Module std::boxed1.0.0 [] [src]

A pointer type for heap allocation.

Box<T>, casually referred to as a 'box', provides the simplest form of heap allocation in Rust. Boxes provide ownership for this allocation, and drop their contents when they go out of scope.

Examples

Creating a box:

let x = Box::new(5);Run

Creating a recursive data structure:

#[derive(Debug)]
enum List<T> {
    Cons(T, Box<List<T>>),
    Nil,
}

fn main() {
    let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
    println!("{:?}", list);
}Run

This will print Cons(1, Cons(2, Nil)).

Recursive structures must be boxed, because if the definition of Cons looked like this:

This example deliberately fails to compile
Cons(T, List<T>),Run

It wouldn't work. This is because the size of a List depends on how many elements are in the list, and so we don't know how much memory to allocate for a Cons. By introducing a Box, which has a defined size, we know how big Cons needs to be.

Structs

Box

A pointer type for heap allocation.

ExchangeHeapSingleton [
Experimental
]

This the singleton type used solely for boxed::HEAP.

IntermediateBox [
Experimental
]

IntermediateBox represents uninitialized backing storage for Box.

PinBox [
Experimental
]

A pinned, heap allocated reference.

Constants

HEAP [
Experimental
]

A value that represents the heap. This is the default place that the box keyword allocates into when no place is supplied.

Traits

FnBox [
Experimental
]

FnBox is a version of the FnOnce intended for use with boxed closure objects. The idea is that where one would normally store a Box<FnOnce()> in a data structure, you should use Box<FnBox()>. The two traits behave essentially the same, except that a FnBox closure can only be called if it is boxed. (Note that FnBox may be deprecated in the future if Box<FnOnce()> closures become directly usable.)