1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. use core::cmp; use core::heap::{Alloc, Layout}; use core::mem; use core::ops::Drop; use core::ptr::{self, Unique}; use core::slice; use heap::Heap; use super::boxed::Box; use super::allocator::CollectionAllocErr; use super::allocator::CollectionAllocErr::*; /// A low-level utility for more ergonomically allocating, reallocating, and deallocating /// a buffer of memory on the heap without having to worry about all the corner cases /// involved. This type is excellent for building your own data structures like Vec and VecDeque. /// In particular: /// /// * Produces Unique::empty() on zero-sized types /// * Produces Unique::empty() on zero-length allocations /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics) /// * Guards against 32-bit systems allocating more than isize::MAX bytes /// * Guards against overflowing your length /// * Aborts on OOM /// * Avoids freeing Unique::empty() /// * Contains a ptr::Unique and thus endows the user with all related benefits /// /// This type does not in anyway inspect the memory that it manages. When dropped it *will* /// free its memory, but it *won't* try to Drop its contents. It is up to the user of RawVec /// to handle the actual things *stored* inside of a RawVec. /// /// Note that a RawVec always forces its capacity to be usize::MAX for zero-sized types. /// This enables you to use capacity growing logic catch the overflows in your length /// that might occur with zero-sized types. /// /// However this means that you need to be careful when roundtripping this type /// with a `Box<[T]>`: `cap()` won't yield the len. However `with_capacity`, /// `shrink_to_fit`, and `from_box` will actually set RawVec's private capacity /// field. This allows zero-sized types to not be special-cased by consumers of /// this type. #[allow(missing_debug_implementations)] pub struct RawVec<T, A: Alloc = Heap> { ptr: Unique<T>, cap: usize, a: A, } impl<T, A: Alloc> RawVec<T, A> { /// Like `new` but parameterized over the choice of allocator for /// the returned RawVec. pub fn new_in(a: A) -> Self { // !0 is usize::MAX. This branch should be stripped at compile time. let cap = if mem::size_of::<T>() == 0 { !0 } else { 0 }; // Unique::empty() doubles as "unallocated" and "zero-sized allocation" RawVec { ptr: Unique::empty(), cap, a, } } /// Like `with_capacity` but parameterized over the choice of /// allocator for the returned RawVec. #[inline] pub fn with_capacity_in(cap: usize, a: A) -> Self { RawVec::allocate_in(cap, false, a) } /// Like `with_capacity_zeroed` but parameterized over the choice /// of allocator for the returned RawVec. #[inline] pub fn with_capacity_zeroed_in(cap: usize, a: A) -> Self { RawVec::allocate_in(cap, true, a) } fn allocate_in(cap: usize, zeroed: bool, mut a: A) -> Self { unsafe { let elem_size = mem::size_of::<T>(); let alloc_size = cap.checked_mul(elem_size).expect("capacity overflow"); alloc_guard(alloc_size).expect("capacity overflow"); // handles ZSTs and `cap = 0` alike let ptr = if alloc_size == 0 { mem::align_of::<T>() as *mut u8 } else { let align = mem::align_of::<T>(); let result = if zeroed { a.alloc_zeroed(Layout::from_size_align(alloc_size, align).unwrap()) } else { a.alloc(Layout::from_size_align(alloc_size, align).unwrap()) }; match result { Ok(ptr) => ptr, Err(err) => a.oom(err), } }; RawVec { ptr: Unique::new_unchecked(ptr as *mut _), cap, a, } } } } impl<T> RawVec<T, Heap> { /// Creates the biggest possible RawVec (on the system heap) /// without allocating. If T has positive size, then this makes a /// RawVec with capacity 0. If T has 0 size, then it makes a /// RawVec with capacity `usize::MAX`. Useful for implementing /// delayed allocation. pub fn new() -> Self { Self::new_in(Heap) } /// Creates a RawVec (on the system heap) with exactly the /// capacity and alignment requirements for a `[T; cap]`. This is /// equivalent to calling RawVec::new when `cap` is 0 or T is /// zero-sized. Note that if `T` is zero-sized this means you will /// *not* get a RawVec with the requested capacity! /// /// # Panics /// /// * Panics if the requested capacity exceeds `usize::MAX` bytes. /// * Panics on 32-bit platforms if the requested capacity exceeds /// `isize::MAX` bytes. /// /// # Aborts /// /// Aborts on OOM #[inline] pub fn with_capacity(cap: usize) -> Self { RawVec::allocate_in(cap, false, Heap) } /// Like `with_capacity` but guarantees the buffer is zeroed. #[inline] pub fn with_capacity_zeroed(cap: usize) -> Self { RawVec::allocate_in(cap, true, Heap) } } impl<T, A: Alloc> RawVec<T, A> { /// Reconstitutes a RawVec from a pointer, capacity, and allocator. /// /// # Undefined Behavior /// /// The ptr must be allocated (via the given allocator `a`), and with the given capacity. The /// capacity cannot exceed `isize::MAX` (only a concern on 32-bit systems). /// If the ptr and capacity come from a RawVec created via `a`, then this is guaranteed. pub unsafe fn from_raw_parts_in(ptr: *mut T, cap: usize, a: A) -> Self { RawVec { ptr: Unique::new_unchecked(ptr), cap, a, } } } impl<T> RawVec<T, Heap> { /// Reconstitutes a RawVec from a pointer, capacity. /// /// # Undefined Behavior /// /// The ptr must be allocated (on the system heap), and with the given capacity. The /// capacity cannot exceed `isize::MAX` (only a concern on 32-bit systems). /// If the ptr and capacity come from a RawVec, then this is guaranteed. pub unsafe fn from_raw_parts(ptr: *mut T, cap: usize) -> Self { RawVec { ptr: Unique::new_unchecked(ptr), cap, a: Heap, } } /// Converts a `Box<[T]>` into a `RawVec<T>`. pub fn from_box(mut slice: Box<[T]>) -> Self { unsafe { let result = RawVec::from_raw_parts(slice.as_mut_ptr(), slice.len()); mem::forget(slice); result } } } impl<T, A: Alloc> RawVec<T, A> { /// Gets a raw pointer to the start of the allocation. Note that this is /// Unique::empty() if `cap = 0` or T is zero-sized. In the former case, you must /// be careful. pub fn ptr(&self) -> *mut T { self.ptr.as_ptr() } /// Gets the capacity of the allocation. /// /// This will always be `usize::MAX` if `T` is zero-sized. #[inline(always)] pub fn cap(&self) -> usize { if mem::size_of::<T>() == 0 { !0 } else { self.cap } } /// Returns a shared reference to the allocator backing this RawVec. pub fn alloc(&self) -> &A { &self.a } /// Returns a mutable reference to the allocator backing this RawVec. pub fn alloc_mut(&mut self) -> &mut A { &mut self.a } fn current_layout(&self) -> Option<Layout> { if self.cap == 0 { None } else { // We have an allocated chunk of memory, so we can bypass runtime // checks to get our current layout. unsafe { let align = mem::align_of::<T>(); let size = mem::size_of::<T>() * self.cap; Some(Layout::from_size_align_unchecked(size, align)) } } } /// Doubles the size of the type's backing allocation. This is common enough /// to want to do that it's easiest to just have a dedicated method. Slightly /// more efficient logic can be provided for this than the general case. /// /// This function is ideal for when pushing elements one-at-a-time because /// you don't need to incur the costs of the more general computations /// reserve needs to do to guard against overflow. You do however need to /// manually check if your `len == cap`. /// /// # Panics /// /// * Panics if T is zero-sized on the assumption that you managed to exhaust /// all `usize::MAX` slots in your imaginary buffer. /// * Panics on 32-bit platforms if the requested capacity exceeds /// `isize::MAX` bytes. /// /// # Aborts /// /// Aborts on OOM /// /// # Examples /// /// ``` /// # #![feature(alloc)] /// # extern crate alloc; /// # use std::ptr; /// # use alloc::raw_vec::RawVec; /// struct MyVec<T> { /// buf: RawVec<T>, /// len: usize, /// } /// /// impl<T> MyVec<T> { /// pub fn push(&mut self, elem: T) { /// if self.len == self.buf.cap() { self.buf.double(); } /// // double would have aborted or panicked if the len exceeded /// // `isize::MAX` so this is safe to do unchecked now. /// unsafe { /// ptr::write(self.buf.ptr().offset(self.len as isize), elem); /// } /// self.len += 1; /// } /// } /// # fn main() { /// # let mut vec = MyVec { buf: RawVec::new(), len: 0 }; /// # vec.push(1); /// # } /// ``` #[inline(never)] #[cold] pub fn double(&mut self) { unsafe { let elem_size = mem::size_of::<T>(); // since we set the capacity to usize::MAX when elem_size is // 0, getting to here necessarily means the RawVec is overfull. assert!(elem_size != 0, "capacity overflow"); let (new_cap, uniq) = match self.current_layout() { Some(cur) => { // Since we guarantee that we never allocate more than // isize::MAX bytes, `elem_size * self.cap <= isize::MAX` as // a precondition, so this can't overflow. Additionally the // alignment will never be too large as to "not be // satisfiable", so `Layout::from_size_align` will always // return `Some`. // // tl;dr; we bypass runtime checks due to dynamic assertions // in this module, allowing us to use // `from_size_align_unchecked`. let new_cap = 2 * self.cap; let new_size = new_cap * elem_size; let new_layout = Layout::from_size_align_unchecked(new_size, cur.align()); alloc_guard(new_size).expect("capacity overflow"); let ptr_res = self.a.realloc(self.ptr.as_ptr() as *mut u8, cur, new_layout); match ptr_res { Ok(ptr) => (new_cap, Unique::new_unchecked(ptr as *mut T)), Err(e) => self.a.oom(e), } } None => { // skip to 4 because tiny Vec's are dumb; but not if that // would cause overflow let new_cap = if elem_size > (!0) / 8 { 1 } else { 4 }; match self.a.alloc_array::<T>(new_cap) { Ok(ptr) => (new_cap, ptr.into()), Err(e) => self.a.oom(e), } } }; self.ptr = uniq; self.cap = new_cap; } } /// Attempts to double the size of the type's backing allocation in place. This is common /// enough to want to do that it's easiest to just have a dedicated method. Slightly /// more efficient logic can be provided for this than the general case. /// /// Returns true if the reallocation attempt has succeeded, or false otherwise. /// /// # Panics /// /// * Panics if T is zero-sized on the assumption that you managed to exhaust /// all `usize::MAX` slots in your imaginary buffer. /// * Panics on 32-bit platforms if the requested capacity exceeds /// `isize::MAX` bytes. #[inline(never)] #[cold] pub fn double_in_place(&mut self) -> bool { unsafe { let elem_size = mem::size_of::<T>(); let old_layout = match self.current_layout() { Some(layout) => layout, None => return false, // nothing to double }; // since we set the capacity to usize::MAX when elem_size is // 0, getting to here necessarily means the RawVec is overfull. assert!(elem_size != 0, "capacity overflow"); // Since we guarantee that we never allocate more than isize::MAX // bytes, `elem_size * self.cap <= isize::MAX` as a precondition, so // this can't overflow. // // Similarly like with `double` above we can go straight to // `Layout::from_size_align_unchecked` as we know this won't // overflow and the alignment is sufficiently small. let new_cap = 2 * self.cap; let new_size = new_cap * elem_size; alloc_guard(new_size).expect("capacity overflow"); let ptr = self.ptr() as *mut _; let new_layout = Layout::from_size_align_unchecked(new_size, old_layout.align()); match self.a.grow_in_place(ptr, old_layout, new_layout) { Ok(_) => { // We can't directly divide `size`. self.cap = new_cap; true } Err(_) => { false } } } } /// Ensures that the buffer contains at least enough space to hold /// `used_cap + needed_extra_cap` elements. If it doesn't already, /// will reallocate the minimum possible amount of memory necessary. /// Generally this will be exactly the amount of memory necessary, /// but in principle the allocator is free to give back more than /// we asked for. /// /// If `used_cap` exceeds `self.cap()`, this may fail to actually allocate /// the requested space. This is not really unsafe, but the unsafe /// code *you* write that relies on the behavior of this function may break. /// /// # Panics /// /// * Panics if the requested capacity exceeds `usize::MAX` bytes. /// * Panics on 32-bit platforms if the requested capacity exceeds /// `isize::MAX` bytes. /// /// # Aborts /// /// Aborts on OOM pub fn try_reserve_exact(&mut self, used_cap: usize, needed_extra_cap: usize) -> Result<(), CollectionAllocErr> { unsafe { // NOTE: we don't early branch on ZSTs here because we want this // to actually catch "asking for more than usize::MAX" in that case. // If we make it past the first branch then we are guaranteed to // panic. // Don't actually need any more capacity. // Wrapping in case they gave a bad `used_cap`. if self.cap().wrapping_sub(used_cap) >= needed_extra_cap { return Ok(()); } // Nothing we can really do about these checks :( let new_cap = used_cap.checked_add(needed_extra_cap).ok_or(CapacityOverflow)?; let new_layout = Layout::array::<T>(new_cap).ok_or(CapacityOverflow)?; alloc_guard(new_layout.size())?; let res = match self.current_layout() { Some(layout) => { let old_ptr = self.ptr.as_ptr() as *mut u8; self.a.realloc(old_ptr, layout, new_layout) } None => self.a.alloc(new_layout), }; self.ptr = Unique::new_unchecked(res? as *mut T); self.cap = new_cap; Ok(()) } } pub fn reserve_exact(&mut self, used_cap: usize, needed_extra_cap: usize) { match self.try_reserve_exact(used_cap, needed_extra_cap) { Err(CapacityOverflow) => panic!("capacity overflow"), Err(AllocErr(e)) => self.a.oom(e), Ok(()) => { /* yay */ } } } /// Calculates the buffer's new size given that it'll hold `used_cap + /// needed_extra_cap` elements. This logic is used in amortized reserve methods. /// Returns `(new_capacity, new_alloc_size)`. fn amortized_new_size(&self, used_cap: usize, needed_extra_cap: usize) -> Result<usize, CollectionAllocErr> { // Nothing we can really do about these checks :( let required_cap = used_cap.checked_add(needed_extra_cap).ok_or(CapacityOverflow)?; // Cannot overflow, because `cap <= isize::MAX`, and type of `cap` is `usize`. let double_cap = self.cap * 2; // `double_cap` guarantees exponential growth. Ok(cmp::max(double_cap, required_cap)) } /// Ensures that the buffer contains at least enough space to hold /// `used_cap + needed_extra_cap` elements. If it doesn't already have /// enough capacity, will reallocate enough space plus comfortable slack /// space to get amortized `O(1)` behavior. Will limit this behavior /// if it would needlessly cause itself to panic. /// /// If `used_cap` exceeds `self.cap()`, this may fail to actually allocate /// the requested space. This is not really unsafe, but the unsafe /// code *you* write that relies on the behavior of this function may break. /// /// This is ideal for implementing a bulk-push operation like `extend`. /// /// # Panics /// /// * Panics if the requested capacity exceeds `usize::MAX` bytes. /// * Panics on 32-bit platforms if the requested capacity exceeds /// `isize::MAX` bytes. /// /// # Aborts /// /// Aborts on OOM /// /// # Examples /// /// ``` /// # #![feature(alloc)] /// # extern crate alloc; /// # use std::ptr; /// # use alloc::raw_vec::RawVec; /// struct MyVec<T> { /// buf: RawVec<T>, /// len: usize, /// } /// /// impl<T: Clone> MyVec<T> { /// pub fn push_all(&mut self, elems: &[T]) { /// self.buf.reserve(self.len, elems.len()); /// // reserve would have aborted or panicked if the len exceeded /// // `isize::MAX` so this is safe to do unchecked now. /// for x in elems { /// unsafe { /// ptr::write(self.buf.ptr().offset(self.len as isize), x.clone()); /// } /// self.len += 1; /// } /// } /// } /// # fn main() { /// # let mut vector = MyVec { buf: RawVec::new(), len: 0 }; /// # vector.push_all(&[1, 3, 5, 7, 9]); /// # } /// ``` pub fn try_reserve(&mut self, used_cap: usize, needed_extra_cap: usize) -> Result<(), CollectionAllocErr> { unsafe { // NOTE: we don't early branch on ZSTs here because we want this // to actually catch "asking for more than usize::MAX" in that case. // If we make it past the first branch then we are guaranteed to // panic. // Don't actually need any more capacity. // Wrapping in case they give a bad `used_cap` if self.cap().wrapping_sub(used_cap) >= needed_extra_cap { return Ok(()); } let new_cap = self.amortized_new_size(used_cap, needed_extra_cap)?; let new_layout = Layout::array::<T>(new_cap).ok_or(CapacityOverflow)?; // FIXME: may crash and burn on over-reserve alloc_guard(new_layout.size())?; let res = match self.current_layout() { Some(layout) => { let old_ptr = self.ptr.as_ptr() as *mut u8; self.a.realloc(old_ptr, layout, new_layout) } None => self.a.alloc(new_layout), }; self.ptr = Unique::new_unchecked(res? as *mut T); self.cap = new_cap; Ok(()) } } /// The same as try_reserve, but errors are lowered to a call to oom(). pub fn reserve(&mut self, used_cap: usize, needed_extra_cap: usize) { match self.try_reserve(used_cap, needed_extra_cap) { Err(CapacityOverflow) => panic!("capacity overflow"), Err(AllocErr(e)) => self.a.oom(e), Ok(()) => { /* yay */ } } } /// Attempts to ensure that the buffer contains at least enough space to hold /// `used_cap + needed_extra_cap` elements. If it doesn't already have /// enough capacity, will reallocate in place enough space plus comfortable slack /// space to get amortized `O(1)` behavior. Will limit this behaviour /// if it would needlessly cause itself to panic. /// /// If `used_cap` exceeds `self.cap()`, this may fail to actually allocate /// the requested space. This is not really unsafe, but the unsafe /// code *you* write that relies on the behavior of this function may break. /// /// Returns true if the reallocation attempt has succeeded, or false otherwise. /// /// # Panics /// /// * Panics if the requested capacity exceeds `usize::MAX` bytes. /// * Panics on 32-bit platforms if the requested capacity exceeds /// `isize::MAX` bytes. pub fn reserve_in_place(&mut self, used_cap: usize, needed_extra_cap: usize) -> bool { unsafe { // NOTE: we don't early branch on ZSTs here because we want this // to actually catch "asking for more than usize::MAX" in that case. // If we make it past the first branch then we are guaranteed to // panic. // Don't actually need any more capacity. If the current `cap` is 0, we can't // reallocate in place. // Wrapping in case they give a bad `used_cap` let old_layout = match self.current_layout() { Some(layout) => layout, None => return false, }; if self.cap().wrapping_sub(used_cap) >= needed_extra_cap { return false; } let new_cap = self.amortized_new_size(used_cap, needed_extra_cap) .expect("capacity overflow"); // Here, `cap < used_cap + needed_extra_cap <= new_cap` // (regardless of whether `self.cap - used_cap` wrapped). // Therefore we can safely call grow_in_place. let ptr = self.ptr() as *mut _; let new_layout = Layout::new::<T>().repeat(new_cap).unwrap().0; // FIXME: may crash and burn on over-reserve alloc_guard(new_layout.size()).expect("capacity overflow"); match self.a.grow_in_place(ptr, old_layout, new_layout) { Ok(_) => { self.cap = new_cap; true } Err(_) => { false } } } } /// Shrinks the allocation down to the specified amount. If the given amount /// is 0, actually completely deallocates. /// /// # Panics /// /// Panics if the given amount is *larger* than the current capacity. /// /// # Aborts /// /// Aborts on OOM. pub fn shrink_to_fit(&mut self, amount: usize) { let elem_size = mem::size_of::<T>(); // Set the `cap` because they might be about to promote to a `Box<[T]>` if elem_size == 0 { self.cap = amount; return; } // This check is my waterloo; it's the only thing Vec wouldn't have to do. assert!(self.cap >= amount, "Tried to shrink to a larger capacity"); if amount == 0 { // We want to create a new zero-length vector within the // same allocator. We use ptr::write to avoid an // erroneous attempt to drop the contents, and we use // ptr::read to sidestep condition against destructuring // types that implement Drop. unsafe { let a = ptr::read(&self.a as *const A); self.dealloc_buffer(); ptr::write(self, RawVec::new_in(a)); } } else if self.cap != amount { unsafe { // We know here that our `amount` is greater than zero. This // implies, via the assert above, that capacity is also greater // than zero, which means that we've got a current layout that // "fits" // // We also know that `self.cap` is greater than `amount`, and // consequently we don't need runtime checks for creating either // layout let old_size = elem_size * self.cap; let new_size = elem_size * amount; let align = mem::align_of::<T>(); let old_layout = Layout::from_size_align_unchecked(old_size, align); let new_layout = Layout::from_size_align_unchecked(new_size, align); match self.a.realloc(self.ptr.as_ptr() as *mut u8, old_layout, new_layout) { Ok(p) => self.ptr = Unique::new_unchecked(p as *mut T), Err(err) => self.a.oom(err), } } self.cap = amount; } } } impl<T> RawVec<T, Heap> { /// Converts the entire buffer into `Box<[T]>`. /// /// While it is not *strictly* Undefined Behavior to call /// this procedure while some of the RawVec is uninitialized, /// it certainly makes it trivial to trigger it. /// /// Note that this will correctly reconstitute any `cap` changes /// that may have been performed. (see description of type for details) pub unsafe fn into_box(self) -> Box<[T]> { // NOTE: not calling `cap()` here, actually using the real `cap` field! let slice = slice::from_raw_parts_mut(self.ptr(), self.cap); let output: Box<[T]> = Box::from_raw(slice); mem::forget(self); output } } impl<T, A: Alloc> RawVec<T, A> { /// Frees the memory owned by the RawVec *without* trying to Drop its contents. pub unsafe fn dealloc_buffer(&mut self) { let elem_size = mem::size_of::<T>(); if elem_size != 0 { if let Some(layout) = self.current_layout() { let ptr = self.ptr() as *mut u8; self.a.dealloc(ptr, layout); } } } } unsafe impl<#[may_dangle] T, A: Alloc> Drop for RawVec<T, A> { /// Frees the memory owned by the RawVec *without* trying to Drop its contents. fn drop(&mut self) { unsafe { self.dealloc_buffer(); } } } // We need to guarantee the following: // * We don't ever allocate `> isize::MAX` byte-size objects // * We don't overflow `usize::MAX` and actually allocate too little // // On 64-bit we just need to check for overflow since trying to allocate // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add // an extra guard for this in case we're running on a platform which can use // all 4GB in user-space. e.g. PAE or x32 #[inline] fn alloc_guard(alloc_size: usize) -> Result<(), CollectionAllocErr> { if mem::size_of::<usize>() < 8 && alloc_size > ::core::isize::MAX as usize { Err(CapacityOverflow) } else { Ok(()) } } #[cfg(test)] mod tests { use super::*; #[test] fn allocator_param() { use allocator::{Alloc, AllocErr}; // Writing a test of integration between third-party // allocators and RawVec is a little tricky because the RawVec // API does not expose fallible allocation methods, so we // cannot check what happens when allocator is exhausted // (beyond detecting a panic). // // Instead, this just checks that the RawVec methods do at // least go through the Allocator API when it reserves // storage. // A dumb allocator that consumes a fixed amount of fuel // before allocation attempts start failing. struct BoundedAlloc { fuel: usize } unsafe impl Alloc for BoundedAlloc { unsafe fn alloc(&mut self, layout: Layout) -> Result<*mut u8, AllocErr> { let size = layout.size(); if size > self.fuel { return Err(AllocErr::Unsupported { details: "fuel exhausted" }); } match Heap.alloc(layout) { ok @ Ok(_) => { self.fuel -= size; ok } err @ Err(_) => err, } } unsafe fn dealloc(&mut self, ptr: *mut u8, layout: Layout) { Heap.dealloc(ptr, layout) } } let a = BoundedAlloc { fuel: 500 }; let mut v: RawVec<u8, _> = RawVec::with_capacity_in(50, a); assert_eq!(v.a.fuel, 450); v.reserve(50, 150); // (causes a realloc, thus using 50 + 150 = 200 units of fuel) assert_eq!(v.a.fuel, 250); } #[test] fn reserve_does_not_overallocate() { { let mut v: RawVec<u32> = RawVec::new(); // First `reserve` allocates like `reserve_exact` v.reserve(0, 9); assert_eq!(9, v.cap()); } { let mut v: RawVec<u32> = RawVec::new(); v.reserve(0, 7); assert_eq!(7, v.cap()); // 97 if more than double of 7, so `reserve` should work // like `reserve_exact`. v.reserve(7, 90); assert_eq!(97, v.cap()); } { let mut v: RawVec<u32> = RawVec::new(); v.reserve(0, 12); assert_eq!(12, v.cap()); v.reserve(12, 3); // 3 is less than half of 12, so `reserve` must grow // exponentially. At the time of writing this test grow // factor is 2, so new capacity is 24, however, grow factor // of 1.5 is OK too. Hence `>= 18` in assert. assert!(v.cap() >= 12 + 12 / 2); } } }