \nmid l$ provides a contradiction to the minimality of k.

Now let $X_i = \langle r_i^{l/k} \rangle \leq G$. Apply Lemma 4.4 to $\Delta = \{X_1, \ldots, X_n\}$ and note that $H/K_i \cong R_i^* \cong X_i$, so $H \cap [G, G] \leq \bigcap_{K \in \Gamma} K \leq \bigcap K_i = [H, H]$, where the last equality follows from the fact that $\bigcap \prod_{j \neq i} R_j^* = 1$. Hence $H \cap [G, G] = [H, H]$, as desired.

Corollary 4.6. $G/[G,G] \cong H/[H,H]$.

Proof. We use Lemma 4.5 and the fact that G = H[G, G], from Corollary 3.8. Since $[G, G] \subseteq G$, the Second Isomorphism Theorem implies $G/[G, G] = H[G, G]/[G, G] \cong H/H \cap [G, G] = H/[H, H]$.

5 When H is Isomorphic to D_{2p}

Throughout Section 5, assume $H \cong D_{2p}$ for p an odd prime, and H is closed in a finite group G.

Lemma 5.1. Let L = [G, G]. Then |G/L| = 2.

Proof. Corollary 4.6 states that $G/L \cong H/[H, H]$. Since [H, H] is the derived subgroup of order p in H, we have |G/L| = 2.

Lemma 5.2. If $\varphi \in \text{Hom}(H,G)$ and $\psi \in \text{End}(G)$ is the unique extension of φ , then exactly one of the following holds:

- (1) $\varphi = 0_H$ and $\psi = 0_G$;
- (2) $\ker \varphi = [H, H]$ and $\ker \psi = L$; or
- (3) φ is injective.

Proof. Since $\ker \varphi \subseteq H$, the subgroup $\ker \varphi$ is one of H, [H, H], and 1. The first case implies $\varphi = 0_H$, which extends uniquely to 0_G , giving (1).

In the second case, $H\psi = H\varphi \cong H/[H,H] \cong \mathbb{Z}/2$ is abelian, so Lemma 4.3 implies $G/\ker\psi \cong G\psi = H\psi$ is abelian as well. But G/L is the largest abelian quotient of G, so $L \leq \ker\psi$. Lemma 5.1 gives |G/L| = 2; since $\ker\psi \neq G$, we must have $\ker\psi = L$, giving (2).

The third case, $\ker \varphi = 1$, is clearly equivalent to (3).

Lemma 5.3. If $\psi \in \operatorname{End}(G)$ and $G\psi \cong H$, then G = H.

Proof. Let $K = \ker \psi$. Then $G/K \cong G\psi \cong H$, so |G| = |K||H|. Since $|G/K| \neq 2$, necessarily $K \neq L$. Also $\psi \neq 0_G$, so Lemma 5.2 implies $\psi|_H$ is injective. Hence $K \cap H = \ker(\psi|_H) \cap H = 1$. Then $KH \leq G$ and |KH| = |K||H| = |G| imply G = KH. Since $K \unlhd G$, the group G is the semidirect product of K and H, and the map $\theta : G \to H$ defined by $\theta(kh) = h$ for any $k \in K$ is a homomorphism. But then $\theta|_H = 1_H$, so $\theta = 1_G$ and $kh = \theta(kh) = h$. Hence K = 1 and G = H.

Lemma 5.4. Let t be an involution in H. Then (1) $G = L\langle t \rangle$, and (2) $L = L^{\infty}$.

Proof. Lemma 4.5 gives $H \cap L = [H, H]$, so $L \cap \langle t \rangle = 1$. Since $L \subseteq G$, we have $L \langle t \rangle \subseteq G$. But |G|/|L| = 2 from Lemma 5.1, so $|L \langle t \rangle| = |L||\langle t \rangle| = |G|$ and $G = L \langle t \rangle$, giving (1).

From Lemma 3.6, we have $G = HL^{\infty}$. Furthermore $L^{\infty} \leq L$, so $H \cap L^{\infty} \leq H \cap L$. Since $|H \cap L| = p$, we have $|H \cap L^{\infty}| = 1$ or p. But $[H, H] = L^{\infty}(H) \leq L^{\infty}$ and $[H, H] \leq H$, so $|H \cap L^{\infty}| \neq 1$. From Corollary 3.8, we also have G = HL. Then $|H||L|/|H \cap L| = |G| = |H||L^{\infty}|/|H \cap L^{\infty}|$ implies $L^{\infty} = L$, giving (2).

Lemma 5.5. Let the quotient map by [L, L] be denoted by a star. Then $L^* = [L^*, t^*]$. In particular, each element of L^* is inverted by t^* .

Proof. Under the quotient map by [L,L], the results of Lemma 5.4 become $G^* = L^*\langle t^* \rangle$ and $L^* = (L^{\infty})^*$. Since $(L^{\infty})^* = [(L^{\infty})^*, G^*]$, we then have $L^* = [L^*, G^*] = [L^*, L^*\langle t^* \rangle]$. Furthermore L^* is abelian, so $L^* = [L^*, \langle t^* \rangle] = [L^*, t^*]$.

Now $t \notin [L, L]$ is an involution, so t^* is also an involution. If $(l^*)^{-1}t^*l^*t^*$ is a generator of L^* , then $t^*((l^*)^{-1}t^*l^*t^*)t^* = t^*(l^*)^{-1}t^*l^*$, so each generator of L^* is inverted by t^* . If $l_1^*, l_2^* \in L^*$ are both inverted by t^* , then $t^*(l_1^*l_2^*)t^* = (t^*l_1^*t^*)(t^*l_2^*t^*) = (l_1^*)^{-1}(l_2^*)^{-1} = (l_2^*)^{-1}(l_1^*)^{-1} = (l_1^*l_2^*)^{-1}$, so $l_1^*l_2^*$ is also inverted by t^* . Hence, all elements of L^* are inverted by t^* .

Lemma 5.6. All elements of L^* have odd order.

Proof. Let $L_0^* \leq L^*$ be the subgroup of elements of odd order, and let S^* be a Sylow 2-group of L^* . Then

Po-Ling Loh 5

 $L^* = L_0^*S^*$, so $G^* = L_0^*S^*\langle t^* \rangle$. Since $S^*\langle t^* \rangle$ is a 2-group (and hence nilpotent), we have $L_0^* \cap S^*\langle t^* \rangle = 1$. Also $L_0^* \leq G^*$, so $G^*/L_0^* \cong S^*\langle t^* \rangle$. Then G^*/L_0^* is nilpotent and $L^* = L^{\infty *} \leq L_0^*$, so $L_0^* = L^*$, as desired.

Lemma 5.7. Either $[G,G] = G^{\infty}$ or H = G.

Proof. Note that $L^*=1$ implies L=[L,L], which is equivalent to $[G,G]=G^{\infty}$. Lemma 5.5 shows that t^* inverts L^* , so t^* acts on each subgroup of L^* . Thus, if $L^*\neq 1$, there exists a maximal subgroup $M^*< L^*$ with $M^* \leq G^*$. Let M be the preimage of M^* in G, and let the quotient map by M be denoted by a bar. By Lemma 5.6 and the fact that every maximal subgroup of an abelian group has prime index, we have $|L:M|=|L^*:M^*|=q$ for some odd prime q, and $|\bar{G}|=2q$.

If we now pick $l \in L \backslash M$, we have $M \unlhd L$ and $\langle l \rangle \subseteq L$, so $M \langle l \rangle \subseteq L$. Since M is a maximal subgroup of L, we also have $M \langle l \rangle = L$. Lemma 5.4 gives $G = L \langle t \rangle = \langle L, t \rangle$, which implies $\bar{G} = \langle \bar{l}, \bar{t} \rangle$. Since t^* is an involution and l^* is inverted by t^* (by Lemma 5.5), also \bar{t} is an involution and \bar{l} is inverted by \bar{t} . Thus $\bar{G} \cong D_{2q}$.

Now $|\bar{G}|$ is odd, so $\bar{t}^{\bar{l}}$ is an involution in \bar{G} . Hence $\bar{G} = \langle \bar{t}^{\bar{l}}, \bar{t} \rangle$ and $|\langle \bar{t}^{\bar{l}} \bar{t} \rangle| = q$. Then q divides $|t^l t|$, and there exists $y \in \langle t^l t \rangle$ such that |y| = q. Furthermore $t(t^l t)t = t(l^{-1}tlt)t = (tt^l)^{-1}$, so all elements of $\langle t^l t \rangle$, including y, are inverted by t. Hence $E = \langle t, y \rangle \cong D_{2q} \cong \bar{G}$, and there exists a surjective homomorphism $\psi : G \to E$, factoring through G/M, with $\ker \psi = M$.

We now apply Lemma 5.2 to $\psi \in \operatorname{End}(G)$ and $\varphi = \psi|_H$. Clearly $\psi \neq 0_G$ and $\ker \psi = M \neq L$, so φ is an injection. Then $H\varphi \leq E$ implies 2p|2q, so p = q and $E \cong H$. Combining ψ with this isomorphism provides $\theta \in \operatorname{End}(G)$ with $G\theta \cong H$, so G = H by Lemma 5.3, completing the proof.

Corollary 5.8. If G is solvable, then H = G.

Proof. Since $D_{2p} \leq G$, the group G is not abelian. Hence $G^{\infty} = 1 \neq [G, G]$, and H = G by Lemma 5.7.

6 Conclusion

We have discussed general closed embeddings of finite groups and studied the specific cases when both H and G are simple and when $H \cong D_{2p}$. We have also proved several facts about embeddings of finite

groups under the weaker condition that 0_H extends uniquely. In the future, we hope to apply similar methods to study closed embeddings of other classes of finite groups.

7 Acknowledgments

The author would like to thank Dr. Michael Aschbacher of the California Institute of Technology for his patience and dedication while supervising her project. She also extends a special thank-you to Dr. I. Martin Isaacs of the University of Wisconsin-Madison for introducing her to group theory. Many thanks to the Center for Excellence in Education and the staff of the Research Science Institute for making this research possible.

References

- [1] M. Aschbacher. Finite Group Theory. 2nd ed. Cambridge University Press (2000).
- [2] M. Aschbacher. On a question of Farjoun. To appear in Proceedings of the Gainsville Conference on Finite Groups.
- [3] C. Casacuberta. On structures preserved by idempotent transformations of groups and homotopy types. In: Crystallographic Groups and Their Generalizations (Kortrijk, 1999). Contemporary Mathematics 262, American Mathematical Society, Providence, RI (2000), 39–68.
- [4] D.S. Dummit and R.M. Foote. Abstract Algebra. 2nd ed. John Wiley and Sons, Inc., Hoboken, NJ (1999).
- [5] A. Libman. Cardinality and nilpotency of localizations of groups and G-modules. Israel Journal of Mathematics 117 (2000), 221–237.
- [6] J.L. Rodriguez, J. Scherer, and A. Viruel. Nonsimple localizations of finite simple groups. To appear in Journal of Algebra.