1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Character manipulation.
//!
//! For more details, see ::std_unicode::char (a.k.a. std::char)

#![allow(non_snake_case)]
#![stable(feature = "core_char", since = "1.2.0")]

use char_private::is_printable;
use convert::TryFrom;
use fmt::{self, Write};
use slice;
use str::{from_utf8_unchecked_mut, FromStr};
use iter::FusedIterator;
use mem::transmute;

// UTF-8 ranges and tags for encoding characters
const TAG_CONT: u8    = 0b1000_0000;
const TAG_TWO_B: u8   = 0b1100_0000;
const TAG_THREE_B: u8 = 0b1110_0000;
const TAG_FOUR_B: u8  = 0b1111_0000;
const MAX_ONE_B: u32   =     0x80;
const MAX_TWO_B: u32   =    0x800;
const MAX_THREE_B: u32 =  0x10000;

/*
    Lu  Uppercase_Letter        an uppercase letter
    Ll  Lowercase_Letter        a lowercase letter
    Lt  Titlecase_Letter        a digraphic character, with first part uppercase
    Lm  Modifier_Letter         a modifier letter
    Lo  Other_Letter            other letters, including syllables and ideographs
    Mn  Nonspacing_Mark         a nonspacing combining mark (zero advance width)
    Mc  Spacing_Mark            a spacing combining mark (positive advance width)
    Me  Enclosing_Mark          an enclosing combining mark
    Nd  Decimal_Number          a decimal digit
    Nl  Letter_Number           a letterlike numeric character
    No  Other_Number            a numeric character of other type
    Pc  Connector_Punctuation   a connecting punctuation mark, like a tie
    Pd  Dash_Punctuation        a dash or hyphen punctuation mark
    Ps  Open_Punctuation        an opening punctuation mark (of a pair)
    Pe  Close_Punctuation       a closing punctuation mark (of a pair)
    Pi  Initial_Punctuation     an initial quotation mark
    Pf  Final_Punctuation       a final quotation mark
    Po  Other_Punctuation       a punctuation mark of other type
    Sm  Math_Symbol             a symbol of primarily mathematical use
    Sc  Currency_Symbol         a currency sign
    Sk  Modifier_Symbol         a non-letterlike modifier symbol
    So  Other_Symbol            a symbol of other type
    Zs  Space_Separator         a space character (of various non-zero widths)
    Zl  Line_Separator          U+2028 LINE SEPARATOR only
    Zp  Paragraph_Separator     U+2029 PARAGRAPH SEPARATOR only
    Cc  Control                 a C0 or C1 control code
    Cf  Format                  a format control character
    Cs  Surrogate               a surrogate code point
    Co  Private_Use             a private-use character
    Cn  Unassigned              a reserved unassigned code point or a noncharacter
*/

/// The highest valid code point a `char` can have.
///
/// A [`char`] is a [Unicode Scalar Value], which means that it is a [Code
/// Point], but only ones within a certain range. `MAX` is the highest valid
/// code point that's a valid [Unicode Scalar Value].
///
/// [`char`]: ../../std/primitive.char.html
/// [Unicode Scalar Value]: http://www.unicode.org/glossary/#unicode_scalar_value
/// [Code Point]: http://www.unicode.org/glossary/#code_point
#[stable(feature = "rust1", since = "1.0.0")]
pub const MAX: char = '\u{10ffff}';

/// Converts a `u32` to a `char`.
///
/// Note that all [`char`]s are valid [`u32`]s, and can be casted to one with
/// [`as`]:
///
/// ```
/// let c = '💯';
/// let i = c as u32;
///
/// assert_eq!(128175, i);
/// ```
///
/// However, the reverse is not true: not all valid [`u32`]s are valid
/// [`char`]s. `from_u32()` will return `None` if the input is not a valid value
/// for a [`char`].
///
/// [`char`]: ../../std/primitive.char.html
/// [`u32`]: ../../std/primitive.u32.html
/// [`as`]: ../../book/first-edition/casting-between-types.html#as
///
/// For an unsafe version of this function which ignores these checks, see
/// [`from_u32_unchecked`].
///
/// [`from_u32_unchecked`]: fn.from_u32_unchecked.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::char;
///
/// let c = char::from_u32(0x2764);
///
/// assert_eq!(Some('❤'), c);
/// ```
///
/// Returning `None` when the input is not a valid [`char`]:
///
/// ```
/// use std::char;
///
/// let c = char::from_u32(0x110000);
///
/// assert_eq!(None, c);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_u32(i: u32) -> Option<char> {
    char::try_from(i).ok()
}

/// Converts a `u32` to a `char`, ignoring validity.
///
/// Note that all [`char`]s are valid [`u32`]s, and can be casted to one with
/// [`as`]:
///
/// ```
/// let c = '💯';
/// let i = c as u32;
///
/// assert_eq!(128175, i);
/// ```
///
/// However, the reverse is not true: not all valid [`u32`]s are valid
/// [`char`]s. `from_u32_unchecked()` will ignore this, and blindly cast to
/// [`char`], possibly creating an invalid one.
///
/// [`char`]: ../../std/primitive.char.html
/// [`u32`]: ../../std/primitive.u32.html
/// [`as`]: ../../book/first-edition/casting-between-types.html#as
///
/// # Safety
///
/// This function is unsafe, as it may construct invalid `char` values.
///
/// For a safe version of this function, see the [`from_u32`] function.
///
/// [`from_u32`]: fn.from_u32.html
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::char;
///
/// let c = unsafe { char::from_u32_unchecked(0x2764) };
///
/// assert_eq!('❤', c);
/// ```
#[inline]
#[stable(feature = "char_from_unchecked", since = "1.5.0")]
pub unsafe fn from_u32_unchecked(i: u32) -> char {
    transmute(i)
}

#[stable(feature = "char_convert", since = "1.13.0")]
impl From<char> for u32 {
    #[inline]
    fn from(c: char) -> Self {
        c as u32
    }
}

/// Maps a byte in 0x00...0xFF to a `char` whose code point has the same value, in U+0000 to U+00FF.
///
/// Unicode is designed such that this effectively decodes bytes
/// with the character encoding that IANA calls ISO-8859-1.
/// This encoding is compatible with ASCII.
///
/// Note that this is different from ISO/IEC 8859-1 a.k.a. ISO 8859-1 (with one less hyphen),
/// which leaves some "blanks", byte values that are not assigned to any character.
/// ISO-8859-1 (the IANA one) assigns them to the C0 and C1 control codes.
///
/// Note that this is *also* different from Windows-1252 a.k.a. code page 1252,
/// which is a superset ISO/IEC 8859-1 that assigns some (not all!) blanks
/// to punctuation and various Latin characters.
///
/// To confuse things further, [on the Web](https://encoding.spec.whatwg.org/)
/// `ascii`, `iso-8859-1`, and `windows-1252` are all aliases
/// for a superset of Windows-1252 that fills the remaining blanks with corresponding
/// C0 and C1 control codes.
#[stable(feature = "char_convert", since = "1.13.0")]
impl From<u8> for char {
    #[inline]
    fn from(i: u8) -> Self {
        i as char
    }
}


/// An error which can be returned when parsing a char.
#[stable(feature = "char_from_str", since = "1.20.0")]
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct ParseCharError {
    kind: CharErrorKind,
}

impl ParseCharError {
    #[unstable(feature = "char_error_internals",
               reason = "this method should not be available publicly",
               issue = "0")]
    #[doc(hidden)]
    pub fn __description(&self) -> &str {
        match self.kind {
            CharErrorKind::EmptyString => {
                "cannot parse char from empty string"
            },
            CharErrorKind::TooManyChars => "too many characters in string"
        }
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum CharErrorKind {
    EmptyString,
    TooManyChars,
}

#[stable(feature = "char_from_str", since = "1.20.0")]
impl fmt::Display for ParseCharError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.__description().fmt(f)
    }
}


#[stable(feature = "char_from_str", since = "1.20.0")]
impl FromStr for char {
    type Err = ParseCharError;

    #[inline]
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let mut chars = s.chars();
        match (chars.next(), chars.next()) {
            (None, _) => {
                Err(ParseCharError { kind: CharErrorKind::EmptyString })
            },
            (Some(c), None) => Ok(c),
            _ => {
                Err(ParseCharError { kind: CharErrorKind::TooManyChars })
            }
        }
    }
}


#[unstable(feature = "try_from", issue = "33417")]
impl TryFrom<u32> for char {
    type Error = CharTryFromError;

    #[inline]
    fn try_from(i: u32) -> Result<Self, Self::Error> {
        if (i > MAX as u32) || (i >= 0xD800 && i <= 0xDFFF) {
            Err(CharTryFromError(()))
        } else {
            Ok(unsafe { from_u32_unchecked(i) })
        }
    }
}

/// The error type returned when a conversion from u32 to char fails.
#[unstable(feature = "try_from", issue = "33417")]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct CharTryFromError(());

#[unstable(feature = "try_from", issue = "33417")]
impl fmt::Display for CharTryFromError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        "converted integer out of range for `char`".fmt(f)
    }
}

/// Converts a digit in the given radix to a `char`.
///
/// A 'radix' here is sometimes also called a 'base'. A radix of two
/// indicates a binary number, a radix of ten, decimal, and a radix of
/// sixteen, hexadecimal, to give some common values. Arbitrary
/// radices are supported.
///
/// `from_digit()` will return `None` if the input is not a digit in
/// the given radix.
///
/// # Panics
///
/// Panics if given a radix larger than 36.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::char;
///
/// let c = char::from_digit(4, 10);
///
/// assert_eq!(Some('4'), c);
///
/// // Decimal 11 is a single digit in base 16
/// let c = char::from_digit(11, 16);
///
/// assert_eq!(Some('b'), c);
/// ```
///
/// Returning `None` when the input is not a digit:
///
/// ```
/// use std::char;
///
/// let c = char::from_digit(20, 10);
///
/// assert_eq!(None, c);
/// ```
///
/// Passing a large radix, causing a panic:
///
/// ```
/// use std::thread;
/// use std::char;
///
/// let result = thread::spawn(|| {
///     // this panics
///     let c = char::from_digit(1, 37);
/// }).join();
///
/// assert!(result.is_err());
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_digit(num: u32, radix: u32) -> Option<char> {
    if radix > 36 {
        panic!("from_digit: radix is too high (maximum 36)");
    }
    if num < radix {
        let num = num as u8;
        if num < 10 {
            Some((b'0' + num) as char)
        } else {
            Some((b'a' + num - 10) as char)
        }
    } else {
        None
    }
}

// NB: the stabilization and documentation for this trait is in
// unicode/char.rs, not here
#[allow(missing_docs)] // docs in libunicode/u_char.rs
#[doc(hidden)]
#[unstable(feature = "core_char_ext",
           reason = "the stable interface is `impl char` in later crate",
           issue = "32110")]
pub trait CharExt {
    #[stable(feature = "core", since = "1.6.0")]
    fn is_digit(self, radix: u32) -> bool;
    #[stable(feature = "core", since = "1.6.0")]
    fn to_digit(self, radix: u32) -> Option<u32>;
    #[stable(feature = "core", since = "1.6.0")]
    fn escape_unicode(self) -> EscapeUnicode;
    #[stable(feature = "core", since = "1.6.0")]
    fn escape_default(self) -> EscapeDefault;
    #[stable(feature = "char_escape_debug", since = "1.20.0")]
    fn escape_debug(self) -> EscapeDebug;
    #[stable(feature = "core", since = "1.6.0")]
    fn len_utf8(self) -> usize;
    #[stable(feature = "core", since = "1.6.0")]
    fn len_utf16(self) -> usize;
    #[stable(feature = "unicode_encode_char", since = "1.15.0")]
    fn encode_utf8(self, dst: &mut [u8]) -> &mut str;
    #[stable(feature = "unicode_encode_char", since = "1.15.0")]
    fn encode_utf16(self, dst: &mut [u16]) -> &mut [u16];
}

#[stable(feature = "core", since = "1.6.0")]
impl CharExt for char {
    #[inline]
    fn is_digit(self, radix: u32) -> bool {
        self.to_digit(radix).is_some()
    }

    #[inline]
    fn to_digit(self, radix: u32) -> Option<u32> {
        if radix > 36 {
            panic!("to_digit: radix is too high (maximum 36)");
        }
        let val = match self {
          '0' ... '9' => self as u32 - '0' as u32,
          'a' ... 'z' => self as u32 - 'a' as u32 + 10,
          'A' ... 'Z' => self as u32 - 'A' as u32 + 10,
          _ => return None,
        };
        if val < radix { Some(val) }
        else { None }
    }

    #[inline]
    fn escape_unicode(self) -> EscapeUnicode {
        let c = self as u32;

        // or-ing 1 ensures that for c==0 the code computes that one
        // digit should be printed and (which is the same) avoids the
        // (31 - 32) underflow
        let msb = 31 - (c | 1).leading_zeros();

        // the index of the most significant hex digit
        let ms_hex_digit = msb / 4;
        EscapeUnicode {
            c: self,
            state: EscapeUnicodeState::Backslash,
            hex_digit_idx: ms_hex_digit as usize,
        }
    }

    #[inline]
    fn escape_default(self) -> EscapeDefault {
        let init_state = match self {
            '\t' => EscapeDefaultState::Backslash('t'),
            '\r' => EscapeDefaultState::Backslash('r'),
            '\n' => EscapeDefaultState::Backslash('n'),
            '\\' | '\'' | '"' => EscapeDefaultState::Backslash(self),
            '\x20' ... '\x7e' => EscapeDefaultState::Char(self),
            _ => EscapeDefaultState::Unicode(self.escape_unicode())
        };
        EscapeDefault { state: init_state }
    }

    #[inline]
    fn escape_debug(self) -> EscapeDebug {
        let init_state = match self {
            '\t' => EscapeDefaultState::Backslash('t'),
            '\r' => EscapeDefaultState::Backslash('r'),
            '\n' => EscapeDefaultState::Backslash('n'),
            '\\' | '\'' | '"' => EscapeDefaultState::Backslash(self),
            c if is_printable(c) => EscapeDefaultState::Char(c),
            c => EscapeDefaultState::Unicode(c.escape_unicode()),
        };
        EscapeDebug(EscapeDefault { state: init_state })
    }

    #[inline]
    fn len_utf8(self) -> usize {
        let code = self as u32;
        if code < MAX_ONE_B {
            1
        } else if code < MAX_TWO_B {
            2
        } else if code < MAX_THREE_B {
            3
        } else {
            4
        }
    }

    #[inline]
    fn len_utf16(self) -> usize {
        let ch = self as u32;
        if (ch & 0xFFFF) == ch { 1 } else { 2 }
    }

    #[inline]
    fn encode_utf8(self, dst: &mut [u8]) -> &mut str {
        let code = self as u32;
        unsafe {
            let len =
            if code < MAX_ONE_B && !dst.is_empty() {
                *dst.get_unchecked_mut(0) = code as u8;
                1
            } else if code < MAX_TWO_B && dst.len() >= 2 {
                *dst.get_unchecked_mut(0) = (code >> 6 & 0x1F) as u8 | TAG_TWO_B;
                *dst.get_unchecked_mut(1) = (code & 0x3F) as u8 | TAG_CONT;
                2
            } else if code < MAX_THREE_B && dst.len() >= 3  {
                *dst.get_unchecked_mut(0) = (code >> 12 & 0x0F) as u8 | TAG_THREE_B;
                *dst.get_unchecked_mut(1) = (code >>  6 & 0x3F) as u8 | TAG_CONT;
                *dst.get_unchecked_mut(2) = (code & 0x3F) as u8 | TAG_CONT;
                3
            } else if dst.len() >= 4 {
                *dst.get_unchecked_mut(0) = (code >> 18 & 0x07) as u8 | TAG_FOUR_B;
                *dst.get_unchecked_mut(1) = (code >> 12 & 0x3F) as u8 | TAG_CONT;
                *dst.get_unchecked_mut(2) = (code >>  6 & 0x3F) as u8 | TAG_CONT;
                *dst.get_unchecked_mut(3) = (code & 0x3F) as u8 | TAG_CONT;
                4
            } else {
                panic!("encode_utf8: need {} bytes to encode U+{:X}, but the buffer has {}",
                    from_u32_unchecked(code).len_utf8(),
                    code,
                    dst.len())
            };
            from_utf8_unchecked_mut(dst.get_unchecked_mut(..len))
        }
    }

    #[inline]
    fn encode_utf16(self, dst: &mut [u16]) -> &mut [u16] {
        let mut code = self as u32;
        unsafe {
            if (code & 0xFFFF) == code && !dst.is_empty() {
                // The BMP falls through (assuming non-surrogate, as it should)
                *dst.get_unchecked_mut(0) = code as u16;
                slice::from_raw_parts_mut(dst.as_mut_ptr(), 1)
            } else if dst.len() >= 2 {
                // Supplementary planes break into surrogates.
                code -= 0x1_0000;
                *dst.get_unchecked_mut(0) = 0xD800 | ((code >> 10) as u16);
                *dst.get_unchecked_mut(1) = 0xDC00 | ((code as u16) & 0x3FF);
                slice::from_raw_parts_mut(dst.as_mut_ptr(), 2)
            } else {
                panic!("encode_utf16: need {} units to encode U+{:X}, but the buffer has {}",
                    from_u32_unchecked(code).len_utf16(),
                    code,
                    dst.len())
            }
        }
    }
}

/// Returns an iterator that yields the hexadecimal Unicode escape of a
/// character, as `char`s.
///
/// This `struct` is created by the [`escape_unicode`] method on [`char`]. See
/// its documentation for more.
///
/// [`escape_unicode`]: ../../std/primitive.char.html#method.escape_unicode
/// [`char`]: ../../std/primitive.char.html
#[derive(Clone, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct EscapeUnicode {
    c: char,
    state: EscapeUnicodeState,

    // The index of the next hex digit to be printed (0 if none),
    // i.e. the number of remaining hex digits to be printed;
    // increasing from the least significant digit: 0x543210
    hex_digit_idx: usize,
}

// The enum values are ordered so that their representation is the
// same as the remaining length (besides the hexadecimal digits). This
// likely makes `len()` a single load from memory) and inline-worth.
#[derive(Clone, Debug)]
enum EscapeUnicodeState {
    Done,
    RightBrace,
    Value,
    LeftBrace,
    Type,
    Backslash,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Iterator for EscapeUnicode {
    type Item = char;

    fn next(&mut self) -> Option<char> {
        match self.state {
            EscapeUnicodeState::Backslash => {
                self.state = EscapeUnicodeState::Type;
                Some('\\')
            }
            EscapeUnicodeState::Type => {
                self.state = EscapeUnicodeState::LeftBrace;
                Some('u')
            }
            EscapeUnicodeState::LeftBrace => {
                self.state = EscapeUnicodeState::Value;
                Some('{')
            }
            EscapeUnicodeState::Value => {
                let hex_digit = ((self.c as u32) >> (self.hex_digit_idx * 4)) & 0xf;
                let c = from_digit(hex_digit, 16).unwrap();
                if self.hex_digit_idx == 0 {
                    self.state = EscapeUnicodeState::RightBrace;
                } else {
                    self.hex_digit_idx -= 1;
                }
                Some(c)
            }
            EscapeUnicodeState::RightBrace => {
                self.state = EscapeUnicodeState::Done;
                Some('}')
            }
            EscapeUnicodeState::Done => None,
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let n = self.len();
        (n, Some(n))
    }

    #[inline]
    fn count(self) -> usize {
        self.len()
    }

    fn last(self) -> Option<char> {
        match self.state {
            EscapeUnicodeState::Done => None,

            EscapeUnicodeState::RightBrace |
            EscapeUnicodeState::Value |
            EscapeUnicodeState::LeftBrace |
            EscapeUnicodeState::Type |
            EscapeUnicodeState::Backslash => Some('}'),
        }
    }
}

#[stable(feature = "exact_size_escape", since = "1.11.0")]
impl ExactSizeIterator for EscapeUnicode {
    #[inline]
    fn len(&self) -> usize {
        // The match is a single memory access with no branching
        self.hex_digit_idx + match self.state {
            EscapeUnicodeState::Done => 0,
            EscapeUnicodeState::RightBrace => 1,
            EscapeUnicodeState::Value => 2,
            EscapeUnicodeState::LeftBrace => 3,
            EscapeUnicodeState::Type => 4,
            EscapeUnicodeState::Backslash => 5,
        }
    }
}

#[unstable(feature = "fused", issue = "35602")]
impl FusedIterator for EscapeUnicode {}

#[stable(feature = "char_struct_display", since = "1.16.0")]
impl fmt::Display for EscapeUnicode {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for c in self.clone() {
            f.write_char(c)?;
        }
        Ok(())
    }
}

/// An iterator that yields the literal escape code of a `char`.
///
/// This `struct` is created by the [`escape_default`] method on [`char`]. See
/// its documentation for more.
///
/// [`escape_default`]: ../../std/primitive.char.html#method.escape_default
/// [`char`]: ../../std/primitive.char.html
#[derive(Clone, Debug)]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct EscapeDefault {
    state: EscapeDefaultState
}

#[derive(Clone, Debug)]
enum EscapeDefaultState {
    Done,
    Char(char),
    Backslash(char),
    Unicode(EscapeUnicode),
}

#[stable(feature = "rust1", since = "1.0.0")]
impl Iterator for EscapeDefault {
    type Item = char;

    fn next(&mut self) -> Option<char> {
        match self.state {
            EscapeDefaultState::Backslash(c) => {
                self.state = EscapeDefaultState::Char(c);
                Some('\\')
            }
            EscapeDefaultState::Char(c) => {
                self.state = EscapeDefaultState::Done;
                Some(c)
            }
            EscapeDefaultState::Done => None,
            EscapeDefaultState::Unicode(ref mut iter) => iter.next(),
        }
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let n = self.len();
        (n, Some(n))
    }

    #[inline]
    fn count(self) -> usize {
        self.len()
    }

    fn nth(&mut self, n: usize) -> Option<char> {
        match self.state {
            EscapeDefaultState::Backslash(c) if n == 0 => {
                self.state = EscapeDefaultState::Char(c);
                Some('\\')
            },
            EscapeDefaultState::Backslash(c) if n == 1 => {
                self.state = EscapeDefaultState::Done;
                Some(c)
            },
            EscapeDefaultState::Backslash(_) => {
                self.state = EscapeDefaultState::Done;
                None
            },
            EscapeDefaultState::Char(c) => {
                self.state = EscapeDefaultState::Done;

                if n == 0 {
                    Some(c)
                } else {
                    None
                }
            },
            EscapeDefaultState::Done => return None,
            EscapeDefaultState::Unicode(ref mut i) => return i.nth(n),
        }
    }

    fn last(self) -> Option<char> {
        match self.state {
            EscapeDefaultState::Unicode(iter) => iter.last(),
            EscapeDefaultState::Done => None,
            EscapeDefaultState::Backslash(c) | EscapeDefaultState::Char(c) => Some(c),
        }
    }
}

#[stable(feature = "exact_size_escape", since = "1.11.0")]
impl ExactSizeIterator for EscapeDefault {
    fn len(&self) -> usize {
        match self.state {
            EscapeDefaultState::Done => 0,
            EscapeDefaultState::Char(_) => 1,
            EscapeDefaultState::Backslash(_) => 2,
            EscapeDefaultState::Unicode(ref iter) => iter.len(),
        }
    }
}

#[unstable(feature = "fused", issue = "35602")]
impl FusedIterator for EscapeDefault {}

#[stable(feature = "char_struct_display", since = "1.16.0")]
impl fmt::Display for EscapeDefault {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        for c in self.clone() {
            f.write_char(c)?;
        }
        Ok(())
    }
}

/// An iterator that yields the literal escape code of a `char`.
///
/// This `struct` is created by the [`escape_debug`] method on [`char`]. See its
/// documentation for more.
///
/// [`escape_debug`]: ../../std/primitive.char.html#method.escape_debug
/// [`char`]: ../../std/primitive.char.html
#[stable(feature = "char_escape_debug", since = "1.20.0")]
#[derive(Clone, Debug)]
pub struct EscapeDebug(EscapeDefault);

#[stable(feature = "char_escape_debug", since = "1.20.0")]
impl Iterator for EscapeDebug {
    type Item = char;
    fn next(&mut self) -> Option<char> { self.0.next() }
    fn size_hint(&self) -> (usize, Option<usize>) { self.0.size_hint() }
}

#[stable(feature = "char_escape_debug", since = "1.20.0")]
impl ExactSizeIterator for EscapeDebug { }

#[unstable(feature = "fused", issue = "35602")]
impl FusedIterator for EscapeDebug {}

#[stable(feature = "char_escape_debug", since = "1.20.0")]
impl fmt::Display for EscapeDebug {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Display::fmt(&self.0, f)
    }
}



/// An iterator over an iterator of bytes of the characters the bytes represent
/// as UTF-8
#[unstable(feature = "decode_utf8", issue = "33906")]
#[derive(Clone, Debug)]
pub struct DecodeUtf8<I: Iterator<Item = u8>>(::iter::Peekable<I>);

/// Decodes an `Iterator` of bytes as UTF-8.
#[unstable(feature = "decode_utf8", issue = "33906")]
#[inline]
pub fn decode_utf8<I: IntoIterator<Item = u8>>(i: I) -> DecodeUtf8<I::IntoIter> {
    DecodeUtf8(i.into_iter().peekable())
}

/// `<DecodeUtf8 as Iterator>::next` returns this for an invalid input sequence.
#[unstable(feature = "decode_utf8", issue = "33906")]
#[derive(PartialEq, Eq, Debug)]
pub struct InvalidSequence(());

#[unstable(feature = "decode_utf8", issue = "33906")]
impl<I: Iterator<Item = u8>> Iterator for DecodeUtf8<I> {
    type Item = Result<char, InvalidSequence>;
    #[inline]

    fn next(&mut self) -> Option<Result<char, InvalidSequence>> {
        self.0.next().map(|first_byte| {
            // Emit InvalidSequence according to
            // Unicode §5.22 Best Practice for U+FFFD Substitution
            // http://www.unicode.org/versions/Unicode9.0.0/ch05.pdf#G40630

            // Roughly: consume at least one byte,
            // then validate one byte at a time and stop before the first unexpected byte
            // (which might be the valid start of the next byte sequence).

            let mut code_point;
            macro_rules! first_byte {
                ($mask: expr) => {
                    code_point = u32::from(first_byte & $mask)
                }
            }
            macro_rules! continuation_byte {
                () => { continuation_byte!(0x80...0xBF) };
                ($range: pat) => {
                    match self.0.peek() {
                        Some(&byte @ $range) => {
                            code_point = (code_point << 6) | u32::from(byte & 0b0011_1111);
                            self.0.next();
                        }
                        _ => return Err(InvalidSequence(()))
                    }
                }
            }

            match first_byte {
                0x00...0x7F => {
                    first_byte!(0b1111_1111);
                }
                0xC2...0xDF => {
                    first_byte!(0b0001_1111);
                    continuation_byte!();
                }
                0xE0 => {
                    first_byte!(0b0000_1111);
                    continuation_byte!(0xA0...0xBF);  // 0x80...0x9F here are overlong
                    continuation_byte!();
                }
                0xE1...0xEC | 0xEE...0xEF => {
                    first_byte!(0b0000_1111);
                    continuation_byte!();
                    continuation_byte!();
                }
                0xED => {
                    first_byte!(0b0000_1111);
                    continuation_byte!(0x80...0x9F);  // 0xA0..0xBF here are surrogates
                    continuation_byte!();
                }
                0xF0 => {
                    first_byte!(0b0000_0111);
                    continuation_byte!(0x90...0xBF);  // 0x80..0x8F here are overlong
                    continuation_byte!();
                    continuation_byte!();
                }
                0xF1...0xF3 => {
                    first_byte!(0b0000_0111);
                    continuation_byte!();
                    continuation_byte!();
                    continuation_byte!();
                }
                0xF4 => {
                    first_byte!(0b0000_0111);
                    continuation_byte!(0x80...0x8F);  // 0x90..0xBF here are beyond char::MAX
                    continuation_byte!();
                    continuation_byte!();
                }
                _ => return Err(InvalidSequence(()))  // Illegal first byte, overlong, or beyond MAX
            }
            unsafe {
                Ok(from_u32_unchecked(code_point))
            }
        })
    }
}

#[unstable(feature = "fused", issue = "35602")]
impl<I: FusedIterator<Item = u8>> FusedIterator for DecodeUtf8<I> {}