Reading a distant clock in a Robertson-Walker spacetime

During some of the Zoom lectures on cosmology, the question has come up as to how we know that a cosmologically distant clock is seen by us to "run slow." We all seem to "know" that an interval of time Δt on a distant clock should be measured by us here on Earth as an interval $\Delta t_{z}=(1+z) \Delta t$. How can we show this?

To begin, let us write the Robertson-Walker line element as follows:

$$
d s^{2}=-d t^{2}+a^{2}(t) R_{0}^{2}\left[d \chi^{2}+S_{k}(\chi) d \Omega^{2}\right]
$$

Note that t is proper time for all comoving observers in this spacetime: in these coordinates, the 4 -velocity of a comoving observer has components $u^{\alpha} \doteq(d t / d \tau, d \chi / d \tau, d \theta / d \tau, d \phi / d \tau)=(1,0,0,0)$. During some of our Zoom discussions, I may have said something about the nature of the time coordinate that contradicted this. If so, I was incorrect. In fact, whenever a metric has $g_{t t}=-1$ and $g_{t i}=0$, the coordinate t is the proper time of a comoving observer in that spacetime.

Next, imagine a clock at radial coordinate χ_{e}. Photons are emitted from the clock at $t=t_{e 1}$ and at $t=t_{e 2}$, carrying a picture of the clock's face at these moments. The emission times of these photons bound a time interval $\Delta t_{e}=t_{e 2}-t_{e 1}$. The photons then propagate radially inward to $\chi=0$, and are measured at times $t_{m 1}$ and $t_{m 2}$. Our goal is to compute the time interval $\Delta t_{m}=t_{m 2}-t_{m 1}$ measured at $\chi=0$.

Both photons travel along null geodesics for which $0=-d t^{2}+a^{2}(t) R_{0}^{2} d \chi^{2}$, or

$$
R_{0} d \chi=-d t / a(t)
$$

(Choosing the minus sign for the inward radial trajectory.) For the first photon, we have

$$
0-R_{0} \chi_{e}=-\int_{t_{e 1}}^{t_{m 1}} \frac{d t}{a(t)}
$$

For the second photon,

$$
0-R_{0} \chi_{e}=-\int_{t_{e 2}}^{t_{m 2}} \frac{d t}{a(t)}
$$

Since χ is a comoving radial coordinate, both of these photons are emitted from $\chi=\chi_{e}$ and are measured at the same $\chi=0$. The left-hand sides of these equations are thus identical. We can therefore equate their right-hand sides to each other and rearrange:

$$
\begin{aligned}
0 & =\int_{t_{e 2}}^{t_{m 2}} \frac{d t}{a(t)}-\int_{t_{e 1}}^{t_{m 1}} \frac{d t}{a(t)} \\
& =\int_{t_{m 1}}^{t_{m 2}} \frac{d t}{a(t)}-\int_{t_{e 1}}^{t_{e 2}} \frac{d t}{a(t)} .
\end{aligned}
$$

On the second line, we've used the fundamental theorem of calculus to rearrange the limits of integration. If we assume that both Δt_{e} and Δt_{m} are short compared to the timescale over which the scale factor $a(t)$ changes, then we can write

$$
0=\frac{\Delta t_{m}}{a\left(t_{m}\right)}-\frac{\Delta t_{e}}{a\left(t_{e}\right)}
$$

[using $a\left(t_{e}\right) \equiv a\left(t_{e 1}\right) \simeq a\left(t_{e 2}\right)$, and likewise for $\left.a\left(t_{m}\right)\right]$. Taking the time of measurement to be now, so that $a\left(t_{m}\right)=1$, we find

$$
\Delta t_{m}=\frac{\Delta t_{e}}{a\left(t_{e}\right)} \equiv\left[1+z\left(t_{e}\right)\right] \Delta t_{e}
$$

We measure a time interval Δt_{e} on a cosmologically distant clock redshifted to $\Delta t_{m}=(1+z) \Delta t_{e}$.

