
Light propagating in the Schwarzschild spacetime

In lecture on Tuesday May 7th, I used the behavior of light propagating in Schwarzschild to
motivate the fact that apparent pathologies in this spacetime can be traced back to the poor
behavior of the coordinate t as we approach r = 2GM . In the course of this analysis, Enrique
Mendez asked a very good question that boiled down to how an observer at some r that is not
far from 2GM would define the energy of the light pulse. Because this was a packed lecture, I
unfortunately was not able to deal with his question in that moment. On reflection later that day,
I thought up an answer which I believe helps clarify the situation.

Begin by noting that a static observer at some r has a 4-velocity ~u with components
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The notation dτr is a reminder that this is an interval of proper time as measured at r. Note
that the observer with this ~u is not a freely-falling observer: some mechanism or agent is holding
this person fixed here. Note also that dt/dτr diverges at r = 2GM , and becomes imaginary for
r < 2GM — a reflection of pathologies in the coordinate t at this radius.

The meaning of dt/dτr is very important here. Bearing in mind that t is equal to the proper
time of observers very far away (r � 2GM), this component of the 4-velocity tells the relative
ticking rate of clocks at r with very distant clocks. There is no constraint on the nature of these
clocks. The clock could be your wristwatch; it could be your heartbeat; it could be the frequency
associated with a beam of light.

With this in mind, let’s forget about energy and just focus on the ticking of clocks. Take our
clock to be the frequency of a beam of light1. Suppose that we sit at remit and point a beam of light
outward. Let us suppose it is a green laserpointer, with wavelength λ = 532 nanometers. According
to the observers sitting at remit, the electromagnetic field oscillates with a period ∆τemit = λ/c =
1.77455× 10−15 seconds.

This light propagates outward. Imagine it propagates past an array of static observers, each
of which measures the light using their own clock. Their clocks tick with different time standards;
but, using the properties of Schwarzschild, we can easily compare the different clocks. Using the
fact that ut(r) = dt/dτr, we see that the period of the light as measured at radius r is given by
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Considering observers who are very far away, this limits to
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or, using λr = c∆τr, the wavelength we measure far away is
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If our emit our beam of light at remit = 6GM , then our 532 nanometer light beam has wavelength
652 nanometers far away (red or reddish orange). For remit = 4GM , we get 752 nanometers (deep
red to near infrared). For remit = 3GM , we get 921 nanometers (near infrared to infrared). As
we get closer and closer to remit = 2GM , the wavelength just gets longer and longer, getting quite

1This is what LIGO does, using a laser to provide a precise frequency standard for examining how light travel
times vary.



steep as we get close. Writing remit = (2 + ε)M , the light has wavelengths microns when ε ' 0.1; it
is millimeters for ε ∼ 10−6; it is meters for ε ∼ 10−12. The wavelength diverges as remit → 2GM .

This calculation also illustrates why if we emit pulses with a spacing δτemit, the interval between
pulses diverges. Suppose we flash out laser once every second at remit. If remit = (2 + ε)M , then
distant observers see a pulse every 4.6 seconds for ε = 0.1; every 14 seconds for ε = 0.01; every 45
seconds for ε = 0.001; every 20 minutes for ε = 10−6; every two weeks for ε = 10−12.

As our emitters approach r = 2GM , the light by which we observe them becomes infinitely
dilated, diverging the light’s wavelength to a scale where we cannot observe it, and inflating any
interval between pulses to longer and longer scales.

Let’s now consider energy and this beam of light. As I pondered Enrique’s question, I realized
that part of the confusion is that there are two notions of energy that are being used, and it is
important to distinguish between them:

• The conserved energy, Econs = −pt, which arises because the Schwarzschild spacetime is time
independent and hence possesses a timelike Killing vector; and

• The measured energy, E~u = −pαuα, which is the energy as measured by an observer whose
4-velocity is ~u.

These two notions of energy are not the same in general. They describe different things: Econs is
an invariant of the motion that arises in much the same way that a conserved energy arises from a
time-independent Lagrangian in non-relativistic physics; E~u is what the observer with 4-velocity ~u
would find if they probe the light using some kind of measurement device.

Let us use the 4-velocity for a static observer, ~u as given above. In this case, since the only
non-zero 4-velocity component is ut,
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Notice that E~u → Econs as r → ∞. Let’s call this E∞, the energy that is measured by a very
distant observer. Let us label as Emeas(r) the energy that is measured by the observer with ~u.
Then, manipulating this expression, we see that
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So a pulse of radiation that is emitted at r with energy Emeas(r) has energy E∞ by the time that
it gets very far away. This E∞ is less than Emeas(r); in fact, E∞ → 0 as r → 2GM .

Hopefully you can see that the discussion of the light’s energy is consistent with the previous
discussion of how its wavelength dilates as it propagates from r near 2GM to very distant observers.


