Reading a distant clock in a Robertson-Walker spacetime

During some of the Zoom lectures on cosmology, the question has come up as to how we know
that a cosmologically distant clock is seen by us to “run slow.” We all seem to “know” that an
interval of time At on a distant clock should be measured by us here on Earth as an interval
At, = (1 + z)At. How can we show this?

To begin, let us write the Robertson-Walker line element as follows:

ds? = —dt?® + a*(t) R} [dx2 + Sk(X)dQQ} :

Note that t is proper time for all comoving observers in this spacetime: in these coordinates, the
4-velocity of a comoving observer has components u® = (dt/dr,dx/dr,d0/dr,d¢/dr) = (1,0,0,0).
During some of our Zoom discussions, I may have said something about the nature of the time
coordinate that contradicted this. If so, I was incorrect. In fact, whenever a metric has g = —1
and gy = 0, the coordinate ¢ is the proper time of a comoving observer in that spacetime.

Next, imagine a clock at radial coordinate x.. Photons are emitted from the clock at ¢t = .
and at ¢ = teo, carrying a picture of the clock’s face at these moments. The emission times of
these photons bound a time interval At, = teo — t.1. The photons then propagate radially inward
to x = 0, and are measured at times t,,1 and t;3. Our goal is to compute the time interval
Aty =ty — tim1 measured at xy = 0.

Both photons travel along null geodesics for which 0 = —dt? + a?(¢)R3 dx?, or

Ry dx = —dt/a(t) .

(Choosing the minus sign for the inward radial trajectory.) For the first photon, we have
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For the second photon,
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Since x is a comoving radial coordinate, both of these photons are emitted from y = x. and are

measured at the same x = 0. The left-hand sides of these equations are thus identical. We can
therefore equate their right-hand sides to each other and rearrange:
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On the second line, we've used the fundamental theorem of calculus to rearrange the limits of

integration. If we assume that both At. and At,, are short compared to the timescale over which
the scale factor a(t) changes, then we can write
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[using a(te) = a(te1) =~ a(te2), and likewise for a(t,,)]. Taking the time of measurement to be now,
so that a(t,,) = 1, we find
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We measure a time interval At on a cosmologically distant clock redshifted to At,, = (1 + z)At..

Aty = = [1+ 2(t.)]At, .



