Applying the first law of thermodynamics to a polytrope

In lecture, I described how to use the first law of thermodynamics, dU = —PdV in
concert with a polytrope pressure law P = Kp{ expressed in terms of rest-energy density
to make a simple relationship between rest-energy density and energy density p. My lecture
notes elided more of the details than I liked. These notes expand these details; they also
supersede a set of notes I had posted earlier, which were flawed.

Key to this trick is to imagine a fiducial volume V' which contains rest energy mgy and
energy m. Then, po = mo/V, p=m/V. In terms of these variables, the fiducial volume is
V = (1/mo)(1/po), and the energy in that fiducial volume is U = pV = (1/mq)(p/po)-

In terms of these things, the first law becomes
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On the left-hand side, let us write py = (P/K)"T, so that we have
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Now, integrate both sides over over pressure, from a lower limit of 0 up to P. Here, we
impose a boundary condition: at very low pressure, the rest-energy density and the energy
density are the same: p — pg as P — 0. The result is
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from which we immediately see that
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This is the result quoted in the lecture notes.



