1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! This module provides constants which are specific to the implementation
//! of the `f32` floating point data type.
//!
//! Mathematically significant numbers are provided in the `consts` sub-module.
//!
//! *[See also the `f32` primitive type](../../std/primitive.f32.html).*

#![stable(feature = "rust1", since = "1.0.0")]

use intrinsics;
use mem;
use num::Float;
use num::FpCategory as Fp;

/// The radix or base of the internal representation of `f32`.
#[stable(feature = "rust1", since = "1.0.0")]
pub const RADIX: u32 = 2;

/// Number of significant digits in base 2.
#[stable(feature = "rust1", since = "1.0.0")]
pub const MANTISSA_DIGITS: u32 = 24;
/// Approximate number of significant digits in base 10.
#[stable(feature = "rust1", since = "1.0.0")]
pub const DIGITS: u32 = 6;

/// Difference between `1.0` and the next largest representable number.
#[stable(feature = "rust1", since = "1.0.0")]
pub const EPSILON: f32 = 1.19209290e-07_f32;

/// Smallest finite `f32` value.
#[stable(feature = "rust1", since = "1.0.0")]
pub const MIN: f32 = -3.40282347e+38_f32;
/// Smallest positive normal `f32` value.
#[stable(feature = "rust1", since = "1.0.0")]
pub const MIN_POSITIVE: f32 = 1.17549435e-38_f32;
/// Largest finite `f32` value.
#[stable(feature = "rust1", since = "1.0.0")]
pub const MAX: f32 = 3.40282347e+38_f32;

/// One greater than the minimum possible normal power of 2 exponent.
#[stable(feature = "rust1", since = "1.0.0")]
pub const MIN_EXP: i32 = -125;
/// Maximum possible power of 2 exponent.
#[stable(feature = "rust1", since = "1.0.0")]
pub const MAX_EXP: i32 = 128;

/// Minimum possible normal power of 10 exponent.
#[stable(feature = "rust1", since = "1.0.0")]
pub const MIN_10_EXP: i32 = -37;
/// Maximum possible power of 10 exponent.
#[stable(feature = "rust1", since = "1.0.0")]
pub const MAX_10_EXP: i32 = 38;

/// Not a Number (NaN).
#[stable(feature = "rust1", since = "1.0.0")]
pub const NAN: f32 = 0.0_f32 / 0.0_f32;
/// Infinity (∞).
#[stable(feature = "rust1", since = "1.0.0")]
pub const INFINITY: f32 = 1.0_f32 / 0.0_f32;
/// Negative infinity (-∞).
#[stable(feature = "rust1", since = "1.0.0")]
pub const NEG_INFINITY: f32 = -1.0_f32 / 0.0_f32;

/// Basic mathematical constants.
#[stable(feature = "rust1", since = "1.0.0")]
pub mod consts {
    // FIXME: replace with mathematical constants from cmath.

    /// Archimedes' constant (π)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const PI: f32 = 3.14159265358979323846264338327950288_f32;

    /// π/2
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32;

    /// π/3
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32;

    /// π/4
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32;

    /// π/6
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32;

    /// π/8
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32;

    /// 1/π
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32;

    /// 2/π
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32;

    /// 2/sqrt(π)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_2_SQRT_PI: f32 = 1.12837916709551257389615890312154517_f32;

    /// sqrt(2)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const SQRT_2: f32 = 1.41421356237309504880168872420969808_f32;

    /// 1/sqrt(2)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_1_SQRT_2: f32 = 0.707106781186547524400844362104849039_f32;

    /// Euler's number (e)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const E: f32 = 2.71828182845904523536028747135266250_f32;

    /// log<sub>2</sub>(e)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const LOG2_E: f32 = 1.44269504088896340735992468100189214_f32;

    /// log<sub>10</sub>(e)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const LOG10_E: f32 = 0.434294481903251827651128918916605082_f32;

    /// ln(2)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const LN_2: f32 = 0.693147180559945309417232121458176568_f32;

    /// ln(10)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const LN_10: f32 = 2.30258509299404568401799145468436421_f32;
}

#[unstable(feature = "core_float",
           reason = "stable interface is via `impl f{32,64}` in later crates",
           issue = "32110")]
impl Float for f32 {
    type Bits = u32;

    /// Returns `true` if the number is NaN.
    #[inline]
    fn is_nan(self) -> bool {
        self != self
    }

    /// Returns `true` if the number is infinite.
    #[inline]
    fn is_infinite(self) -> bool {
        self == INFINITY || self == NEG_INFINITY
    }

    /// Returns `true` if the number is neither infinite or NaN.
    #[inline]
    fn is_finite(self) -> bool {
        !(self.is_nan() || self.is_infinite())
    }

    /// Returns `true` if the number is neither zero, infinite, subnormal or NaN.
    #[inline]
    fn is_normal(self) -> bool {
        self.classify() == Fp::Normal
    }

    /// Returns the floating point category of the number. If only one property
    /// is going to be tested, it is generally faster to use the specific
    /// predicate instead.
    fn classify(self) -> Fp {
        const EXP_MASK: u32 = 0x7f800000;
        const MAN_MASK: u32 = 0x007fffff;

        let bits = self.to_bits();
        match (bits & MAN_MASK, bits & EXP_MASK) {
            (0, 0) => Fp::Zero,
            (_, 0) => Fp::Subnormal,
            (0, EXP_MASK) => Fp::Infinite,
            (_, EXP_MASK) => Fp::Nan,
            _ => Fp::Normal,
        }
    }

    /// Computes the absolute value of `self`. Returns `Float::nan()` if the
    /// number is `Float::nan()`.
    #[inline]
    fn abs(self) -> f32 {
        unsafe { intrinsics::fabsf32(self) }
    }

    /// Returns a number that represents the sign of `self`.
    ///
    /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()`
    /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()`
    /// - `Float::nan()` if the number is `Float::nan()`
    #[inline]
    fn signum(self) -> f32 {
        if self.is_nan() {
            NAN
        } else {
            unsafe { intrinsics::copysignf32(1.0, self) }
        }
    }

    /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaN`s with
    /// positive sign bit and positive infinity.
    #[inline]
    fn is_sign_positive(self) -> bool {
        !self.is_sign_negative()
    }

    /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaN`s with
    /// negative sign bit and negative infinity.
    #[inline]
    fn is_sign_negative(self) -> bool {
        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
        // applies to zeros and NaNs as well.
        self.to_bits() & 0x8000_0000 != 0
    }

    /// Returns the reciprocal (multiplicative inverse) of the number.
    #[inline]
    fn recip(self) -> f32 {
        1.0 / self
    }

    #[inline]
    fn powi(self, n: i32) -> f32 {
        unsafe { intrinsics::powif32(self, n) }
    }

    /// Converts to degrees, assuming the number is in radians.
    #[inline]
    fn to_degrees(self) -> f32 {
        // Use a constant for better precision.
        const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32;
        self * PIS_IN_180
    }

    /// Converts to radians, assuming the number is in degrees.
    #[inline]
    fn to_radians(self) -> f32 {
        let value: f32 = consts::PI;
        self * (value / 180.0f32)
    }

    /// Returns the maximum of the two numbers.
    #[inline]
    fn max(self, other: f32) -> f32 {
        // IEEE754 says: maxNum(x, y) is the canonicalized number y if x < y, x if y < x, the
        // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
        // is either x or y, canonicalized (this means results might differ among implementations).
        // When either x or y is a signalingNaN, then the result is according to 6.2.
        //
        // Since we do not support sNaN in Rust yet, we do not need to handle them.
        // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
        // multiplying by 1.0. Should switch to the `canonicalize` when it works.
        (if self.is_nan() || self < other { other } else { self }) * 1.0
    }

    /// Returns the minimum of the two numbers.
    #[inline]
    fn min(self, other: f32) -> f32 {
        // IEEE754 says: minNum(x, y) is the canonicalized number x if x < y, y if y < x, the
        // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it
        // is either x or y, canonicalized (this means results might differ among implementations).
        // When either x or y is a signalingNaN, then the result is according to 6.2.
        //
        // Since we do not support sNaN in Rust yet, we do not need to handle them.
        // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by
        // multiplying by 1.0. Should switch to the `canonicalize` when it works.
        (if other.is_nan() || self < other { self } else { other }) * 1.0
    }

    /// Raw transmutation to `u32`.
    #[inline]
    fn to_bits(self) -> u32 {
        unsafe { mem::transmute(self) }
    }

    /// Raw transmutation from `u32`.
    #[inline]
    fn from_bits(v: u32) -> Self {
        // It turns out the safety issues with sNaN were overblown! Hooray!
        unsafe { mem::transmute(v) }
    }
}