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Small body orbiting a rotating black hole 
(video produced by former UROP 

student Peter Reinhardt)

More black holes
Black hole orbits



Recap: Carefully examined the vacuum Schwarzschild spacetime,

Particularly important: methods developing its causal structure, 
showing which parts of spacetime are in causal contact:

                                                                     Penrose diagram

                                       Kruskal-Szekeres coordinates

ds2 = − (1 −
2GM

r ) dt2 +
dr2

1 − 2GM/r
+ r2dΩ2
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Recap: Carefully examined the vacuum Schwarzschild spacetime,

Particularly important: methods developing its causal structure, 
showing which parts of spacetime are in causal contact:
Key things we learn:
* Horizon at r = 2GM is a null
surface; time t approaches
infinity as we reach it.
* Curvature singularity at r = 0 is
in the future of all timelike and null
trajectories that cross r = 2GM.

ds2 = − (1 −
2GM

r ) dt2 +
dr2

1 − 2GM/r
+ r2dΩ2
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Spacetime of a charged black hole (“Reissner-Nordstrom”):

    

Not too difficult to compute this solution: Just repeat the exercise 
we did for Schwarzschild vacuum, but insert the stress-energy 
tensor of a Coulomb field centered on r = 0.
Curvature again singular at r = 0:

Horizon located at root of function which appears in gtt and grr:

   

ds2 = − (1 −
2GM

r
+

GQ2

r2 ) dt2 + (1 −
2GM

r
+

GQ2

r2 )
−1

dr2 + r2dΩ2

I =
48G2M2

r6
−

96G2MQ2

r7
+

56G2Q4

r8

rH = GM + (GM)2 − GQ2
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Spacetime of a rotating black hole:

     

Here we’ve introduced , and the quantities

Horizon at root Δ = 0: .
Singularity at ρ = 0:

ds2 = − (1 −
2GMr

ρ2 ) dt2 +
ρ2

Δ
dr2 + ρ2dθ2

+ [(r2 + a2)2 − a2Δ sin2 θ]
ρ2

sin2 θ dϕ2 −
4GMar sin2 θ

ρ2
dt dϕ

a ≡ |S | /GM
Δ = r2 − 2GMr + a2 , ρ2 = r2 + a2 cos2 θ

rH = GM + (GM)2 − a2

I =
48G2M2(r6 − 15a2r4 cos2 θ + 15a4r2 cos4 θ − a6 cos6 θ)

(r2 + a2 cos2 θ)6
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Spacetime of a rotating black hole:

     

Notice the off-diagonal term!  The connection between t and φ will 
make an important contribution to the kinematics of bodies 
moving near a black hole — develops “frame dragging,” tendency of 
inertial bodies to be dragging into moving in the same sense as the 
hole’s rotation.
Intuitively, the rotating black hole (which, as a vacuum solution, is 
really just rotating spacetime) drags a region of spacetime into co-
rotation with it.

ds2 = − (1 −
2GMr

ρ2 ) dt2 +
ρ2

Δ
dr2 + ρ2dθ2

+ [(r2 + a2)2 − a2Δ sin2 θ]
ρ2

sin2 θ dϕ2 −
4GMar sin2 θ

ρ2
dt dϕ
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Not spherically symmetric!  If it were spherical, then we would 
have gφφ = gθθ sinθ; this is only true in the Schwarzschild limit (i.e., 
nonspinning: a = 0).

Good diagnostic of asphericity: Circumference of the event horizon 
in the equatorial plane

versus circumference going around the poles:

Polar circumference can be expressed in closed form using elliptic 
integrals, but numerical values are the key things that matter.

Ceq = ∫
2π

0
gϕϕ(r = rH, θ = π/2)dϕ = 4πGM

Cpol = 2∫
π

0
gθθ(r = rH, θ)dθ
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Result: significant
difference as the spin
parameter approaches 1.

Horizon is defined by a
single radial coordinate,
but has an oblate
geometry … can think
of this as centrifugal
flattening due to its
rotation.
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I have yet to find or develop a straightforward derivation of this 
spacetime!  Not hard to show, given this metric, that it satisfies 
vacuum Einstein field equations (GRTool.nb tuned to the Kerr 
metric posted to 8.962 Canvas page).
Original derivation by Kerr sought to categorize metrics that take 
the form

where H is a scalar field, and kα describes null vector.  Original 
paper by Roy Kerr (1963) identifies an example of this spacetime 
as describing a spinning mass (compare exercise on pset 7 of line 
element).  Boyer and Lindquist (1967) put in into a coordinate 
system that reduced to Schwarzschild when the spin parameter is 
zero, made it clear that the spacetime has event horizons.

gαβ = ηαβ + 2Hkαkβ
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5 10 15
r (units of GM/c^2)
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Veff (units of c^2)

( ̂E)2 = 0.90
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5 10 15
r (units of GM/c^2)
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Veff (units of c^2)

( ̂E)2 = 0.924
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5 10 15
r (units of GM/c^2)

0.89

0.90

0.91

0.92

Veff (units of c^2)

( ̂E)2 = 0.924

rmin = 5GM rmax = 17.2GM
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5 10 15
r (units of GM/c^2)
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( ̂E)2 = 0.907

rcirc = 9GM
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5.0 5.5 6.0 6.5 7.0 7.5 8.0
r (units of GM/c^2)

0.886

0.888

0.890

0.892

0.894

Veff (units of c^2)

L̂ = 3.5GM/c
3.49GM/c

3.48GM/c
3.47GM/c

3.4641GM/c

3.45GM/c
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