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Abstract

We discuss the generalized version of a question posed
by the topologist E. Farjoun about closed embeddings
of a finite group H in a finite group G. We study the
case H ∼= D2p for p an odd prime and determine a
sufficient condition for H = G when H is closed in
G.

1 Introduction

Group theory is of importance in many fields of math-
ematics, including topology. The problem discussed
in this paper is related to a problem posed by the
topologist Farjoun.
Let H and G be objects in a category C, and let

ι ∈ Mor(H, G). Farjoun studies morphisms ι such
that for each ϕ ∈ Mor(H, G), there exists a unique
ϕ′ ∈ Mor(G, G) such that ιϕ′ = ϕ. In other words,
the following diagram commutes.

H
ι ��

ϕ
���

��
��

��
G

ϕ′

��
G

One special case arises when C is the category of
groups and group homomorphisms, and ι is an in-
clusion map. We denote by Hom(H, G) the set of
homomorphisms from H to G and write End(G) =
Hom(G, G). We say H is closed in G if H ≤ G
and each ϕ ∈ Hom(H, G) extends uniquely to some
ϕ′ ∈ End(G).
Farjoun studies the properties of H that are pre-

served when H is closed in G. In particular, he asks
the following question:

Question. If H is finite, closed, and nilpotent, is
H = G?

It is known (cf. Remark 3.7) that if G is nilpo-
tent and H is closed in G, then H = G. There-
fore, Farjoun’s question can be interpreted as asking
whether nilpotence is preserved under the closure of
finite groups. For more material related to Farjoun’s
question, we refer the reader to [3], [5], and [6].
In the discussion that follows, we will remove the

condition that H be nilpotent and analyze general
closed embeddings of finite groups in finite groups.
In Section 2, we will consider the case when H and G
are simple. Since H and G have only two normal sub-
groups apiece, we can more easily study the structure
of elements of Hom(H, G) and End(G). Specifically,
we will show that the closure of H in G is equivalent
to three conditions.
If instead H ∼= D2p for p an odd prime, then H

has three normal subgroups: 1, H , and the derived
subgroup [H, H ] of order p. Although the discussion
is much more involved, we will arrive at the following
result in Section 5:

Theorem. If H ∼= D2p and H is closed in a finite
group G, then either [G, G] = G∞ or H = G.

We also have the following corollary:

Corollary. If H ∼= D2p is closed in a finite solvable
group G, then H = G.

The condition in the corollary that G be solvable
appears to be necessary, and we expect to be able to
prove the following conjecture:

Conjecture. For each p > 3, there exists a closed
embedding of H ∼= D2p in a finite group G, where
G∞ is a nonabelian finite simple group.

In Sections 3 and 4, we will develop the lemmas
necessary to prove the theorem. We will prove several
facts about the relationship between H and G, first
under the condition that (1) only the zero map 0H



2 Closure Properties of D2p in Finite Groups

extends uniquely, and then under the stronger condi-
tion that (2) H is closed in G.
We assume that the reader is familiar with con-

cepts in elementary group theory; see [1] and [4] for
an introduction.

2 An Example

We begin with an example from Aschbacher’s paper
[2], supplying a proof of the assertion made there
without proof.

Example. Let H and G be simple. Then H is closed
in G if and only if

(i) Aut(G) is transitive on subgroups of G which
are isomorphic to H;

(ii) AutAut(G)(H) = Aut(H); and
(iii) CAut(G)(H) = 1.

Proof. For each ϕ ∈ Hom(H, G), we have kerϕ � H .
Thus, the fact that H is simple implies kerϕ = 1
or H , and elements of Hom(H, G) are either injec-
tive homomorphisms or 0H . Similarly, End(G) =
Aut(G) ∪ {0G}.
Note that if H = 1, then H is closed in G if and

only if G = H = 1, which is trivially equivalent to
the given conditions. Thus, we need only consider
the case when 1 < H ≤ G. Note also that if G �= 1,
the map 0H is the only element of Hom(H, G) that
extends to 0G, and this extension is always unique.
It is easily verified that the given conditions are

necessary for H to be closed in G. If (i) is not satis-
fied, there are someK ≤ G and some ϕ ∈ Hom(H, G)
such that Hϕ = K but ϕ does not extend to an ele-
ment of Aut(G). If (ii) is not satisfied, there is some
ϕ ∈ Aut(H) ≤ Hom(H, G) that is not the restriction
of an element of Aut(G), so ϕ cannot extend to an
element of End(G). If (iii) is not satisfied, there ex-
ists 1 �= α ∈ CAut(G)(H), and both α and the identity
map 1G extend 1H .
Next, we prove that the conditions are sufficient.

Define θ : NAut(G)(H) → Aut(H) by αθ = α|H for
each α ∈ NAut(G)(H). Then CAut(G)(H) = ker θ = 1,
so θ is injective; hence, every element of Aut(H) in
the image of θ extends uniquely to an element of
Aut(G). Furthermore, (ii) implies θ is surjective.
Thus, all elements of Aut(H) extend uniquely to ele-
ments of End(G).
To see that every element ϕ ∈ Hom(H, G) dif-

ferent from 0H extends to at least one element of
End(G), note that by (i), there exists ψ ∈ Aut(G)
such that Hϕ = Hψ, since Hϕ ∼= H . Then ϕψ−1 ∈

Aut(H) extends to ρ ∈ Aut(G), and ρψ ∈ Aut(G)
induces ϕ on H .
To see that every element of Hom(H, G) different

from 0H extends to at most one element of End(G),
suppose ϕ′, ϕ′′ ∈ End(G) satisfy ϕ′|H = ϕ′′|H . Then
(ϕ′(ϕ′′)−1)|H = 1H , so ϕ′(ϕ′′)−1 ∈ CAut(G)(H) = 1
by (iii), implying ϕ′ = ϕ′′. Hence, the three given
conditions are indeed equivalent to H being closed in
G.

3 When 0H Extends Uniquely

We now prove several facts under the more relaxed
condition that the zero homomorphism of a subgroup
extends uniquely.

Lemma 3.1. 0H extends uniquely if and only if
Hom

(
G/〈HG〉, G

)
= 0.

Proof. Suppose ϕ ∈ End(G) is an extension of 0H .
(Such a map exists because 0G extends 0H .) Since
〈HG〉 is the normal closure of H in G, H ≤ kerϕ
implies 〈HG〉 ≤ kerϕ. Then ϕ factors through
G/〈HG〉, and if π : G → G/〈HG〉 is the canon-
ical homomorphism, the map ϕ corresponds to a
unique ψ ∈ Hom(G/〈HG〉, G) such that πψ = ϕ.
Hence, if 0H extends uniquely to 0G, we clearly have
Hom(G/〈HG〉, G) = 0, and if Hom(G/〈HG〉, G) = 0,
we have ϕ = 0G.

For the remainder of this section, assume 0H ∈
Hom(H, G) extends uniquely to 0G ∈ End(G).
Lemma 3.2. If G∞ is the last term in the derived
series of G, then G = 〈HG〉G∞.

Proof. Recall that the derived series {Gi} is defined
by the rules that G0 = G and Gi+1 = [Gi, Gi] for i ≥
0. Furthermore G∞ is the smallest normal subgroup
of G such that G/G∞ is solvable.
Now suppose G �= 〈HG〉G∞, and let the quo-

tient map by G∞ be denoted by a star. Then
〈HG〉 � G implies 〈HG〉∗ � G∗, and since G∗ is solv-
able, so is G∗/〈HG〉∗. Thus, if X∗/〈HG〉∗ is the last
term in a composition series of G∗/〈HG〉∗, we have
|G∗/〈HG〉∗ : X∗/〈HG〉∗| = |G : X | = p, where p is
a prime factor of |G| and 〈HG〉 ≤ X � G. (The case
G = 1 trivially implies G = 〈HG〉G∞.)
By Cauchy’s Theorem, there exists Y ≤ G with

|Y | = p. Then G/X and Y are cyclic groups of the
same order, so G/X ∼= Y , and there exists an iso-
morphism ϕ : G/X → Y . Since 〈HG〉 ≤ X , there
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exists a homomorphism ψ : G/〈HG〉 → G/X . Then
0 �= ψϕ ∈ Hom(

G/〈HG〉, G
)
, which by Lemma 3.1

contradicts the fact that 0H extends uniquely.

Remark 3.3. If G is solvable, then G∞ = 1, so
Lemma 3.2 states that if 0H extends uniquely, then
G = 〈HG〉. The converse is also true in this case,
by Lemma 3.1 and the fact that Hom

(
G/〈HG〉, G

)
=

Hom(G/G, G) = 0.

Lemma 3.4. If G is nilpotent and P ≤ G = 〈P G〉,
then G = P .

Proof. We prove for every K ≤ G that in fact K ��
G. We induct on the index of K in G. If |G : K| = 1,
then the claim is trivially true. If instead K < G,
then the fact that G is nilpotent impliesK < NG(K).
Since K � NG(K) and |G : NG(K)| < |G : K|, we
have by induction that NG(K) �� G, so K �� G,
as desired. From P �� G and G = 〈P G〉, we then
obtain G = P .

Lemma 3.5. Let N �G, and let the quotient map by
N be denoted with a star. Then 〈HG〉∗ = 〈

(H∗)G
∗〉

.

Proof. Since 〈HG〉 � G, we have 〈HG〉∗ � G∗. Also,
H∗ ≤ 〈HG〉∗, so clearly 〈

(H∗)G
∗〉 ≤ 〈HG〉∗. Since

〈HG〉 = 〈hg : h ∈ H, g ∈ G〉 and (hg)∗ =
(g−1hg)∗ = (g−1)∗h∗g∗ = (h∗)g

∗
, we also have

〈HG〉∗ ≤ 〈
(H∗)G

∗〉
, as desired.

Lemma 3.6. If L∞ is the last term in the lower
central series of G, then G = HL∞.

Proof. Recall that the lower central series {Li} is de-
fined by the rules that L0 = G and Li+1 = [Li, G]
for i ≥ 0. Furthermore L∞ is the smallest normal
subgroup of G such that G/L∞ is nilpotent.
Since G∞ ≤ L∞, Lemma 3.2 implies G =

〈HG〉G∞ = 〈HG〉L∞. Let the quotient map by
L∞ be denoted by a star, and suppose

〈
(H∗)G

∗〉
=

K∗ � G∗, where L∞ ≤ K �= G. Lemma 3.5 shows
that 〈HG〉∗ = K∗ � G∗, so 〈HG〉 ≤ K � G. Then
〈HG〉L∞ ≤ KL∞ = K �= G, a contradiction. Hence〈
(H∗)G

∗〉
= G∗.

Since G∗ is nilpotent, Lemma 3.4 then implies
G∗ = H∗. Thus, for each g ∈ G, there exists h ∈ H
such that gL∞ = hL∞, so g ∈ hL∞ and G ≤ HL∞.
Clearly HL∞ ≤ G, so G = HL∞, as desired.

Remark 3.7. If G is nilpotent, then L∞ = 1, so
Lemma 3.6 implies H = G.

Corollary 3.8. G = H [G, G].

Proof. This follows from Lemma 3.6 and the fact that
L∞ ≤ [G, G].

4 When H is Closed in G

We now prove facts about closed embeddings of
groups, which we later apply to the specific case
H ∼= D2p.

Lemma 4.1. Let P ≤ G, and let 0P and 1P extend
uniquely to elements of End(G). Then

(1) CG(P ) = Z(G), and
(2) if P is abelian, then G = P .

Proof. Clearly Z(G) ≤ CG(P ). For each g ∈ CG(P ),
we have cg|P = 1P , where cg is the inner automor-
phism on G induced by g. Since 1P extends uniquely,
we have cg = 1G, so g ∈ Z(G) and CG(P ) ≤ Z(G),
proving (1).
If P is abelian, then P ≤ CG(P ) = Z(G). Thus

G = CG(P ) = Z(G), so G is abelian and therefore
nilpotent. Since 0P extends uniquely, Remark 3.7
implies G = P , as desired.

For the remainder of this section, assume H is
closed in G.

Lemma 4.2. Given ϕ ∈ End(G), each element of
Hom(Hϕ, Gϕ) extends to at most one element of
End(Gϕ).

Proof. Suppose there exist θ, ψ ∈ End(Gϕ) such that
θ|Hϕ = ψ|Hϕ and θ �= ψ. Then ϕθ, ϕψ ∈ End(G)
and (ϕθ)|H = (ϕψ)|H ∈ Hom(H, G), but ϕθ �= ϕψ,
contradicting the fact that H is closed in G.

Lemma 4.3. Let ϕ ∈ End(G), and let Hϕ be
abelian. Then Gϕ = Hϕ.

Proof. By Lemma 4.2, each element of Hom(Hϕ, Gϕ)
extends to at most one element of End(Gϕ). In par-
ticular, 0Hϕ and 1Hϕ extend to 0Gϕ and 1Gϕ respec-
tively, so these extensions are unique. The result then
follows from part (2) of Lemma 4.1.

Lemma 4.4. Let ∆ be a set of cyclic subgroups of G.
Let Γ be the set of K�H such that H/K is isomorphic
to an element of ∆. Then H ∩ [G, G] ≤ ⋂

K∈Γ K.

Proof. For each K ∈ Γ, there exist X ∈ ∆ and ϕ ∈
Hom(H, G) such that K = kerϕ and X = Hϕ. Then
ϕ extends to ϕK ∈ End(G), and K = H ∩ kerϕK .
Also Hϕ is cyclic and therefore abelian, so GϕK =
Hϕ by Lemma 4.3.
Since GϕK is abelian, we have [G, G] ≤ kerϕK .

Thus [G, G] ≤ ⋂
K∈Γ kerϕK , and

H ∩ [G, G] ≤
⋂

K∈Γ

H ∩ kerϕK =
⋂

K∈Γ

K,
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as desired.

Lemma 4.5. H ∩ [G, G] = [H, H ].

Proof. Clearly [H, H ] ≤ H ∩ [G, G]. To prove the
reverse containment, let the quotient map by [H, H ]
be denoted with a star. Since H∗ is abelian, we may
write H∗ = R∗

1 × · · · × R∗
n, where the R∗

i ’s are cyclic
subgroups ofH∗. LetKi be the preimage of

∏
j �=i R∗

j ,
and let ri ∈ H be such that R∗

i = 〈r∗i 〉.
We first show that |R∗

i | divides |ri|. If |R∗
i | = k,

then k is the smallest positive integer such that rk
i ∈

[H, H ]. If |ri| = l, then rl
i = 1 ∈ [H, H ], so k � l

provides a contradiction to the minimality of k.
Now let Xi =

〈
r

l/k
i

〉 ≤ G. Apply Lemma 4.4 to
∆ = {X1, . . . , Xn} and note that H/Ki

∼= R∗
i
∼= Xi,

so H∩ [G, G] ≤ ⋂
K∈Γ K ≤ ⋂

Ki = [H, H ], where the
last equality follows from the fact that

⋂∏
j �=i R∗

j =
1. Hence H ∩ [G, G] = [H, H ], as desired.

Corollary 4.6. G/[G, G] ∼= H/[H, H ].

Proof. We use Lemma 4.5 and the fact that G =
H [G, G], from Corollary 3.8. Since [G, G] � G, the
Second Isomorphism Theorem implies G/[G, G] =
H [G, G]/[G, G] ∼= H/H ∩ [G, G] = H/[H, H ].

5 When H is Isomorphic to D2p

Throughout Section 5, assume H ∼= D2p for p an odd
prime, and H is closed in a finite group G.

Lemma 5.1. Let L = [G, G]. Then |G/L| = 2.
Proof. Corollary 4.6 states that G/L ∼= H/[H, H ].
Since [H, H ] is the derived subgroup of order p in H ,
we have |G/L| = 2.
Lemma 5.2. If ϕ ∈ Hom(H, G) and ψ ∈ End(G)
is the unique extension of ϕ, then exactly one of the
following holds:

(1) ϕ = 0H and ψ = 0G;
(2) kerϕ = [H, H ] and kerψ = L; or
(3) ϕ is injective.

Proof. Since kerϕ � H , the subgroup kerϕ is one of
H , [H, H ], and 1. The first case implies ϕ = 0H ,
which extends uniquely to 0G, giving (1).
In the second case, Hψ = Hϕ ∼= H/[H, H ] ∼= Z/2

is abelian, so Lemma 4.3 implies G/ kerψ ∼= Gψ =
Hψ is abelian as well. But G/L is the largest abelian
quotient of G, so L ≤ kerψ. Lemma 5.1 gives
|G/L| = 2; since kerψ �= G, we must have kerψ = L,
giving (2).

The third case, kerϕ = 1, is clearly equivalent to
(3).

Lemma 5.3. If ψ ∈ End(G) and Gψ ∼= H, then
G = H.

Proof. Let K = kerψ. Then G/K ∼= Gψ ∼= H , so
|G| = |K||H |. Since |G/K| �= 2, necessarily K �= L.
Also ψ �= 0G, so Lemma 5.2 implies ψ|H is injective.
HenceK∩H = ker(ψ|H)∩H = 1. ThenKH ≤ G and
|KH | = |K||H | = |G| imply G = KH . Since K � G,
the group G is the semidirect product of K and H ,
and the map θ : G → H defined by θ(kh) = h for
any k ∈ K is a homomorphism. But then θ|H = 1H ,
so θ = 1G and kh = θ(kh) = h. Hence K = 1 and
G = H .

Lemma 5.4. Let t be an involution in H. Then
(1) G = L〈t〉, and
(2) L = L∞.

Proof. Lemma 4.5 gives H ∩L = [H, H ], so L∩〈t〉 =
1. Since L � G, we have L〈t〉 ≤ G. But |G|/|L| = 2
from Lemma 5.1, so |L〈t〉| = |L||〈t〉| = |G| and G =
L〈t〉, giving (1).
From Lemma 3.6, we have G = HL∞. Fur-

thermore L∞ ≤ L, so H ∩ L∞ ≤ H ∩ L. Since
|H∩L| = p, we have |H∩L∞| = 1 or p. But [H, H ] =
L∞(H) ≤ L∞ and [H, H ] ≤ H , so |H ∩ L∞| �= 1.
From Corollary 3.8, we also have G = HL. Then
|H ||L|/|H ∩ L| = |G| = |H ||L∞|/|H ∩ L∞| implies
L∞ = L, giving (2).

Lemma 5.5. Let the quotient map by [L, L] be de-
noted by a star. Then L∗ = [L∗, t∗]. In particular,
each element of L∗ is inverted by t∗.

Proof. Under the quotient map by [L, L], the results
of Lemma 5.4 become G∗ = L∗〈t∗〉 and L∗ = (L∞)∗.
Since (L∞)∗ = [(L∞)∗, G∗], we then have L∗ =
[L∗, G∗] = [L∗, L∗〈t∗〉]. Furthermore L∗ is abelian,
so L∗ = [L∗, 〈t∗〉] = [L∗, t∗].
Now t /∈ [L, L] is an involution, so t∗ is also an

involution. If (l∗)−1t∗l∗t∗ is a generator of L∗, then
t∗((l∗)−1t∗l∗t∗)t∗ = t∗(l∗)−1t∗l∗, so each generator of
L∗ is inverted by t∗. If l∗1 , l∗2 ∈ L∗ are both inverted by
t∗, then t∗(l∗1l∗2)t

∗ = (t∗l∗1t∗)(t∗l∗2t∗) = (l∗1)
−1(l∗2)

−1 =
(l∗2)

−1(l∗1)
−1 = (l∗1l∗2)

−1, so l∗1l∗2 is also inverted by t∗.
Hence, all elements of L∗ are inverted by t∗.

Lemma 5.6. All elements of L∗ have odd order.

Proof. Let L∗
0 ≤ L∗ be the subgroup of elements of

odd order, and let S∗ be a Sylow 2-group of L∗. Then
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L∗ = L∗
0S∗, so G∗ = L∗

0S∗〈t∗〉. Since S∗〈t∗〉 is a 2-
group (and hence nilpotent), we have L∗

0 ∩ S∗〈t∗〉 =
1. Also L∗

0 � G∗, so G∗/L∗
0
∼= S∗〈t∗〉. Then G∗/L∗

0

is nilpotent and L∗ = L∞∗ ≤ L∗
0, so L∗

0 = L∗, as
desired.

Lemma 5.7. Either [G, G] = G∞ or H = G.

Proof. Note that L∗ = 1 implies L = [L, L], which is
equivalent to [G, G] = G∞. Lemma 5.5 shows that t∗

inverts L∗, so t∗ acts on each subgroup of L∗. Thus,
if L∗ �= 1, there exists a maximal subgroup M∗ < L∗

with M∗ � G∗. Let M be the preimage of M∗ in
G, and let the quotient map by M be denoted by a
bar. By Lemma 5.6 and the fact that every maximal
subgroup of an abelian group has prime index, we
have |L : M | = |L∗ : M∗| = q for some odd prime q,
and |Ḡ| = 2q.
If we now pick l ∈ L\M , we have M �L and 〈l〉 ≤

L, so M〈l〉 ≤ L. Since M is a maximal subgroup of
L, we also have M〈l〉 = L. Lemma 5.4 gives G =
L〈t〉 = 〈L, t〉, which implies Ḡ = 〈l̄, t̄〉. Since t∗ is an
involution and l∗ is inverted by t∗ (by Lemma 5.5),
also t̄ is an involution and l̄ is inverted by t̄. Thus
Ḡ ∼= D2q.
Now |Ḡ| is odd, so t̄l̄ is an involution in Ḡ. Hence

Ḡ = 〈t̄l̄, t̄〉 and |〈t̄l̄ t̄〉| = q. Then q divides |tlt|,
and there exists y ∈ 〈tlt〉 such that |y| = q. Fur-
thermore t(tlt)t = t(l−1tlt)t = (ttl)−1, so all ele-
ments of 〈tlt〉, including y, are inverted by t. Hence
E = 〈t, y〉 ∼= D2q

∼= Ḡ, and there exists a surjective
homomorphism ψ : G → E, factoring through G/M ,
with kerψ = M .
We now apply Lemma 5.2 to ψ ∈ End(G) and

ϕ = ψ|H . Clearly ψ �= 0G and kerψ = M �= L, so ϕ
is an injection. Then Hϕ ≤ E implies 2p|2q, so p = q
and E ∼= H . Combining ψ with this isomorphism
provides θ ∈ End(G) with Gθ ∼= H , so G = H by
Lemma 5.3, completing the proof.

Corollary 5.8. If G is solvable, then H = G.

Proof. Since D2p ≤ G, the group G is not abelian.
Hence G∞ = 1 �= [G, G], and H = G by Lemma 5.7.

6 Conclusion

We have discussed general closed embeddings of fi-
nite groups and studied the specific cases when both
H and G are simple and when H ∼= D2p. We have
also proved several facts about embeddings of finite

groups under the weaker condition that 0H extends
uniquely. In the future, we hope to apply similar
methods to study closed embeddings of other classes
of finite groups.
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