1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A dynamically-sized view into a contiguous sequence, `[T]`. //! //! Slices are a view into a block of memory represented as a pointer and a //! length. //! //! ``` //! // slicing a Vec //! let vec = vec![1, 2, 3]; //! let int_slice = &vec[..]; //! // coercing an array to a slice //! let str_slice: &[&str] = &["one", "two", "three"]; //! ``` //! //! Slices are either mutable or shared. The shared slice type is `&[T]`, //! while the mutable slice type is `&mut [T]`, where `T` represents the element //! type. For example, you can mutate the block of memory that a mutable slice //! points to: //! //! ``` //! let x = &mut [1, 2, 3]; //! x[1] = 7; //! assert_eq!(x, &[1, 7, 3]); //! ``` //! //! Here are some of the things this module contains: //! //! ## Structs //! //! There are several structs that are useful for slices, such as [`Iter`], which //! represents iteration over a slice. //! //! ## Trait Implementations //! //! There are several implementations of common traits for slices. Some examples //! include: //! //! * [`Clone`] //! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`]. //! * [`Hash`] - for slices whose element type is [`Hash`]. //! //! ## Iteration //! //! The slices implement `IntoIterator`. The iterator yields references to the //! slice elements. //! //! ``` //! let numbers = &[0, 1, 2]; //! for n in numbers { //! println!("{} is a number!", n); //! } //! ``` //! //! The mutable slice yields mutable references to the elements: //! //! ``` //! let mut scores = [7, 8, 9]; //! for score in &mut scores[..] { //! *score += 1; //! } //! ``` //! //! This iterator yields mutable references to the slice's elements, so while //! the element type of the slice is `i32`, the element type of the iterator is //! `&mut i32`. //! //! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default //! iterators. //! * Further methods that return iterators are [`.split`], [`.splitn`], //! [`.chunks`], [`.windows`] and more. //! //! *[See also the slice primitive type](../../std/primitive.slice.html).* //! //! [`Clone`]: ../../std/clone/trait.Clone.html //! [`Eq`]: ../../std/cmp/trait.Eq.html //! [`Ord`]: ../../std/cmp/trait.Ord.html //! [`Iter`]: struct.Iter.html //! [`Hash`]: ../../std/hash/trait.Hash.html //! [`.iter`]: ../../std/primitive.slice.html#method.iter //! [`.iter_mut`]: ../../std/primitive.slice.html#method.iter_mut //! [`.split`]: ../../std/primitive.slice.html#method.split //! [`.splitn`]: ../../std/primitive.slice.html#method.splitn //! [`.chunks`]: ../../std/primitive.slice.html#method.chunks //! [`.windows`]: ../../std/primitive.slice.html#method.windows #![stable(feature = "rust1", since = "1.0.0")] // Many of the usings in this module are only used in the test configuration. // It's cleaner to just turn off the unused_imports warning than to fix them. #![cfg_attr(test, allow(unused_imports, dead_code))] use core::cmp::Ordering::{self, Less}; use core::mem::size_of; use core::mem; use core::ptr; use core::slice as core_slice; use core::{u8, u16, u32}; use borrow::{Borrow, BorrowMut, ToOwned}; use boxed::Box; use vec::Vec; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{Chunks, Windows}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{Iter, IterMut}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{SplitMut, ChunksMut, Split}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{SplitN, RSplitN, SplitNMut, RSplitNMut}; #[unstable(feature = "slice_rsplit", issue = "41020")] pub use core::slice::{RSplit, RSplitMut}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{from_raw_parts, from_raw_parts_mut}; #[unstable(feature = "from_ref", issue = "45703")] pub use core::slice::{from_ref, from_ref_mut}; #[unstable(feature = "slice_get_slice", issue = "35729")] pub use core::slice::SliceIndex; #[unstable(feature = "exact_chunks", issue = "47115")] pub use core::slice::{ExactChunks, ExactChunksMut}; //////////////////////////////////////////////////////////////////////////////// // Basic slice extension methods //////////////////////////////////////////////////////////////////////////////// // HACK(japaric) needed for the implementation of `vec!` macro during testing // NB see the hack module in this file for more details #[cfg(test)] pub use self::hack::into_vec; // HACK(japaric) needed for the implementation of `Vec::clone` during testing // NB see the hack module in this file for more details #[cfg(test)] pub use self::hack::to_vec; // HACK(japaric): With cfg(test) `impl [T]` is not available, these three // functions are actually methods that are in `impl [T]` but not in // `core::slice::SliceExt` - we need to supply these functions for the // `test_permutations` test mod hack { use boxed::Box; use core::mem; #[cfg(test)] use string::ToString; use vec::Vec; pub fn into_vec<T>(mut b: Box<[T]>) -> Vec<T> { unsafe { let xs = Vec::from_raw_parts(b.as_mut_ptr(), b.len(), b.len()); mem::forget(b); xs } } #[inline] pub fn to_vec<T>(s: &[T]) -> Vec<T> where T: Clone { let mut vector = Vec::with_capacity(s.len()); vector.extend_from_slice(s); vector } } #[lang = "slice"] #[cfg(not(test))] impl<T> [T] { /// Returns the number of elements in the slice. /// /// # Examples /// /// ``` /// let a = [1, 2, 3]; /// assert_eq!(a.len(), 3); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn len(&self) -> usize { core_slice::SliceExt::len(self) } /// Returns `true` if the slice has a length of 0. /// /// # Examples /// /// ``` /// let a = [1, 2, 3]; /// assert!(!a.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_empty(&self) -> bool { core_slice::SliceExt::is_empty(self) } /// Returns the first element of the slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&10), v.first()); /// /// let w: &[i32] = &[]; /// assert_eq!(None, w.first()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn first(&self) -> Option<&T> { core_slice::SliceExt::first(self) } /// Returns a mutable pointer to the first element of the slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let x = &mut [0, 1, 2]; /// /// if let Some(first) = x.first_mut() { /// *first = 5; /// } /// assert_eq!(x, &[5, 1, 2]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn first_mut(&mut self) -> Option<&mut T> { core_slice::SliceExt::first_mut(self) } /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let x = &[0, 1, 2]; /// /// if let Some((first, elements)) = x.split_first() { /// assert_eq!(first, &0); /// assert_eq!(elements, &[1, 2]); /// } /// ``` #[stable(feature = "slice_splits", since = "1.5.0")] #[inline] pub fn split_first(&self) -> Option<(&T, &[T])> { core_slice::SliceExt::split_first(self) } /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let x = &mut [0, 1, 2]; /// /// if let Some((first, elements)) = x.split_first_mut() { /// *first = 3; /// elements[0] = 4; /// elements[1] = 5; /// } /// assert_eq!(x, &[3, 4, 5]); /// ``` #[stable(feature = "slice_splits", since = "1.5.0")] #[inline] pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> { core_slice::SliceExt::split_first_mut(self) } /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let x = &[0, 1, 2]; /// /// if let Some((last, elements)) = x.split_last() { /// assert_eq!(last, &2); /// assert_eq!(elements, &[0, 1]); /// } /// ``` #[stable(feature = "slice_splits", since = "1.5.0")] #[inline] pub fn split_last(&self) -> Option<(&T, &[T])> { core_slice::SliceExt::split_last(self) } /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let x = &mut [0, 1, 2]; /// /// if let Some((last, elements)) = x.split_last_mut() { /// *last = 3; /// elements[0] = 4; /// elements[1] = 5; /// } /// assert_eq!(x, &[4, 5, 3]); /// ``` #[stable(feature = "slice_splits", since = "1.5.0")] #[inline] pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> { core_slice::SliceExt::split_last_mut(self) } /// Returns the last element of the slice, or `None` if it is empty. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&30), v.last()); /// /// let w: &[i32] = &[]; /// assert_eq!(None, w.last()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn last(&self) -> Option<&T> { core_slice::SliceExt::last(self) } /// Returns a mutable pointer to the last item in the slice. /// /// # Examples /// /// ``` /// let x = &mut [0, 1, 2]; /// /// if let Some(last) = x.last_mut() { /// *last = 10; /// } /// assert_eq!(x, &[0, 1, 10]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn last_mut(&mut self) -> Option<&mut T> { core_slice::SliceExt::last_mut(self) } /// Returns a reference to an element or subslice depending on the type of /// index. /// /// - If given a position, returns a reference to the element at that /// position or `None` if out of bounds. /// - If given a range, returns the subslice corresponding to that range, /// or `None` if out of bounds. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert_eq!(Some(&40), v.get(1)); /// assert_eq!(Some(&[10, 40][..]), v.get(0..2)); /// assert_eq!(None, v.get(3)); /// assert_eq!(None, v.get(0..4)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn get<I>(&self, index: I) -> Option<&I::Output> where I: SliceIndex<Self> { core_slice::SliceExt::get(self, index) } /// Returns a mutable reference to an element or subslice depending on the /// type of index (see [`get`]) or `None` if the index is out of bounds. /// /// [`get`]: #method.get /// /// # Examples /// /// ``` /// let x = &mut [0, 1, 2]; /// /// if let Some(elem) = x.get_mut(1) { /// *elem = 42; /// } /// assert_eq!(x, &[0, 42, 2]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output> where I: SliceIndex<Self> { core_slice::SliceExt::get_mut(self, index) } /// Returns a reference to an element or subslice, without doing bounds /// checking. /// /// This is generally not recommended, use with caution! For a safe /// alternative see [`get`]. /// /// [`get`]: #method.get /// /// # Examples /// /// ``` /// let x = &[1, 2, 4]; /// /// unsafe { /// assert_eq!(x.get_unchecked(1), &2); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output where I: SliceIndex<Self> { core_slice::SliceExt::get_unchecked(self, index) } /// Returns a mutable reference to an element or subslice, without doing /// bounds checking. /// /// This is generally not recommended, use with caution! For a safe /// alternative see [`get_mut`]. /// /// [`get_mut`]: #method.get_mut /// /// # Examples /// /// ``` /// let x = &mut [1, 2, 4]; /// /// unsafe { /// let elem = x.get_unchecked_mut(1); /// *elem = 13; /// } /// assert_eq!(x, &[1, 13, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output where I: SliceIndex<Self> { core_slice::SliceExt::get_unchecked_mut(self, index) } /// Returns a raw pointer to the slice's buffer. /// /// The caller must ensure that the slice outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// /// Modifying the container referenced by this slice may cause its buffer /// to be reallocated, which would also make any pointers to it invalid. /// /// # Examples /// /// ``` /// let x = &[1, 2, 4]; /// let x_ptr = x.as_ptr(); /// /// unsafe { /// for i in 0..x.len() { /// assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize)); /// } /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn as_ptr(&self) -> *const T { core_slice::SliceExt::as_ptr(self) } /// Returns an unsafe mutable pointer to the slice's buffer. /// /// The caller must ensure that the slice outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// /// Modifying the container referenced by this slice may cause its buffer /// to be reallocated, which would also make any pointers to it invalid. /// /// # Examples /// /// ``` /// let x = &mut [1, 2, 4]; /// let x_ptr = x.as_mut_ptr(); /// /// unsafe { /// for i in 0..x.len() { /// *x_ptr.offset(i as isize) += 2; /// } /// } /// assert_eq!(x, &[3, 4, 6]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn as_mut_ptr(&mut self) -> *mut T { core_slice::SliceExt::as_mut_ptr(self) } /// Swaps two elements in the slice. /// /// # Arguments /// /// * a - The index of the first element /// * b - The index of the second element /// /// # Panics /// /// Panics if `a` or `b` are out of bounds. /// /// # Examples /// /// ``` /// let mut v = ["a", "b", "c", "d"]; /// v.swap(1, 3); /// assert!(v == ["a", "d", "c", "b"]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn swap(&mut self, a: usize, b: usize) { core_slice::SliceExt::swap(self, a, b) } /// Reverses the order of elements in the slice, in place. /// /// # Examples /// /// ``` /// let mut v = [1, 2, 3]; /// v.reverse(); /// assert!(v == [3, 2, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn reverse(&mut self) { core_slice::SliceExt::reverse(self) } /// Returns an iterator over the slice. /// /// # Examples /// /// ``` /// let x = &[1, 2, 4]; /// let mut iterator = x.iter(); /// /// assert_eq!(iterator.next(), Some(&1)); /// assert_eq!(iterator.next(), Some(&2)); /// assert_eq!(iterator.next(), Some(&4)); /// assert_eq!(iterator.next(), None); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn iter(&self) -> Iter<T> { core_slice::SliceExt::iter(self) } /// Returns an iterator that allows modifying each value. /// /// # Examples /// /// ``` /// let x = &mut [1, 2, 4]; /// for elem in x.iter_mut() { /// *elem += 2; /// } /// assert_eq!(x, &[3, 4, 6]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn iter_mut(&mut self) -> IterMut<T> { core_slice::SliceExt::iter_mut(self) } /// Returns an iterator over all contiguous windows of length /// `size`. The windows overlap. If the slice is shorter than /// `size`, the iterator returns no values. /// /// # Panics /// /// Panics if `size` is 0. /// /// # Examples /// /// ``` /// let slice = ['r', 'u', 's', 't']; /// let mut iter = slice.windows(2); /// assert_eq!(iter.next().unwrap(), &['r', 'u']); /// assert_eq!(iter.next().unwrap(), &['u', 's']); /// assert_eq!(iter.next().unwrap(), &['s', 't']); /// assert!(iter.next().is_none()); /// ``` /// /// If the slice is shorter than `size`: /// /// ``` /// let slice = ['f', 'o', 'o']; /// let mut iter = slice.windows(4); /// assert!(iter.next().is_none()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn windows(&self, size: usize) -> Windows<T> { core_slice::SliceExt::windows(self, size) } /// Returns an iterator over `chunk_size` elements of the slice at a /// time. The chunks are slices and do not overlap. If `chunk_size` does /// not divide the length of the slice, then the last chunk will /// not have length `chunk_size`. /// /// See [`exact_chunks`] for a variant of this iterator that returns chunks /// of always exactly `chunk_size` elements. /// /// # Panics /// /// Panics if `chunk_size` is 0. /// /// # Examples /// /// ``` /// let slice = ['l', 'o', 'r', 'e', 'm']; /// let mut iter = slice.chunks(2); /// assert_eq!(iter.next().unwrap(), &['l', 'o']); /// assert_eq!(iter.next().unwrap(), &['r', 'e']); /// assert_eq!(iter.next().unwrap(), &['m']); /// assert!(iter.next().is_none()); /// ``` /// /// [`exact_chunks`]: #method.exact_chunks #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn chunks(&self, chunk_size: usize) -> Chunks<T> { core_slice::SliceExt::chunks(self, chunk_size) } /// Returns an iterator over `chunk_size` elements of the slice at a /// time. The chunks are slices and do not overlap. If `chunk_size` does /// not divide the length of the slice, then the last up to `chunk_size-1` /// elements will be omitted. /// /// Due to each chunk having exactly `chunk_size` elements, the compiler /// can often optimize the resulting code better than in the case of /// [`chunks`]. /// /// # Panics /// /// Panics if `chunk_size` is 0. /// /// # Examples /// /// ``` /// #![feature(exact_chunks)] /// /// let slice = ['l', 'o', 'r', 'e', 'm']; /// let mut iter = slice.exact_chunks(2); /// assert_eq!(iter.next().unwrap(), &['l', 'o']); /// assert_eq!(iter.next().unwrap(), &['r', 'e']); /// assert!(iter.next().is_none()); /// ``` /// /// [`chunks`]: #method.chunks #[unstable(feature = "exact_chunks", issue = "47115")] #[inline] pub fn exact_chunks(&self, chunk_size: usize) -> ExactChunks<T> { core_slice::SliceExt::exact_chunks(self, chunk_size) } /// Returns an iterator over `chunk_size` elements of the slice at a time. /// The chunks are mutable slices, and do not overlap. If `chunk_size` does /// not divide the length of the slice, then the last chunk will not /// have length `chunk_size`. /// /// See [`exact_chunks_mut`] for a variant of this iterator that returns chunks /// of always exactly `chunk_size` elements. /// /// # Panics /// /// Panics if `chunk_size` is 0. /// /// # Examples /// /// ``` /// let v = &mut [0, 0, 0, 0, 0]; /// let mut count = 1; /// /// for chunk in v.chunks_mut(2) { /// for elem in chunk.iter_mut() { /// *elem += count; /// } /// count += 1; /// } /// assert_eq!(v, &[1, 1, 2, 2, 3]); /// ``` /// /// [`exact_chunks_mut`]: #method.exact_chunks_mut #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T> { core_slice::SliceExt::chunks_mut(self, chunk_size) } /// Returns an iterator over `chunk_size` elements of the slice at a time. /// The chunks are mutable slices, and do not overlap. If `chunk_size` does /// not divide the length of the slice, then the last up to `chunk_size-1` /// elements will be omitted. /// /// /// Due to each chunk having exactly `chunk_size` elements, the compiler /// can often optimize the resulting code better than in the case of /// [`chunks_mut`]. /// /// # Panics /// /// Panics if `chunk_size` is 0. /// /// # Examples /// /// ``` /// #![feature(exact_chunks)] /// /// let v = &mut [0, 0, 0, 0, 0]; /// let mut count = 1; /// /// for chunk in v.exact_chunks_mut(2) { /// for elem in chunk.iter_mut() { /// *elem += count; /// } /// count += 1; /// } /// assert_eq!(v, &[1, 1, 2, 2, 0]); /// ``` /// /// [`chunks_mut`]: #method.chunks_mut #[unstable(feature = "exact_chunks", issue = "47115")] #[inline] pub fn exact_chunks_mut(&mut self, chunk_size: usize) -> ExactChunksMut<T> { core_slice::SliceExt::exact_chunks_mut(self, chunk_size) } /// Divides one slice into two at an index. /// /// The first will contain all indices from `[0, mid)` (excluding /// the index `mid` itself) and the second will contain all /// indices from `[mid, len)` (excluding the index `len` itself). /// /// # Panics /// /// Panics if `mid > len`. /// /// # Examples /// /// ``` /// let v = [1, 2, 3, 4, 5, 6]; /// /// { /// let (left, right) = v.split_at(0); /// assert!(left == []); /// assert!(right == [1, 2, 3, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.split_at(2); /// assert!(left == [1, 2]); /// assert!(right == [3, 4, 5, 6]); /// } /// /// { /// let (left, right) = v.split_at(6); /// assert!(left == [1, 2, 3, 4, 5, 6]); /// assert!(right == []); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_at(&self, mid: usize) -> (&[T], &[T]) { core_slice::SliceExt::split_at(self, mid) } /// Divides one mutable slice into two at an index. /// /// The first will contain all indices from `[0, mid)` (excluding /// the index `mid` itself) and the second will contain all /// indices from `[mid, len)` (excluding the index `len` itself). /// /// # Panics /// /// Panics if `mid > len`. /// /// # Examples /// /// ``` /// let mut v = [1, 0, 3, 0, 5, 6]; /// // scoped to restrict the lifetime of the borrows /// { /// let (left, right) = v.split_at_mut(2); /// assert!(left == [1, 0]); /// assert!(right == [3, 0, 5, 6]); /// left[1] = 2; /// right[1] = 4; /// } /// assert!(v == [1, 2, 3, 4, 5, 6]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) { core_slice::SliceExt::split_at_mut(self, mid) } /// Returns an iterator over subslices separated by elements that match /// `pred`. The matched element is not contained in the subslices. /// /// # Examples /// /// ``` /// let slice = [10, 40, 33, 20]; /// let mut iter = slice.split(|num| num % 3 == 0); /// /// assert_eq!(iter.next().unwrap(), &[10, 40]); /// assert_eq!(iter.next().unwrap(), &[20]); /// assert!(iter.next().is_none()); /// ``` /// /// If the first element is matched, an empty slice will be the first item /// returned by the iterator. Similarly, if the last element in the slice /// is matched, an empty slice will be the last item returned by the /// iterator: /// /// ``` /// let slice = [10, 40, 33]; /// let mut iter = slice.split(|num| num % 3 == 0); /// /// assert_eq!(iter.next().unwrap(), &[10, 40]); /// assert_eq!(iter.next().unwrap(), &[]); /// assert!(iter.next().is_none()); /// ``` /// /// If two matched elements are directly adjacent, an empty slice will be /// present between them: /// /// ``` /// let slice = [10, 6, 33, 20]; /// let mut iter = slice.split(|num| num % 3 == 0); /// /// assert_eq!(iter.next().unwrap(), &[10]); /// assert_eq!(iter.next().unwrap(), &[]); /// assert_eq!(iter.next().unwrap(), &[20]); /// assert!(iter.next().is_none()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split<F>(&self, pred: F) -> Split<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::split(self, pred) } /// Returns an iterator over mutable subslices separated by elements that /// match `pred`. The matched element is not contained in the subslices. /// /// # Examples /// /// ``` /// let mut v = [10, 40, 30, 20, 60, 50]; /// /// for group in v.split_mut(|num| *num % 3 == 0) { /// group[0] = 1; /// } /// assert_eq!(v, [1, 40, 30, 1, 60, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::split_mut(self, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred`, starting at the end of the slice and working backwards. /// The matched element is not contained in the subslices. /// /// # Examples /// /// ``` /// #![feature(slice_rsplit)] /// /// let slice = [11, 22, 33, 0, 44, 55]; /// let mut iter = slice.rsplit(|num| *num == 0); /// /// assert_eq!(iter.next().unwrap(), &[44, 55]); /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]); /// assert_eq!(iter.next(), None); /// ``` /// /// As with `split()`, if the first or last element is matched, an empty /// slice will be the first (or last) item returned by the iterator. /// /// ``` /// #![feature(slice_rsplit)] /// /// let v = &[0, 1, 1, 2, 3, 5, 8]; /// let mut it = v.rsplit(|n| *n % 2 == 0); /// assert_eq!(it.next().unwrap(), &[]); /// assert_eq!(it.next().unwrap(), &[3, 5]); /// assert_eq!(it.next().unwrap(), &[1, 1]); /// assert_eq!(it.next().unwrap(), &[]); /// assert_eq!(it.next(), None); /// ``` #[unstable(feature = "slice_rsplit", issue = "41020")] #[inline] pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplit(self, pred) } /// Returns an iterator over mutable subslices separated by elements that /// match `pred`, starting at the end of the slice and working /// backwards. The matched element is not contained in the subslices. /// /// # Examples /// /// ``` /// #![feature(slice_rsplit)] /// /// let mut v = [100, 400, 300, 200, 600, 500]; /// /// let mut count = 0; /// for group in v.rsplit_mut(|num| *num % 3 == 0) { /// count += 1; /// group[0] = count; /// } /// assert_eq!(v, [3, 400, 300, 2, 600, 1]); /// ``` /// #[unstable(feature = "slice_rsplit", issue = "41020")] #[inline] pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplit_mut(self, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred`, limited to returning at most `n` items. The matched element is /// not contained in the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`, /// `[20, 60, 50]`): /// /// ``` /// let v = [10, 40, 30, 20, 60, 50]; /// /// for group in v.splitn(2, |num| *num % 3 == 0) { /// println!("{:?}", group); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::splitn(self, n, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred`, limited to returning at most `n` items. The matched element is /// not contained in the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// ``` /// let mut v = [10, 40, 30, 20, 60, 50]; /// /// for group in v.splitn_mut(2, |num| *num % 3 == 0) { /// group[0] = 1; /// } /// assert_eq!(v, [1, 40, 30, 1, 60, 50]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::splitn_mut(self, n, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred` limited to returning at most `n` items. This starts at the end of /// the slice and works backwards. The matched element is not contained in /// the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// Print the slice split once, starting from the end, by numbers divisible /// by 3 (i.e. `[50]`, `[10, 40, 30, 20]`): /// /// ``` /// let v = [10, 40, 30, 20, 60, 50]; /// /// for group in v.rsplitn(2, |num| *num % 3 == 0) { /// println!("{:?}", group); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplitn(self, n, pred) } /// Returns an iterator over subslices separated by elements that match /// `pred` limited to returning at most `n` items. This starts at the end of /// the slice and works backwards. The matched element is not contained in /// the subslices. /// /// The last element returned, if any, will contain the remainder of the /// slice. /// /// # Examples /// /// ``` /// let mut s = [10, 40, 30, 20, 60, 50]; /// /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) { /// group[0] = 1; /// } /// assert_eq!(s, [1, 40, 30, 20, 60, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where F: FnMut(&T) -> bool { core_slice::SliceExt::rsplitn_mut(self, n, pred) } /// Returns `true` if the slice contains an element with the given value. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.contains(&30)); /// assert!(!v.contains(&50)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn contains(&self, x: &T) -> bool where T: PartialEq { core_slice::SliceExt::contains(self, x) } /// Returns `true` if `needle` is a prefix of the slice. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.starts_with(&[10])); /// assert!(v.starts_with(&[10, 40])); /// assert!(!v.starts_with(&[50])); /// assert!(!v.starts_with(&[10, 50])); /// ``` /// /// Always returns `true` if `needle` is an empty slice: /// /// ``` /// let v = &[10, 40, 30]; /// assert!(v.starts_with(&[])); /// let v: &[u8] = &[]; /// assert!(v.starts_with(&[])); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn starts_with(&self, needle: &[T]) -> bool where T: PartialEq { core_slice::SliceExt::starts_with(self, needle) } /// Returns `true` if `needle` is a suffix of the slice. /// /// # Examples /// /// ``` /// let v = [10, 40, 30]; /// assert!(v.ends_with(&[30])); /// assert!(v.ends_with(&[40, 30])); /// assert!(!v.ends_with(&[50])); /// assert!(!v.ends_with(&[50, 30])); /// ``` /// /// Always returns `true` if `needle` is an empty slice: /// /// ``` /// let v = &[10, 40, 30]; /// assert!(v.ends_with(&[])); /// let v: &[u8] = &[]; /// assert!(v.ends_with(&[])); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn ends_with(&self, needle: &[T]) -> bool where T: PartialEq { core_slice::SliceExt::ends_with(self, needle) } /// Binary searches this sorted slice for a given element. /// /// If the value is found then `Ok` is returned, containing the /// index of the matching element; if the value is not found then /// `Err` is returned, containing the index where a matching /// element could be inserted while maintaining sorted order. /// /// # Examples /// /// Looks up a series of four elements. The first is found, with a /// uniquely determined position; the second and third are not /// found; the fourth could match any position in `[1, 4]`. /// /// ``` /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; /// /// assert_eq!(s.binary_search(&13), Ok(9)); /// assert_eq!(s.binary_search(&4), Err(7)); /// assert_eq!(s.binary_search(&100), Err(13)); /// let r = s.binary_search(&1); /// assert!(match r { Ok(1...4) => true, _ => false, }); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord { core_slice::SliceExt::binary_search(self, x) } /// Binary searches this sorted slice with a comparator function. /// /// The comparator function should implement an order consistent /// with the sort order of the underlying slice, returning an /// order code that indicates whether its argument is `Less`, /// `Equal` or `Greater` the desired target. /// /// If a matching value is found then returns `Ok`, containing /// the index for the matched element; if no match is found then /// `Err` is returned, containing the index where a matching /// element could be inserted while maintaining sorted order. /// /// # Examples /// /// Looks up a series of four elements. The first is found, with a /// uniquely determined position; the second and third are not /// found; the fourth could match any position in `[1, 4]`. /// /// ``` /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; /// /// let seek = 13; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); /// let seek = 4; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); /// let seek = 100; /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); /// let seek = 1; /// let r = s.binary_search_by(|probe| probe.cmp(&seek)); /// assert!(match r { Ok(1...4) => true, _ => false, }); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where F: FnMut(&'a T) -> Ordering { core_slice::SliceExt::binary_search_by(self, f) } /// Binary searches this sorted slice with a key extraction function. /// /// Assumes that the slice is sorted by the key, for instance with /// [`sort_by_key`] using the same key extraction function. /// /// If a matching value is found then returns `Ok`, containing the /// index for the matched element; if no match is found then `Err` /// is returned, containing the index where a matching element could /// be inserted while maintaining sorted order. /// /// [`sort_by_key`]: #method.sort_by_key /// /// # Examples /// /// Looks up a series of four elements in a slice of pairs sorted by /// their second elements. The first is found, with a uniquely /// determined position; the second and third are not found; the /// fourth could match any position in `[1, 4]`. /// /// ``` /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), /// (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), /// (1, 21), (2, 34), (4, 55)]; /// /// assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b), Ok(9)); /// assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b), Err(7)); /// assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13)); /// let r = s.binary_search_by_key(&1, |&(a,b)| b); /// assert!(match r { Ok(1...4) => true, _ => false, }); /// ``` #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")] #[inline] pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> where F: FnMut(&'a T) -> B, B: Ord { core_slice::SliceExt::binary_search_by_key(self, b, f) } /// Sorts the slice. /// /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case. /// /// When applicable, unstable sorting is preferred because it is generally faster than stable /// sorting and it doesn't allocate auxiliary memory. /// See [`sort_unstable`](#method.sort_unstable). /// /// # Current implementation /// /// The current algorithm is an adaptive, iterative merge sort inspired by /// [timsort](https://en.wikipedia.org/wiki/Timsort). /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of /// two or more sorted sequences concatenated one after another. /// /// Also, it allocates temporary storage half the size of `self`, but for short slices a /// non-allocating insertion sort is used instead. /// /// # Examples /// /// ``` /// let mut v = [-5, 4, 1, -3, 2]; /// /// v.sort(); /// assert!(v == [-5, -3, 1, 2, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort(&mut self) where T: Ord { merge_sort(self, |a, b| a.lt(b)); } /// Sorts the slice with a comparator function. /// /// This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case. /// /// When applicable, unstable sorting is preferred because it is generally faster than stable /// sorting and it doesn't allocate auxiliary memory. /// See [`sort_unstable_by`](#method.sort_unstable_by). /// /// # Current implementation /// /// The current algorithm is an adaptive, iterative merge sort inspired by /// [timsort](https://en.wikipedia.org/wiki/Timsort). /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of /// two or more sorted sequences concatenated one after another. /// /// Also, it allocates temporary storage half the size of `self`, but for short slices a /// non-allocating insertion sort is used instead. /// /// # Examples /// /// ``` /// let mut v = [5, 4, 1, 3, 2]; /// v.sort_by(|a, b| a.cmp(b)); /// assert!(v == [1, 2, 3, 4, 5]); /// /// // reverse sorting /// v.sort_by(|a, b| b.cmp(a)); /// assert!(v == [5, 4, 3, 2, 1]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort_by<F>(&mut self, mut compare: F) where F: FnMut(&T, &T) -> Ordering { merge_sort(self, |a, b| compare(a, b) == Less); } /// Sorts the slice with a key extraction function. /// /// This sort is stable (i.e. does not reorder equal elements) and `O(m n log(m n))` /// worst-case, where the key function is `O(m)`. /// /// When applicable, unstable sorting is preferred because it is generally faster than stable /// sorting and it doesn't allocate auxiliary memory. /// See [`sort_unstable_by_key`](#method.sort_unstable_by_key). /// /// # Current implementation /// /// The current algorithm is an adaptive, iterative merge sort inspired by /// [timsort](https://en.wikipedia.org/wiki/Timsort). /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of /// two or more sorted sequences concatenated one after another. /// /// Also, it allocates temporary storage half the size of `self`, but for short slices a /// non-allocating insertion sort is used instead. /// /// # Examples /// /// ``` /// let mut v = [-5i32, 4, 1, -3, 2]; /// /// v.sort_by_key(|k| k.abs()); /// assert!(v == [1, 2, -3, 4, -5]); /// ``` #[stable(feature = "slice_sort_by_key", since = "1.7.0")] #[inline] pub fn sort_by_key<K, F>(&mut self, mut f: F) where F: FnMut(&T) -> K, K: Ord { merge_sort(self, |a, b| f(a).lt(&f(b))); } /// Sorts the slice with a key extraction function. /// /// During sorting, the key function is called only once per element. /// /// This sort is stable (i.e. does not reorder equal elements) and `O(m n + n log n)` /// worst-case, where the key function is `O(m)`. /// /// For simple key functions (e.g. functions that are property accesses or /// basic operations), [`sort_by_key`](#method.sort_by_key) is likely to be /// faster. /// /// # Current implementation /// /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, /// which combines the fast average case of randomized quicksort with the fast worst case of /// heapsort, while achieving linear time on slices with certain patterns. It uses some /// randomization to avoid degenerate cases, but with a fixed seed to always provide /// deterministic behavior. /// /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the /// length of the slice. /// /// # Examples /// /// ``` /// #![feature(slice_sort_by_cached_key)] /// let mut v = [-5i32, 4, 32, -3, 2]; /// /// v.sort_by_cached_key(|k| k.to_string()); /// assert!(v == [-3, -5, 2, 32, 4]); /// ``` /// /// [pdqsort]: https://github.com/orlp/pdqsort #[unstable(feature = "slice_sort_by_cached_key", issue = "34447")] #[inline] pub fn sort_by_cached_key<K, F>(&mut self, f: F) where F: FnMut(&T) -> K, K: Ord { // Helper macro for indexing our vector by the smallest possible type, to reduce allocation. macro_rules! sort_by_key { ($t:ty, $slice:ident, $f:ident) => ({ let mut indices: Vec<_> = $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect(); // The elements of `indices` are unique, as they are indexed, so any sort will be // stable with respect to the original slice. We use `sort_unstable` here because // it requires less memory allocation. indices.sort_unstable(); for i in 0..$slice.len() { let mut index = indices[i].1; while (index as usize) < i { index = indices[index as usize].1; } indices[i].1 = index; $slice.swap(i, index as usize); } }) } let sz_u8 = mem::size_of::<(K, u8)>(); let sz_u16 = mem::size_of::<(K, u16)>(); let sz_u32 = mem::size_of::<(K, u32)>(); let sz_usize = mem::size_of::<(K, usize)>(); let len = self.len(); if sz_u8 < sz_u16 && len <= ( u8::MAX as usize) { return sort_by_key!( u8, self, f) } if sz_u16 < sz_u32 && len <= (u16::MAX as usize) { return sort_by_key!(u16, self, f) } if sz_u32 < sz_usize && len <= (u32::MAX as usize) { return sort_by_key!(u32, self, f) } sort_by_key!(usize, self, f) } /// Sorts the slice, but may not preserve the order of equal elements. /// /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), /// and `O(n log n)` worst-case. /// /// # Current implementation /// /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, /// which combines the fast average case of randomized quicksort with the fast worst case of /// heapsort, while achieving linear time on slices with certain patterns. It uses some /// randomization to avoid degenerate cases, but with a fixed seed to always provide /// deterministic behavior. /// /// It is typically faster than stable sorting, except in a few special cases, e.g. when the /// slice consists of several concatenated sorted sequences. /// /// # Examples /// /// ``` /// let mut v = [-5, 4, 1, -3, 2]; /// /// v.sort_unstable(); /// assert!(v == [-5, -3, 1, 2, 4]); /// ``` /// /// [pdqsort]: https://github.com/orlp/pdqsort #[stable(feature = "sort_unstable", since = "1.20.0")] #[inline] pub fn sort_unstable(&mut self) where T: Ord { core_slice::SliceExt::sort_unstable(self); } /// Sorts the slice with a comparator function, but may not preserve the order of equal /// elements. /// /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), /// and `O(n log n)` worst-case. /// /// # Current implementation /// /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, /// which combines the fast average case of randomized quicksort with the fast worst case of /// heapsort, while achieving linear time on slices with certain patterns. It uses some /// randomization to avoid degenerate cases, but with a fixed seed to always provide /// deterministic behavior. /// /// It is typically faster than stable sorting, except in a few special cases, e.g. when the /// slice consists of several concatenated sorted sequences. /// /// # Examples /// /// ``` /// let mut v = [5, 4, 1, 3, 2]; /// v.sort_unstable_by(|a, b| a.cmp(b)); /// assert!(v == [1, 2, 3, 4, 5]); /// /// // reverse sorting /// v.sort_unstable_by(|a, b| b.cmp(a)); /// assert!(v == [5, 4, 3, 2, 1]); /// ``` /// /// [pdqsort]: https://github.com/orlp/pdqsort #[stable(feature = "sort_unstable", since = "1.20.0")] #[inline] pub fn sort_unstable_by<F>(&mut self, compare: F) where F: FnMut(&T, &T) -> Ordering { core_slice::SliceExt::sort_unstable_by(self, compare); } /// Sorts the slice with a key extraction function, but may not preserve the order of equal /// elements. /// /// This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), /// and `O(m n log(m n))` worst-case, where the key function is `O(m)`. /// /// # Current implementation /// /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, /// which combines the fast average case of randomized quicksort with the fast worst case of /// heapsort, while achieving linear time on slices with certain patterns. It uses some /// randomization to avoid degenerate cases, but with a fixed seed to always provide /// deterministic behavior. /// /// # Examples /// /// ``` /// let mut v = [-5i32, 4, 1, -3, 2]; /// /// v.sort_unstable_by_key(|k| k.abs()); /// assert!(v == [1, 2, -3, 4, -5]); /// ``` /// /// [pdqsort]: https://github.com/orlp/pdqsort #[stable(feature = "sort_unstable", since = "1.20.0")] #[inline] pub fn sort_unstable_by_key<K, F>(&mut self, f: F) where F: FnMut(&T) -> K, K: Ord { core_slice::SliceExt::sort_unstable_by_key(self, f); } /// Rotates the slice in-place such that the first `mid` elements of the /// slice move to the end while the last `self.len() - mid` elements move to /// the front. After calling `rotate_left`, the element previously at index /// `mid` will become the first element in the slice. /// /// # Panics /// /// This function will panic if `mid` is greater than the length of the /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op /// rotation. /// /// # Complexity /// /// Takes linear (in `self.len()`) time. /// /// # Examples /// /// ``` /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; /// a.rotate_left(2); /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']); /// ``` /// /// Rotating a subslice: /// /// ``` /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; /// a[1..5].rotate_left(1); /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']); /// ``` #[stable(feature = "slice_rotate", since = "1.26.0")] pub fn rotate_left(&mut self, mid: usize) { core_slice::SliceExt::rotate_left(self, mid); } /// Rotates the slice in-place such that the first `self.len() - k` /// elements of the slice move to the end while the last `k` elements move /// to the front. After calling `rotate_right`, the element previously at /// index `self.len() - k` will become the first element in the slice. /// /// # Panics /// /// This function will panic if `k` is greater than the length of the /// slice. Note that `k == self.len()` does _not_ panic and is a no-op /// rotation. /// /// # Complexity /// /// Takes linear (in `self.len()`) time. /// /// # Examples /// /// ``` /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; /// a.rotate_right(2); /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']); /// ``` /// /// Rotate a subslice: /// /// ``` /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f']; /// a[1..5].rotate_right(1); /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']); /// ``` #[stable(feature = "slice_rotate", since = "1.26.0")] pub fn rotate_right(&mut self, k: usize) { core_slice::SliceExt::rotate_right(self, k); } /// Copies the elements from `src` into `self`. /// /// The length of `src` must be the same as `self`. /// /// If `src` implements `Copy`, it can be more performant to use /// [`copy_from_slice`]. /// /// # Panics /// /// This function will panic if the two slices have different lengths. /// /// # Examples /// /// Cloning two elements from a slice into another: /// /// ``` /// let src = [1, 2, 3, 4]; /// let mut dst = [0, 0]; /// /// dst.clone_from_slice(&src[2..]); /// /// assert_eq!(src, [1, 2, 3, 4]); /// assert_eq!(dst, [3, 4]); /// ``` /// /// Rust enforces that there can only be one mutable reference with no /// immutable references to a particular piece of data in a particular /// scope. Because of this, attempting to use `clone_from_slice` on a /// single slice will result in a compile failure: /// /// ```compile_fail /// let mut slice = [1, 2, 3, 4, 5]; /// /// slice[..2].clone_from_slice(&slice[3..]); // compile fail! /// ``` /// /// To work around this, we can use [`split_at_mut`] to create two distinct /// sub-slices from a slice: /// /// ``` /// let mut slice = [1, 2, 3, 4, 5]; /// /// { /// let (left, right) = slice.split_at_mut(2); /// left.clone_from_slice(&right[1..]); /// } /// /// assert_eq!(slice, [4, 5, 3, 4, 5]); /// ``` /// /// [`copy_from_slice`]: #method.copy_from_slice /// [`split_at_mut`]: #method.split_at_mut #[stable(feature = "clone_from_slice", since = "1.7.0")] pub fn clone_from_slice(&mut self, src: &[T]) where T: Clone { core_slice::SliceExt::clone_from_slice(self, src) } /// Copies all elements from `src` into `self`, using a memcpy. /// /// The length of `src` must be the same as `self`. /// /// If `src` does not implement `Copy`, use [`clone_from_slice`]. /// /// # Panics /// /// This function will panic if the two slices have different lengths. /// /// # Examples /// /// Copying two elements from a slice into another: /// /// ``` /// let src = [1, 2, 3, 4]; /// let mut dst = [0, 0]; /// /// dst.copy_from_slice(&src[2..]); /// /// assert_eq!(src, [1, 2, 3, 4]); /// assert_eq!(dst, [3, 4]); /// ``` /// /// Rust enforces that there can only be one mutable reference with no /// immutable references to a particular piece of data in a particular /// scope. Because of this, attempting to use `copy_from_slice` on a /// single slice will result in a compile failure: /// /// ```compile_fail /// let mut slice = [1, 2, 3, 4, 5]; /// /// slice[..2].copy_from_slice(&slice[3..]); // compile fail! /// ``` /// /// To work around this, we can use [`split_at_mut`] to create two distinct /// sub-slices from a slice: /// /// ``` /// let mut slice = [1, 2, 3, 4, 5]; /// /// { /// let (left, right) = slice.split_at_mut(2); /// left.copy_from_slice(&right[1..]); /// } /// /// assert_eq!(slice, [4, 5, 3, 4, 5]); /// ``` /// /// [`clone_from_slice`]: #method.clone_from_slice /// [`split_at_mut`]: #method.split_at_mut #[stable(feature = "copy_from_slice", since = "1.9.0")] pub fn copy_from_slice(&mut self, src: &[T]) where T: Copy { core_slice::SliceExt::copy_from_slice(self, src) } /// Swaps all elements in `self` with those in `other`. /// /// The length of `other` must be the same as `self`. /// /// # Panics /// /// This function will panic if the two slices have different lengths. /// /// # Example /// /// Swapping two elements across slices: /// /// ``` /// #![feature(swap_with_slice)] /// /// let mut slice1 = [0, 0]; /// let mut slice2 = [1, 2, 3, 4]; /// /// slice1.swap_with_slice(&mut slice2[2..]); /// /// assert_eq!(slice1, [3, 4]); /// assert_eq!(slice2, [1, 2, 0, 0]); /// ``` /// /// Rust enforces that there can only be one mutable reference to a /// particular piece of data in a particular scope. Because of this, /// attempting to use `swap_with_slice` on a single slice will result in /// a compile failure: /// /// ```compile_fail /// #![feature(swap_with_slice)] /// /// let mut slice = [1, 2, 3, 4, 5]; /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail! /// ``` /// /// To work around this, we can use [`split_at_mut`] to create two distinct /// mutable sub-slices from a slice: /// /// ``` /// #![feature(swap_with_slice)] /// /// let mut slice = [1, 2, 3, 4, 5]; /// /// { /// let (left, right) = slice.split_at_mut(2); /// left.swap_with_slice(&mut right[1..]); /// } /// /// assert_eq!(slice, [4, 5, 3, 1, 2]); /// ``` /// /// [`split_at_mut`]: #method.split_at_mut #[unstable(feature = "swap_with_slice", issue = "44030")] pub fn swap_with_slice(&mut self, other: &mut [T]) { core_slice::SliceExt::swap_with_slice(self, other) } /// Copies `self` into a new `Vec`. /// /// # Examples /// /// ``` /// let s = [10, 40, 30]; /// let x = s.to_vec(); /// // Here, `s` and `x` can be modified independently. /// ``` #[rustc_conversion_suggestion] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_vec(&self) -> Vec<T> where T: Clone { // NB see hack module in this file hack::to_vec(self) } /// Converts `self` into a vector without clones or allocation. /// /// The resulting vector can be converted back into a box via /// `Vec<T>`'s `into_boxed_slice` method. /// /// # Examples /// /// ``` /// let s: Box<[i32]> = Box::new([10, 40, 30]); /// let x = s.into_vec(); /// // `s` cannot be used anymore because it has been converted into `x`. /// /// assert_eq!(x, vec![10, 40, 30]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn into_vec(self: Box<Self>) -> Vec<T> { // NB see hack module in this file hack::into_vec(self) } } #[lang = "slice_u8"] #[cfg(not(test))] impl [u8] { /// Checks if all bytes in this slice are within the ASCII range. #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn is_ascii(&self) -> bool { self.iter().all(|b| b.is_ascii()) } /// Returns a vector containing a copy of this slice where each byte /// is mapped to its ASCII upper case equivalent. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', /// but non-ASCII letters are unchanged. /// /// To uppercase the value in-place, use [`make_ascii_uppercase`]. /// /// [`make_ascii_uppercase`]: #method.make_ascii_uppercase #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn to_ascii_uppercase(&self) -> Vec<u8> { let mut me = self.to_vec(); me.make_ascii_uppercase(); me } /// Returns a vector containing a copy of this slice where each byte /// is mapped to its ASCII lower case equivalent. /// /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', /// but non-ASCII letters are unchanged. /// /// To lowercase the value in-place, use [`make_ascii_lowercase`]. /// /// [`make_ascii_lowercase`]: #method.make_ascii_lowercase #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn to_ascii_lowercase(&self) -> Vec<u8> { let mut me = self.to_vec(); me.make_ascii_lowercase(); me } /// Checks that two slices are an ASCII case-insensitive match. /// /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, /// but without allocating and copying temporaries. #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool { self.len() == other.len() && self.iter().zip(other).all(|(a, b)| { a.eq_ignore_ascii_case(b) }) } /// Converts this slice to its ASCII upper case equivalent in-place. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', /// but non-ASCII letters are unchanged. /// /// To return a new uppercased value without modifying the existing one, use /// [`to_ascii_uppercase`]. /// /// [`to_ascii_uppercase`]: #method.to_ascii_uppercase #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn make_ascii_uppercase(&mut self) { for byte in self { byte.make_ascii_uppercase(); } } /// Converts this slice to its ASCII lower case equivalent in-place. /// /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', /// but non-ASCII letters are unchanged. /// /// To return a new lowercased value without modifying the existing one, use /// [`to_ascii_lowercase`]. /// /// [`to_ascii_lowercase`]: #method.to_ascii_lowercase #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn make_ascii_lowercase(&mut self) { for byte in self { byte.make_ascii_lowercase(); } } } //////////////////////////////////////////////////////////////////////////////// // Extension traits for slices over specific kinds of data //////////////////////////////////////////////////////////////////////////////// #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", issue = "27747")] /// An extension trait for concatenating slices /// /// While this trait is unstable, the methods are stable. `SliceConcatExt` is /// included in the [standard library prelude], so you can use [`join()`] and /// [`concat()`] as if they existed on `[T]` itself. /// /// [standard library prelude]: ../../std/prelude/index.html /// [`join()`]: #tymethod.join /// [`concat()`]: #tymethod.concat pub trait SliceConcatExt<T: ?Sized> { #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", issue = "27747")] /// The resulting type after concatenation type Output; /// Flattens a slice of `T` into a single value `Self::Output`. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].concat(), "helloworld"); /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn concat(&self) -> Self::Output; /// Flattens a slice of `T` into a single value `Self::Output`, placing a /// given separator between each. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].join(" "), "hello world"); /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); /// ``` #[stable(feature = "rename_connect_to_join", since = "1.3.0")] fn join(&self, sep: &T) -> Self::Output; #[stable(feature = "rust1", since = "1.0.0")] #[rustc_deprecated(since = "1.3.0", reason = "renamed to join")] fn connect(&self, sep: &T) -> Self::Output; } #[unstable(feature = "slice_concat_ext", reason = "trait should not have to exist", issue = "27747")] impl<T: Clone, V: Borrow<[T]>> SliceConcatExt<T> for [V] { type Output = Vec<T>; fn concat(&self) -> Vec<T> { let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); let mut result = Vec::with_capacity(size); for v in self { result.extend_from_slice(v.borrow()) } result } fn join(&self, sep: &T) -> Vec<T> { let size = self.iter().fold(0, |acc, v| acc + v.borrow().len()); let mut result = Vec::with_capacity(size + self.len()); let mut first = true; for v in self { if first { first = false } else { result.push(sep.clone()) } result.extend_from_slice(v.borrow()) } result } fn connect(&self, sep: &T) -> Vec<T> { self.join(sep) } } //////////////////////////////////////////////////////////////////////////////// // Standard trait implementations for slices //////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl<T> Borrow<[T]> for Vec<T> { fn borrow(&self) -> &[T] { &self[..] } } #[stable(feature = "rust1", since = "1.0.0")] impl<T> BorrowMut<[T]> for Vec<T> { fn borrow_mut(&mut self) -> &mut [T] { &mut self[..] } } #[stable(feature = "rust1", since = "1.0.0")] impl<T: Clone> ToOwned for [T] { type Owned = Vec<T>; #[cfg(not(test))] fn to_owned(&self) -> Vec<T> { self.to_vec() } #[cfg(test)] fn to_owned(&self) -> Vec<T> { hack::to_vec(self) } fn clone_into(&self, target: &mut Vec<T>) { // drop anything in target that will not be overwritten target.truncate(self.len()); let len = target.len(); // reuse the contained values' allocations/resources. target.clone_from_slice(&self[..len]); // target.len <= self.len due to the truncate above, so the // slice here is always in-bounds. target.extend_from_slice(&self[len..]); } } //////////////////////////////////////////////////////////////////////////////// // Sorting //////////////////////////////////////////////////////////////////////////////// /// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted. /// /// This is the integral subroutine of insertion sort. fn insert_head<T, F>(v: &mut [T], is_less: &mut F) where F: FnMut(&T, &T) -> bool { if v.len() >= 2 && is_less(&v[1], &v[0]) { unsafe { // There are three ways to implement insertion here: // // 1. Swap adjacent elements until the first one gets to its final destination. // However, this way we copy data around more than is necessary. If elements are big // structures (costly to copy), this method will be slow. // // 2. Iterate until the right place for the first element is found. Then shift the // elements succeeding it to make room for it and finally place it into the // remaining hole. This is a good method. // // 3. Copy the first element into a temporary variable. Iterate until the right place // for it is found. As we go along, copy every traversed element into the slot // preceding it. Finally, copy data from the temporary variable into the remaining // hole. This method is very good. Benchmarks demonstrated slightly better // performance than with the 2nd method. // // All methods were benchmarked, and the 3rd showed best results. So we chose that one. let mut tmp = mem::ManuallyDrop::new(ptr::read(&v[0])); // Intermediate state of the insertion process is always tracked by `hole`, which // serves two purposes: // 1. Protects integrity of `v` from panics in `is_less`. // 2. Fills the remaining hole in `v` in the end. // // Panic safety: // // If `is_less` panics at any point during the process, `hole` will get dropped and // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it // initially held exactly once. let mut hole = InsertionHole { src: &mut *tmp, dest: &mut v[1], }; ptr::copy_nonoverlapping(&v[1], &mut v[0], 1); for i in 2..v.len() { if !is_less(&v[i], &*tmp) { break; } ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1); hole.dest = &mut v[i]; } // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. } } // When dropped, copies from `src` into `dest`. struct InsertionHole<T> { src: *mut T, dest: *mut T, } impl<T> Drop for InsertionHole<T> { fn drop(&mut self) { unsafe { ptr::copy_nonoverlapping(self.src, self.dest, 1); } } } } /// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and /// stores the result into `v[..]`. /// /// # Safety /// /// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough /// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type. unsafe fn merge<T, F>(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F) where F: FnMut(&T, &T) -> bool { let len = v.len(); let v = v.as_mut_ptr(); let v_mid = v.offset(mid as isize); let v_end = v.offset(len as isize); // The merge process first copies the shorter run into `buf`. Then it traces the newly copied // run and the longer run forwards (or backwards), comparing their next unconsumed elements and // copying the lesser (or greater) one into `v`. // // As soon as the shorter run is fully consumed, the process is done. If the longer run gets // consumed first, then we must copy whatever is left of the shorter run into the remaining // hole in `v`. // // Intermediate state of the process is always tracked by `hole`, which serves two purposes: // 1. Protects integrity of `v` from panics in `is_less`. // 2. Fills the remaining hole in `v` if the longer run gets consumed first. // // Panic safety: // // If `is_less` panics at any point during the process, `hole` will get dropped and fill the // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every // object it initially held exactly once. let mut hole; if mid <= len - mid { // The left run is shorter. ptr::copy_nonoverlapping(v, buf, mid); hole = MergeHole { start: buf, end: buf.offset(mid as isize), dest: v, }; // Initially, these pointers point to the beginnings of their arrays. let left = &mut hole.start; let mut right = v_mid; let out = &mut hole.dest; while *left < hole.end && right < v_end { // Consume the lesser side. // If equal, prefer the left run to maintain stability. let to_copy = if is_less(&*right, &**left) { get_and_increment(&mut right) } else { get_and_increment(left) }; ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1); } } else { // The right run is shorter. ptr::copy_nonoverlapping(v_mid, buf, len - mid); hole = MergeHole { start: buf, end: buf.offset((len - mid) as isize), dest: v_mid, }; // Initially, these pointers point past the ends of their arrays. let left = &mut hole.dest; let right = &mut hole.end; let mut out = v_end; while v < *left && buf < *right { // Consume the greater side. // If equal, prefer the right run to maintain stability. let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) { decrement_and_get(left) } else { decrement_and_get(right) }; ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1); } } // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of // it will now be copied into the hole in `v`. unsafe fn get_and_increment<T>(ptr: &mut *mut T) -> *mut T { let old = *ptr; *ptr = ptr.offset(1); old } unsafe fn decrement_and_get<T>(ptr: &mut *mut T) -> *mut T { *ptr = ptr.offset(-1); *ptr } // When dropped, copies the range `start..end` into `dest..`. struct MergeHole<T> { start: *mut T, end: *mut T, dest: *mut T, } impl<T> Drop for MergeHole<T> { fn drop(&mut self) { // `T` is not a zero-sized type, so it's okay to divide by its size. let len = (self.end as usize - self.start as usize) / mem::size_of::<T>(); unsafe { ptr::copy_nonoverlapping(self.start, self.dest, len); } } } } /// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail /// [here](http://svn.python.org/projects/python/trunk/Objects/listsort.txt). /// /// The algorithm identifies strictly descending and non-descending subsequences, which are called /// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed /// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are /// satisfied: /// /// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len` /// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len` /// /// The invariants ensure that the total running time is `O(n log n)` worst-case. fn merge_sort<T, F>(v: &mut [T], mut is_less: F) where F: FnMut(&T, &T) -> bool { // Slices of up to this length get sorted using insertion sort. const MAX_INSERTION: usize = 20; // Very short runs are extended using insertion sort to span at least this many elements. const MIN_RUN: usize = 10; // Sorting has no meaningful behavior on zero-sized types. if size_of::<T>() == 0 { return; } let len = v.len(); // Short arrays get sorted in-place via insertion sort to avoid allocations. if len <= MAX_INSERTION { if len >= 2 { for i in (0..len-1).rev() { insert_head(&mut v[i..], &mut is_less); } } return; } // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it // shallow copies of the contents of `v` without risking the dtors running on copies if // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run, // which will always have length at most `len / 2`. let mut buf = Vec::with_capacity(len / 2); // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a // strange decision, but consider the fact that merges more often go in the opposite direction // (forwards). According to benchmarks, merging forwards is slightly faster than merging // backwards. To conclude, identifying runs by traversing backwards improves performance. let mut runs = vec![]; let mut end = len; while end > 0 { // Find the next natural run, and reverse it if it's strictly descending. let mut start = end - 1; if start > 0 { start -= 1; unsafe { if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) { while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) { start -= 1; } v[start..end].reverse(); } else { while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) { start -= 1; } } } } // Insert some more elements into the run if it's too short. Insertion sort is faster than // merge sort on short sequences, so this significantly improves performance. while start > 0 && end - start < MIN_RUN { start -= 1; insert_head(&mut v[start..end], &mut is_less); } // Push this run onto the stack. runs.push(Run { start, len: end - start, }); end = start; // Merge some pairs of adjacent runs to satisfy the invariants. while let Some(r) = collapse(&runs) { let left = runs[r + 1]; let right = runs[r]; unsafe { merge(&mut v[left.start .. right.start + right.len], left.len, buf.as_mut_ptr(), &mut is_less); } runs[r] = Run { start: left.start, len: left.len + right.len, }; runs.remove(r + 1); } } // Finally, exactly one run must remain in the stack. debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len); // Examines the stack of runs and identifies the next pair of runs to merge. More specifically, // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the // algorithm should continue building a new run instead, `None` is returned. // // TimSort is infamous for its buggy implementations, as described here: // http://envisage-project.eu/timsort-specification-and-verification/ // // The gist of the story is: we must enforce the invariants on the top four runs on the stack. // Enforcing them on just top three is not sufficient to ensure that the invariants will still // hold for *all* runs in the stack. // // This function correctly checks invariants for the top four runs. Additionally, if the top // run starts at index 0, it will always demand a merge operation until the stack is fully // collapsed, in order to complete the sort. #[inline] fn collapse(runs: &[Run]) -> Option<usize> { let n = runs.len(); if n >= 2 && (runs[n - 1].start == 0 || runs[n - 2].len <= runs[n - 1].len || (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) || (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) { if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) } } else { None } } #[derive(Clone, Copy)] struct Run { start: usize, len: usize, } }