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n is normal to “time slice.” Proper time experienced
by an observer who moves along n’ from t to t + dt is

dt = a dt ... function a, the lapse, converts coordinate
interval to proper interval for a “normal” observer.

Lapse lets us run time at different rates in
different parts of our spacetime.
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Bi dt is coordinate displacement of x’ in slice t + dt

from x7 in slice t. Called the “shift”; reflects freedom
to slide spatial coordinates around in each timeslice.

The lapse a and the shift B’ generalize the notion
of “gauge” freedom to a generic situation.
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Total spacetime distance between events A and B:

ds* = —a*dt* + g;;(dx" + ' dt)(dx? + B dt)



Some more careful definitions

Take spacetime manifold, “foliate” it with level
surfaces of some scalar function t. Define a 1-form

1
Qg = Vit with norm  ¢*°Q.Q = ——;
@7
Normalize this: w, = afd,
Define the corresponding vector: n® = —g*w,

na is the future-directed normal to the level surface of
constant t. Not hard to show that nang = -1, can be
regarded as the 4-velocity of a particular observer.

Auxiliary definition: t* = an” + B
Ba gives gauge freedom: can slide spatial coordinates
around on each slice as we wish or need.



Some more careful definitions

Using this, define tensor that projects orthogonal to na:

Yab = Gab T MaqNp
This is tensor describes space geometry in the constant
t “slice” ... it is the metric for the slice’s 3-geometry.

Any tensor in a slice is then given by contracting:
A% slice = VGC’deACd
Particularly useful: covariant derivative in slice:
[DaAb] = 7° APV, A

in slice
Can show that Daysc = 0 ... allows us to define Christoffel

symbols in slice, write usual covariant derivative
formula in any time slice.



Curvature

Last thing we need to do is develop the curvature of
spacetime in this language. Two pieces:

1. Intrinsic: The curvature in a particular time slice.
Just use yap, develop Riemann as usual.

2. Extrinsic: Curvature due to how each time slice is
“embedded” in the 4-dimensional geometry.

This last notion of curvature is related to the
expansion or divergence of the normal vectors.

Define: Expansion O = Y¢, 7%, Venag



Flip sign to be in accord with usual
notions of curvature

The “extrinsic” curvature is then defined as
C d

With some manipulation, can show that this is simply
related to the Lie derivative of the spatial metric:
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Now, “just” need to project the
Einstein field equations.

1. Time-time piece.
nn® MG, = 8tGTyn*nt = = 81 Gp
This becomes

R+ K? — K, K% = 167Gy

Known as the “Hamiltonian constraint.” Relates
geometry in a particular slice to the energy
density in that slice as measured by the
observer whose 4-velocity is na.



Now, “just” need to project the
Einstein field equations.

2. Time-space piece.
74 NGy = 81GT " n° = —81Gj,
This becomes
DyK’, — D,K = 8rGj,

Known as the “Momentum constraint.” Relates
geometry in a particular slice to the momentum
density in that slice as measured by the
observer whose 4-velocity is na.



Now, “just” need to project the
Einstein field equations.
3. Space-space piece.
vacﬂybdGab — SWGTabvacybd = 81GS, 4
This becomes
C{’Ka,b = —D, Dy + (X(Rab — QKacch —+ KKab)
i ) i

— 3nGa Sab—§’yab(5—p) + LzKap

Known as the “Evolution equation.” Tells us how
geometry evolves from time slice to time slice.



Theorem: Start with a slice that
satisfies constraints; evolve; slice
will continue to satisfy constraints.

Analogy to Maxwell: Constraints similar to divergence
equations; evolution is similar to curl equations.
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If (E, B) obey divergence equations at an initial time,
and you evolve forward in time with curl equations, then
(E, B) satisfy divergence equations at any later time.



Recipe

1. Pick coordinates. Amounts to coming up with a way of
choosing lapse a and shift Ba.

2. Pick initial spacetime geometry. Highly nontrivial: Need
to make vap and Kap that describe the situation you want to
study, subject to the Hamiltonian and momentum
constraints. Example: Two objects in a binary orbit. Might
want to imagine they are enough apart that the post-
Newtonian expansion describes them.

3. Evolve. If all is set up correctly, GR should just do its
thing. For example, it should “automagically” respect
ingoing boundary condition at event horizons. (Whose
locations we cannot know in a dynamical spacetime until
the entire calculation is completed.)



Typical result for several decades:
Catastrophic failure.

Reason: “Constraint violating modes”

Initial data (by construction) satisfies constraints ... up to
a certain level of precision! Numerical noise/roundoff
error will introduce “pollution” that violates constraints.

Thanks to nonlinear character of evolution equation,
this “pollution” will often grow as spacetime evolves.
Get solution dominated by nonphysical data —
not a valid spacetime.



Brief history

First numerical solutions attempted in 1970s for highly
symmetric situations. By 1990s, people were good at
doing “2+1” problems (2 space, 1 time — e.g., axial
symmetry). Full 3-D was proving challenging.

Example: Anninos et al 1995 (arXiv:gr-qc/9503025).
Initial data describing a single, spherical black hole.
evolves with no assumptions about symmetry.

Code runs until t ~ 50GM then crashes!

First attempt at evolving initial data that looked like
orbiting black holes: Bernd Brugmann 1997 (arXiv:gr-

qc/9708035). Black holes orbited for about 10GM
before the code crash (roughly 1/4 of an orbit).



irst

black hole evolutions

Black Holes on tracks




Has now become routine!
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