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Abstract 

In this dissertation, a new approach to the synchronization of accesses to 
shared data objects is developed. Traditional approaches to the synchronization 
problems of shared data accessed by concurrently running computations have 
relied on mutual exclusion -- the ability of one computation to stop the execution 
of other computations that might access or change shared data accessed by that 
computation. Our approach is quite different. We regard an object that is 
modifiable as a sequence of immutable versions; each version is the state of the 
object after an update is made to the object. Synchronization can then be treated 
as a mechanism for naming versions to be read and for defining where in the 
sequence of versions the version resulting from some update should be placed. In 
systems based on mutual exclusion, the timing of accesses selects the versions 
accessed. In the system developed here, called NAMOS, versions have two 
component names consisting of the name of an object and a pseudo-time, the 
name of the system state to which the version belongs. By giving programs 
control over the pseudo-time in which an access is made, synchronization of 
accesses to multiple objects is simplified. 

NAMOS is intended to be used in an environment where unreliable 
components, such as communication lines and processors, and autonomous control 
of resources occasionally cause certain objects to become inaccessible, perhaps in 
the middle of an atomic transaction. Computations may also suddenly halt 
(perhaps as the result of a system crash) never to be restarted. NAMOS provides 
facilities for recovering from such sudden failures, grouping updates into sets 
called possibilities, such that failure of any update belonging to a possibility 
prevents all of the other updates in that possibility. The naming mechanism of 
N A :VI OS also provides a useful tool for restoring a consistent state of the system 
after a failure resulting in irrecoverable loss of information or a user mistake 
resulting in an inconsistent state. 

An important motivation for the development of NAMOS is the need to 
support decentralized development of application systems by combining existing 
application systems that deal with shared data. NAMOS supports the construction 
of modules that locally ensure their own correct synchronization and recovery 
from inaccessibility. Larger modules that use several separately designed modules 
can then be constructed, perhaps with additional synchronization constraints, 
without modifying the modules used. In most systems based on mutual exclusion, 
such post hoc integration of modules is difficult or impossible. 

Keywords: distributed computer systems, reliability, synchronization. 
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Chapter One 

Introduction 

With the advent of minicomputers and low-cost computer networking 

technology, a new sort of computing technology is becoming quite important. The 

basic characteristic of this technology is the development of a decentralized set of 

computing resources (computers and terminals) organized to provide computers, 

terminals, and storage devices that are located near their ultimate users. 

Computer networks, either of high-bandwidth typical to local network technologies 

such as the ETHERNET[Metcalfe76] or the long-distance networks such as the 

ARPANET[Metcalfe73], provide the necessary sharing of data and computational 

resources among geographically decentralized but closely related computer 

applications. 

The term distributed computing has been used to describe the loosely 

coupled systems built using this technology. But like many other fashionable 

terms, distributed computing means different things to different users of the term. 

It has been applied to parallel computation (in this use, distribution is parallelism), 

offloading of computation from a mainframe computer to a front-end mini or 

intelligent terminal, construction of computational engines v1a elaborate 

interconnections of microprocessors, and a host of other variations on the theme 

of several computers tied together by some communications medium. Our use of 

the term as defined above specifically emphasizes decentralization as a key 

attribute obtainable by introducing communications into a system design. Such 

decentralization involves separation of the computers in the system by physical 

distance, by boundaries of administrative responsibility for individual computers 

and their applications, and by firewalls intended to increase the overall availability 

of the system as seen by its users in the face of component failures. 

One of the major forces in the move to decentralized, distributed 

computing is the opportunity for autonomy gained by having direct, physical 

control over the source of one's computing resources. Traditionally, the 

computing resources of a large company or organization have been provided by a 

large central computer facility managed by a separate division of the company. 
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The ma111 reasons for this traditional structure have been the large cost benefits 

of sharing large computer systems that provide very high price performance, and 

the cont,rol over computing usage afforded by the centralization. As pointed out 

by d'Oiiveira[DOiiveira77), many organizations have very strong forces that lead to 

decentralization, including psychological and economic ones. Given the decrease in 

hardware costs for small computing facilities, this has led to, and probably will 

continue to lead to, more autonomously operated computer facilities in the context 

of these organizations. The need for autonomous control of computing resources 

seems to be often more important than cost. 

Although the hardware technology for distributed computing IS well 

developed, the protocols and conventions for the design of systems that support 

distribution of data and application programs are still in their infancy. Perhaps 

the major effort in this area has been the resource sharing research carried out in 

conjunction with the development of the ARPANET. The most sophisticated 

product so far of this research has been the National Software Works[Crocker75], 

a distributed set of application development tools that can transparently share files 

across a network. Although this sort of research has led to a great deal of insight 

on how to distribute an application, it has not yet reached the point where the 

design of such systems is simply the application of well understood methodologies. 

Perhaps the greatest problem in the development of distributed systems is 

the development of methods that allow local applications and data bases to be 

created autonomously, then integrated with other applications and data accessible 

in the distributed system in a post hoc fashion. Evolution of distributed system 

applications by integration of existing applications seems to be a natural result of 

the reasons for decentralization. 

In order for this problem of post hoc integration to be solved, a coherent 

set of protocols and standard interface tools must be developed. Then the task of 

constructing new systems by integrating existing systems on multiple nodes can be 
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simplified to matching interfaces specified in the same way. 1 Important factors in 

these interfaces are data types, naming of individual objects, synchronization of 

accesses to sharable objects and reliability of computation in the face of failures 

of individual communications lines and computers. The latter two problems, 

synchronization and reliability, form the focus of my thesis. My goal has been to 

provide a standard set of mechanisms for the implementation of interfaces that 

provide control of computations in an environment that is prone to failure and 

has concurrent computations. The solution proposed is to extend the object 

naming mechanism so that it can be used for proper synchronization and failure 

recovery. 

1.1 The problem of a useful internode interface 

A typical distributed computer system of the kind we want to consider will 

look like a collection of autonomous nodes connected by a communications 

network, as in figure 1. These nodes may be individual processors with their own 

memory, or they may be multi-processor systems of any variety. For our 

purposes, they are distinguished because each node behaves like a single system -

each node is either completely available to accesses through the network, or is 

completely unavailable. Further, the resources owned by each node are wholly 

controlled by the owner of the node; there is no higher authority that controls 

the resources on all nodes of the network. 

Nonetheless, there is a great need for the ability to share the use of data 

and computational resources among nodes with different owners. For example, 

consider a relatively decentralized corporation that has several independently 

developed inventory control data bases residing in different computational nodes. 

Eventually there will probably be pressure to have an information system for 

1. It is interesting to note that Backus, in his Turing award lecture,[Backus78) 
has pointed out that he also believes that construction of systems from pre-existing 
modules is a problem not yet properly solved. His proposal is somewhat different 
from ours, in that he uses composable modules athat are pure functions from 
inputs to output that are combined into top-level transactions that work on a 
shared system state. Our proposal allows the composition of transactions out of 
existing transactions that are designed themseves in terms of modifying the system 
state. 
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Fig. 1. Distributed System 

Network 

overall management of the divisions owning each node that can look at the state 

of all data bases. Because the cost of replacing existing systems with an overall 

system would be prohibitive (as well as infringing on autonomy - see below), that 

system must be built out of the old system by making use of preexisting 

interfaces, if possible. It is thus a great advantage if interfaces can be designed so 

that they can be later used in unplanned-for ways. In addition, by providing 

interfaces that other nodes can use, a node can offer and obtain information 

about other divisions use of the parts it makes and consumes, thereby obtaining a 

greater degree of optimization of its own operations. 

Well designed, semantically clean interfaces that allow for unplanned later 

uses seem to be the key to successful sharing of programs and data in these new 

distributed systems. Such interfaces must not interfere with, and we hope will 

contribute positively to, solutions to problems that become important in 

decentralized systems, such as autonomy, failure management, synchronization, 

and conversational interaction. These issues will be discussed in detail presently. 
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It is not the goal of the thesis to solve the problem of constructing 

distributed applications out of existing (as of 1978) programs and data bases, 

under existing operating systems connected by some kind of network (a system 

that does attempt part of this goal is the National Software Works 

(NS\V)[Crocker75]). Many such existing programs and data bases simply don't 

support compatible approaches to synchronization and reliability that are needed 

to achieve reasonable results. The primary goal is to provide tools to aid in the 

construction of new software for the distributed environment. If these tools are 

used, then the task of post hoc integration will be much simpler. 

It may turn out to be fairly easy to adapt some existing programs or data 

bases to fit within the scheme developed here in the thesis. If so, then the tools 

developed here can certainly have a more immediate impact. The primary impact 

that these ideas should have, though, is in the design of future applications either 

for distributed systems or for computers that may eventually become nodes of 

distributed systems. 

l.l.l Autonomy 

Freedom means 
you're free to do 
just whatever 
pleases you; 
- if, of course 
that is to say, 
what you please 
is what you may. 

-- Piet Hein 

The nature of a node is captured in the notion of autonomy. That is, a 

node is basically free to manage its own use of its own resources in any way it 

sees fit. That is, a node may be available only occasionally for communications 

with other nodes (e.g., because the power is off from 5 P.M. to the following 

A.M.), much of the data stored on the node may be completely private and never 

accessible through the network, other data may be usable only in a laundered 

form (for example, only statistics of a general sort about a corporate division's 

production may be available outside the division), and the sorts of actions that 

can be carried out at a node on behalf of a remote node may be severely 

constrained to limit computer time resources and/or interference with local 

computing tasks. 
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\1oderating the complete freedom g1ven a node is the need for providing 

some kind of reliable sharing of useful data and resources. If a node is to 

usefully offer an interface whereby other nodes can access some of its data or 

resources, it needs to provide some reasonable guarantees of availability and 

proper behavior of the interface. The node does not want to give up more 

autonomy than necessary, though. Consequently, the impact of autonomy on the 

design of internode interfaces is the need for interfaces that are the minimal 

necessary infringements on node autonomy. 

It is interesting to note how the picture of a distributed system with 

autonomous nodes differs from the notion of a computer 

utility[Corbato65,Frankston74), a centralized marketplace in which data, programs, 

and services can be shared. A computer utility might be best defined as a vast 

repository of data and programs that can be simultaneously manipulated by the 

users of the system. The availability and integrity of the underlying hardware 

and software mechanisms that support the shared data must be as high as that 

needed by the most demanding application using the system. Protection 

mechanisms must also exist to ensure that unauthorized sharing of or tampering 

with data does not occur. In the distributed system, the network is a marketplace 

for services and data, where the nodes may or may not offer services. The major 

result of decentralization is that the entire system need not be designed to meet 

the most stringent requirements of availability and mutual protection. Only those 

nodes implementing and using services with stringent requirements must be 

specially designed and built to meet such requirements. 

1.1.2 Object Interfaces 

In order to share data or programs with users outside his node, the owner 

of a node must provide some way for the users to refer to the data and request 

execution of the programs. Simply giving out disk addresses and enabling the 

ability of remote computers to load programs into his computer's memory would 

certainly allow remote use of the node's resources. However, giving such low-level 

information may make it difficult for the node's owner to retain much control 

over the ways in which the resources are used. 
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Object-oriented programming languages systems such as CLU[Liskov77a] 

and ALPHARD[Wulf74] provide an object abstraction that limits the view of the 

internals of data objects. A data object is just a named entity wholly 

characterized by its behavior in response to operations applied to it. The major 

benefit ascribed to object-oriented systems is that the behavior of an object can 

be understood, specified, and used without reference to the actual implementation 

of the object and operations in terms of primitive objects and operations. In 

supporting autonomy, a dual benefit of great importance is also obtained by using 

object-oriented systems. The behavior of objects can be understood, specified, 

and implemented without reference to their eventual use. Since the 

implementation of objects is hidden from the users of the objects, restructuring 

the implementation is easily done. Protection constraints often are more easily 

expressed in terms of allowable uses of abstract operations on particular abstract 

objects. 

In this thesis, a goal is to support modularity as provided by object-oriented 

systems. In particular, the construction of abstract operations out of simpler 

abstract operations and primitive operations and the construction of abstract 

objects out of simpler objects and operations are supported. 

There are some problems in translating the object notion to a distributed 

system, however. The primary ones have to do with the opportunity for 

concurrent accesses to shared objects, the possibility of failure in the middle of 

executing an operation on some resource, and the need to accomplish reliable 

coordinated operations involving more than one node. 

1.1.3 Concurrency 

The main focus of the thesis is providing reliable interfaces to objects in 

the presence of concurrency. Now, concurrency has been a heavily studied area 

of computer science, so the immediate question is, why are not the existing 

techniques for managing concurrent computation adequate for the present 

situation? Perhaps the major difference between my assumptions and those 

common to much of the research into concurrent programming is that I am not 

willing to assume that all of the users of a shared interface are designed at the 

time a shared interface is designed. 
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Consider an object that can be manipulated by some using processes. The 

usual approach (using monitors[Hoare74], for example) to defining an interface to 

that object is to define operations that reserve the exclusive use of the object to 

the calling process, and release exclusive use. Two problems arise in defining this 

interface. First, one must be aware that the object might be concurrently 

accessrd, so that the appropriate synchronization operations can be defined. 

Second, one must have a \vay of enforcing the use of the synchronization 

operations in order to prevent unexpected concurrency. If all the users of the 

object are designed at or before the time the object's interface is designed, neither 

problem is particularly hard, but in the case of interest, where unplanned sharing 

and concurrency are likely, both problems become extremely difficult. 

Another synchronization problem in the use of objects is the need for 

unplanned composite operations on multiple, independently designed objects. A 

simple example in the distributed system environment might be where two 

inventory control systems are brought together after being independently designed. 

Suppose that a new function of the combined system is to be the ability to place 

an order, involving '"atomically'" checking the supplier system for sufficient supply, 

marking the ordered items as destined for the supplied system, and adding to the 

list of expected shipments in the supplied system the ordered items and estimated 

arrival. Getting this action to be atomic with respect to other concurrent actions 

of each irwentory system that may involve the same parts is quite difficult to do 

without risking deadlock. A redesign of the individual systems may even be 

required. 

The construction of new operations out of extstmg atomic operations IS 

particularly difficult in a system that uses locking for synchronization. Suppose 

that t".·o modules dealing with different sets of data are to be used together to 

create a new composite operation. It is not sufficient to let each module set and 

release its own locks, because then the composite operation would not be atomic -

it would be possible for another concurrent program to observe the state of the 

system after executing one module but before starting the second if the second 

was somehow delayed for a while. Consequently, in combining atomic operations 

that use locking, the composite module must be aware of the locking conventions 

of the combined operations. Since the program invoking the operations being 

combined is responsible for properly setting the locks, suddenly the modules are 

not so modular any rnore. They are depemlent on their caller to properly set 
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locks and avoid deadlock. An even more serious problem arises if the locks set by 

a module are dependent on the parameters with which it is invoked, because using 

such a module in the construction of larger atomic operations would require that 

the using program be aware of the internal construction of the module to an even 

greater degree. In the extreme case, the using program would have to execute the 

same steps the module would execute to determine what locks needed to be set 

before actually calling the module. 

A goal of the thesis is to define a method for handling concurrency that 

can be easily and naturally used in the construction of abstract objects and 

operations. The concurrency control method is to be built into an abstraction, so 

that concurrent use is never "unexpected". The construction of new abstractions 

out of existing ones containing their own built-in concurrency control is to be 

supported, so that it is rare that a system must be entirely redesigned just because 

of a new use in conjunction with some other system that has its own concurrency 

control. 

Very few synchronization schemes can handle this requirement for an 

unplanned atomic action composed of predesigned operations. A notable 

exception is the concept of a supervisory computer program in the IDA operating 

system described by Gaines[Gaines72], in which relatively arbitrary programs could 

be specified to act atomically. The IDA system idea could not be easily 

implemented on a distributed system because it depends on the centralized 

operating system notion of a "locked" supervisory state. 

1.1.4 Need for a Robust Interface 

An important class of failures m a decentralized system result in either 

temporary or permanent loss of availability of some set of resources. Examples 

include communications failure that might cut off access to some set of nodes and 

data objects from some using program, a crash of a computer that might have 

similar effects in addition to destroying the state of any computations in the 

middle of execution, and detected software errors indicating that an object is in 

an impossible state. 
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These failures can occur at any time an attempt ts made to use some 

resource. A program that executes in the distributed environment must always be 

prepared to discover that some resource it is using is suddenly unavailable for 

some reason. 

Autonomy can also lead to reasons for resources to become suddenly 

unavailable. The owner of a node may suddenly turn off his machine, revoke 

access rights for a particular set of objects granted to some program while that 

program is using them, etc. Such examples are not limited to distributed systems. 

In i\tlultics, for example, a computation may at any microsecond of its execution 

discover that its right to use a segment it has been reading for the last ten 

minutes have been revoked. 

Since abstract operations and objects are constructed out of simpler ones, 

such that the execution of an abstract operation may involve many steps dealing 

with many different resources, there are many different points at which loss of 

availability can strike the implementation. Nonetheless, a desirable feature of 

abstractions is that their behavior should not be strongly dependent on the 

implementation. Thus, an attempt to perform an operation on some abstract 

object ought to have a well defined effect if it cannot complete due to some loss 

of availability encountered during its execution. This effect should be specified in 

terms of the abstract view of the operation, not in terms of the program and data 

it uses in its implementation. 

Abstract operations that modify the (abstract) state of some abstract 

object or objects become quite difficult to support in an environment where 

sudden loss of availability must be expected. Since the implementation of the 

abstract operation makes the modification by a number of steps, there may be 

points during the execution of these steps where loss of availability of some 

resource leaves the implementation at a point that has no meaning in terms of the 

abstractions being implemented. Some recovery from this is necessary. The 

simplest npproach to recovery is to undo the steps already taken in the operation, 

so that the operation can be thought of as having no effect if any resource it uses 

is unavailable during the operation. 

- 16 -



Unfortunately, in the case of failures undoing what has already been done 

1s not straightforward. Further loss of availability may make it impossible to 

undo what has been done by simply reversing the changes made. If the resource 

that becomes unavailable is the processor that is executing the operation, we have 

an extreme case of being unable to undo what has been done. We may not even 

know what has been done so far. 

Correction of failures by undoing results also interacts strongly with 

synchronization. In order to properly undo a computation, one must also ensure 

that independent computations do not observe the transient state during which the 

abstract operation was attempted but not yet undone. 

Although the user of an operation may not be m a position to know how 

to reco\'er from a failure, the system as a whole (all nodes involved in the 

operation) can maintain this knowledge. In order to do this, the system must be 

~w.·are of interfaces, and must be able to decide that a computation has failed and 

effect the undoing of operations when a failure occurs. The system, in order to 

decide that a computation has failed, cannot depend on the program or the user 

of the program, since one or both of these may have also failed. Nor can the 

system depend on being able to access all of the nodes containing objects that 

have to be corrected at the time failure is detected. Consequently, the algorithms 

used by the system for recovery must be very carefully designed to work correctly 

in the face of the same loss of availability that caused the original failure. 

An alternative approach that might be taken to handle failures that result 

m loss of availability is to build the system so that such failures never show 

through to the programs executing on the system. Essentially this approach 

amounts to guaranteeing availability. It is usually possible to guarantee that 

resources are available to computations that use them given either that the 

computation can afford to wait, or that enough money is allocated to buy 

sufficient redundancy within the system to reduce the probability of failure. The 

tradeoff is not always possible, however. Money is often in short supply. 

Computations may often be executing in behalf of an interactive user at a 

terminal who cannot afford to wait until some remote node his program had 

started to use is repaired. Consequently, the approach of having the system 

provide a mechanism that allows undoing of computations that fail in the middle 

is often the best. 
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The case where the owner of a node decides to make it unavailable differs 

slightly from the failure case in that by reducing the owner's autonomy it is 

possible to reduce the expectation that Joss of availability of this sort interferes in 

a bad way with users of shared objects. Nonetheless, the name of the game is to 

permit as much autonomy as possible. Were the owner to discover that a bug was 

allowing remote users to access too much of his data, it would be nice if he could 

shut off access to his shared objects immediately. even in the middle of "atomic" 

actions, should that action not cause his own data to come to harm. Analogously, 

even in a central system. protection mechanisms that allow for immediate access 

revocation can introduce severe malfunctions into operations on shared data if 

invoked at the wrong time. Consequently. the strong degrees of autonomy allow 

actions by owners that look a lot like unpredictable failures from the user's point 

of view. 

As a result of these arguments, object interfaces that can handle sudden 

Joss of availability are absolutely essential in the autonomous distributed system 

environment. 

The model of failure recovery we have specified is closely allied with the 

termination model of exception handling espoused in the exception handling 

mechanisms of the CLU language[Liskov77b]. Upon encountering a failure that 

prevents execution of the module, the execution of the module is terminated. In 

the CLU termination model, the effect of the module for each type of failure is 

specified as part of the interface; in contrast, we have taken the "stronger" view 

that a failure is to be made equivalent to never executing the module, unless that 

module explicitly chooses otherwise. Because the programmer of a module cannot 

be expected to know about all possible failures that may result during the steps of 

execution of the module, the "stronger" view is safer, handling unexpected failures 

more effectively. 

An alternative exception handling mechanism is the resumption model 

described by Goodenough[Goodenough75] and Levin[Levin77], in which the 

module encoitntering an error is suspended and possibly resumed after recovering 

from the error. Such a model did not seem appropriate for handling failures 

resulting in loss of availability because a) the executing module may lose its state, 

b) after an availability loss, it is difficult to tell a handler what to do to recover 

from the the error, and c) it is hard to design the handler of such errors without 
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it having to include detailed knowledge of the internal workings of a module, so 

that the level of abstraction of the interface is compromised. 

1.1.5 Conversational Interactions with Multiple Machines 

Another aspect of the distributed system organization is that it ought to 

allow on-line construction of unplanned-for actions determining the state of shared 

objects at several nodes, and possibly even modifying other nodes as the result of 

some decision made by a person sitting at a terminal. An important special case 

occurs when the several machines are independently designed databases. Here the 

problem is that the program and its actions are being created as the program is 

executed, and outside the control of the system itself. Synchronization and failure 

management techniques that work when the program is executing completely 

under the control of the machine may not work. In addition, even if programs 

can be prevented from making mistakes by some kind of verification method built 

into the system, the user will make mistakes, and should have at hand means to 

recover from his mistakes. If the failure management techniques built into the 

system can generalize to the case of recovering from user mistakes, this would 

tremendously aid in conversational use of systems. 

1.2 Naming Mechanism as a Solution 

This dissertation describes a system called NAMOS (Naming Applied to 

~fodular Object Synchronization). NAMOS consists of a unified approach to the 

problems of synchronization and reliability just described. Of particular concern 

are the problems of constructing modular systems and the problems of unplanned 

concurrency and unexpected failure that we expect to arise in the construction of 

distributed systems. 

The central idea of the thesis is an unusual vtew of synchronization of 

accesses to shared data. Traditionally synchronization has been achieved by 

mutual exclusion. The approach to synchronization used in NAMOS is based on a 

mechanism for naming states of the system and objects (hence the title of the 

dissertation). To understand the difference between the two approaches it is 

helpful to use a non-computer analogy in which both techniques are well 

developed. 
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Consider a set of files (say personnel files) kept in a file storage room of 

some organization. We may think of each file folder, labeled by a person's name, 

as an object of the database. Occasionally, files must be inspected or updated. 

For example, one might wish to compute the average salary of women in the 

company. Or as a sample update, one might wish to modify the salaries of the 

women in the company by an appropriate percentage so that the average woman's 

salary is equal to the average man's. We impose a rather strong constraint on 

these operations that is not usually required in such a set of files. The constraint 

is 1 hat these "transactions" on the files must be atomic operations. That is, during 

the computation of the average woman's salary, no woman's salary is changed by 

some other clerk. Similarly, in updating the women's salaries, no other clerk is to 

change any of the men's or the women's salaries, to ensure that equality is 

achieved. The strong constraint is not normally required in human-managed 

systems because people are good at dealing with inconsistency. Computer 

programs using a database, on the other hand, have few checks built in to deal 

with inconsistency, so avoiding inconsistency is much more important. 

One simple way to solve the problem of synchronizing the accesses made by 

clerks to the database is to allow only one clerk into the room containing the files 

at a time. and requiring that he remain there until completing the transaction. 

This is the basic idea of mutual exclusion. The clerk gains exclusive access to the 

entire state of the database, and can then make the modifications needed to 

construct the next state of the database. A refinement can be made to this 

approach, because normally clerks will need to access only a subset of the 

database. The refinement consists of having the clerk go into the room and 

collect all of the files he needs to read and update, replacing each file folder with 

a note that indicates that the clerk has taken the file folder to his desk. The 

clerk can then work with the set of file folders at his desk in private, and other 

clerks can work on different sets of files independently. A clerk needing to access 

a file folder that has been removed must wait for the folder to be returned. This 

approach to synchronization is analogous to locking in the use of a computerized 

database. Each clerk performs transactions by gaining exclusive access to the 

group of files he needs to access for some period of time. 
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The approach in NAMOS is quite different. Assume that each file folder 

contains only one item, say the salary of the person whose file it is. Instead of 

erasing the current salary and replacing it with a new one when the salary is 

changed, the salary of an individual is changed by adding to the file a new sheet 

of paper with the new salary. Each sheet of paper with a salary is stamped with 

the date and time when the salary becomes effective. How does this help? First 

of all, consider a transaction that only reads the database, such as the one to 

compute the average salary of all of the women. Instead of having to seize all of 

the folders to prevent changes from happening, the clerk can simply take his time 

in processing the folders; he simply must choose a date and time for which the 

average is to be effective, then go to each woman's folder and read out the salary 

corresponding to that date and time. Concurrently, other clerks may update the 

women's salaries. However, a consistent computation of the average salary does 

not interfere with the clerks that are updating salaries. 

This strategy is equally applicable in a distributed database. If the 

personnel files of a company are distributed to the company's many locations, it 

may be unacceptable to gather up all of the files of women employees in order to 

send them to company headquarters to compute the average. Instead, company 

headquarters can send a memo to clerks at each site with instructions to sum up 

the women's salaries effective as of a common date and time. The key idea here 

is that the central headquarters can construct a name (consisting of the effective 

date and time itself) for the state of the database at a particular time, and then 

use that name to gain access to that state of the database even though the 

database is under constant change. NAMOS provides a similar mechanism to 

computer programs -- the ability to name particular states of the data stored in 

the system along with the ability to use those names to gain access to the values 

of data objects in the state. 

Synchronizing updates in the salary database is somewhat tricky, however. 

The salary adjustment for the women is performed by having the clerk decide 

upon a time when the adjustment is to be effective. He then must compute the 

average salary of the men and the average salary of the women as of just before 

the effective time of the adjustment, to preclude any other changes to individual 

salaries happening between the computation of the adjustment percentage and the 

actual application of the adjustment to the women's salaries. After computing the 
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adjustment percentage, the clerk then can go to each file and add a new salary 

sheet with the adjusted salary. 

The tricky part is in the interaction between the adjustment transaction 

and any other clerk's attempt to read salaries. Let T be the time the adjustment 

is to be effective, and T-1 be the time at which the averages are computed in 

order to compute the adjustment percentage. Although the adjustment is 

effective at T, it may be that the performance of the adjustment is not completed 

until sometime after T because the job is so difficult. Then it is possible that 

another clerk will want to know the salary of Jane Jones at time T even though it 

has not been computed yet. He may not even be aware that an update is in 

progress. The most recent salary of Jane Jones recorded in her folder is that of 

an earlier time. If he takes that salary as the value effective at T, and then the 

adjustment is completed, then he will be wrong. There are two solutions to this 

problem incorporated in NAMOS. First of all, reading a value out of the folder 

always includes making a notation on the sheet containing the salary read that 

indicates the effective time of the read. Thus, if Jane Jones's salary is read as of 

time T, the sheet containing the salary believed to be effective then is noted to 

have been read at time T. When the adjustment is applied, it will be discovered 

that someone has already read a different salary than the one that has been 

computed to be effective at time T. The clerk doing the adjustment would then 

have no choice but to undo all of the adjustments to salaries he has made thus 

far, choosing a new time for his adjustment to be effective. This is NAMOS's 

primary solution, guaranteeing that each transaction is atomic. 

In the case of the salary file, however, aborting the adjustment of all 

women's salaries because someone at random read Jane Jones's salary is a bit 

impractical. The solution does, however, work well in many applications. For 

cases like the salary adjustment, though, NAMOS provides a second mechanism as 

a refinement (the refinement is not described until chapter six). Essentially the 

refinement amounts to allowing the clerk to mark all of the women's folders in 

advance that a change may be made to the salaries as of time T. Thus a clerk 

that queries Jane Jones's file will observe that the most recent salary on file for 

Jane Jones is likely to change as of time T. He can then wait until the change is 

made, or he can ignore the notation and read the most recent salary (deciding 

that it is effective as of time T, and eventually aborting the adjustment as 

before). 
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A rather surprising property of the naming approach is that it is not 

necessary to predict in advance what records might be accessed. Instead the 

naming mechanism ensures that whenever a particular file is accessed, the proper 

version is obtained. In the locking or mutual exclusion approach, a consistent 

state is observed by assembling all of the relevant folders on one's desk at the 

same time. In the naming approach, one can get a folder at a time, read the 

correct version, and return it to the files, and still obtain a consistent state of the 

system. This property is the essence of NAMOS's solution for the problem of 

constructing new systems from existing ones. In a locking system, composition of 

a new function from several pre-existing ones usually requires doing all seizing for 

the composite operation before any component operation is executed. 

NAMOS includes, as well as the naming approach to synchronization, an 

approach to recovering from failures. Essentially the problem can be modeled in 

the personnel file case as what happens when a clerk has a heart attack while in 

the middle of carrying out a transaction (or in a distributed system, if one of the 

planes carrying a message to a clerk at a remote site crashes). Part of the update 

may have already been made, and no other clerk may know how much the clerk 

had actually done. In the mutual exclusion case, to prepare for such an 

eventuality, each clerk will have to diligently record the old value of any salaries 

he updates in some sort of update log. He cannot return any files to the file 

room until he has completed the update, because it might happen that that file 

would be picked up by another clerk, used, returned, and then the original clerk 

may have died. The problem is that the original clerk then must have his work 

erased, but the other clerk has read the output of that work and there is no 

record that he has read it. 

NAMOS takes a different approach, that has a similar effect. Since an 

update generates a new version, it is only that version that is affected if the clerk 

dies after performing part of an update. The solution is to add to the sheet of 

paper containing the new version a note to the effect that "this sheet is part of a 

coordinated update being performed by clerk John Jones. To find out if the 

update is completed, call John and ask if update 0987654327 has been completed." 

This has the effect that if John dies, someone will answer the phone and say that 

John has died. John then merely has to record somewhere what the numbers of 

the updates he has performed are, so that when he dies, the person taking over his 
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job can answer the question. The update 111 progress when he dies will not be 

performed, v.·hich is what is desired. 

In some databases, recovery from failure is achieved by recording in a 

central place a log, called an update log, of all changes made by transactions. An 

entry in the log consists of a "transaction identifier" to identify the transaction 

that changrd the value, the name of the object changed, and the old value before 

the change. A partly completed transaction can be undone by searching 

backwards through the update log and undoing all of the changes made. In a 

sense, the multiple versions of objects kept by NAMOS encode the same 

information as the update log, but the old versions of objects are also directly 

accessible for transactions to read after changing the objects, simplifying the 

synchronization of concurrent transactions. 

\Vith this example the basic elements of NAMOS have been characterized. 

In the remainder of the thesis, we explore the actual mechanisms needed to make 

the analogy work in real computer systems. This involves some careful definition 

of the exact behavior of the synchronization and reliability mechanisms, and some 

engineering tradeoffs in making the system perform well. 

\\'hat has not been captured in the analogy is the notion of constructing 

transactions as modules that can be used in the building of other transactions. It 

was noted above that because synchronization is achieved by naming states of 

objects rather than seizing control of the objects, the NAMOS approach does not 

require all resources used by a module to be known to its caller. Exploiting this 

property requires designing in additional structure to the names used for states of 

the system that is not present in the "date and time effective" name used for 

states of the personnel files. The structure needed will be described in chapter 

three. 

1.3 Related Work 

The fields of synchronization and reliability in computer systems are old, so 

any attempt to list exhaustively the related literature would be unfortunately long. 

However, a number of relatively recent developments in these fields have 

particular bearing on the problems and approaches described in the thesis. 
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Distributed systems £!re a more recent phenomenon, and the related 

literature on the kinds of approaches referred to here is very small. The idea of 

distributed systems that are composed of autonomous nodes integrated only 

loosely through agreements to use a common mechanism for sharing information 

and services through the network is best described by d'Oliveira[DOliveira77] and 

Saltzer[Saltzer78]. Related work to develop a system for integration of existing 

programs on a set of relatively autonomous nodes is to be found in the National 

Software \Vorks Project described by Crocker[Crocker75]. Our work differs from 

the National Software \Vorks project in that it does not take as a requirement the 

fact that existing programs and data need to be integrated, and can thus define a 

much more coherent interface to be used by programs to facilitate easy sharing. 

The work in developing languages to support design of objects and 

operations in which information about the details of the implementation is largely 

hidden from the user is basic to our approach to defining a system to support 

decentralized development of software that is later shared. The languages 

CLU[Liskov76,Liskov77a] and ALPHARD[Wulf74], along with the operating 

system kernel Hydra[\Vulf75], are essential precursors of the present thesis. 

Our approach to synchronization is derived from two distinct but closely 

related ideas. First, the notion of version numbering to achieve synchronization is 

closely related to the synchronization mechanism developed by the author and 

Kanodia[Reed78]. :Maintaining a sequence of versions of an object was inspired . 

by an idea present in both the TENEX file system[Bobrow72] and the ITS file 

system[Eastlake69] where multiple versions of a file can be catalogued with 

successive version numbers while accessing a file gets the most recently created 

version by default. This provides a primitive synchronization mechanism among 

the accesses to a file, allowing a new version of the file to be written while the 

older version is still being read, giving a sort of "read-locking" for free. 

The second related group of ideas involves the use of timestamps for 

synchronization. Johnson and Thomas[Johnson75] suggested the first such 

mechanism, which used timestamps plus an underlying property of the network 

that messages are delivered in order to assure synchronization of a simple 

distributed data base. Thomas[Thomas76] elaborated this approach to allow 

somewhat more general operations, while still requiring that the database be 

completely replicated at each node of the system. Lamport[Lamport78] describes 
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the use of timestamps to define an ordering among requests that can be used for 

synchronization, and a simple algorithm to achieve mutually exclusive execution of 

sequences of program in time in a distributed system based on timestamps. The 

SOD-I distributed database system developed by Computer Corporation of 

America uses timestamps internally to enforce a locking 

stratt'gy[Bernstein 77 ,Rothnie77]. 

The major difference between the use of timestamps to achieve 

synchronization by these projects and our use of pseudo-time in NAMOS is that 

pseudo-time is a part of the "programmer's box of tools" in NAMOS, whereas 

timestamps arc hidden mechanisms in the above approaches. 

The notion of dt'signing a program that accesses shared objects by building 

it out of pieces that execute as if they are the sole agents of change to shared 

objects has its roots in the concept of a database transaction. The essence of the 

database transaction concept is described quite well by Eswaran, et a/.[Eswaran76]. 

Two nice owrviews of the field of designing reliable systems are 

Gray[Gray77] and Randell[Randell78]. They define the basic strategy of 

backward error recovery used to handle loss of availability within NAMOS. 

The implementation mechanism used to support possibilities, the commit 

record, is closely related to the intentions list of the algorithm used to achieve 

coordinated reliable updates in Lampson and Sturgis[Lampson76]. Also related is 

the log mechanism described by Gray[Gray77] for handling the backwards 

recovery of failed transactions in a central data base system. The two-phase 

commit protocol described by Gray is essentially the same as the notion of making 

all changes conditional on the eventual state of a commit record in NAMOS. 

However, NA:\IOS supports modular construction of operations and objects, while 

these other systems do not necessarily do so. 

Lampson and Sturgis's approach to recovery also shares our basic 

assumptior~s about the properties of memory described in chapter two, categorizing 

memory into two classes -- stable and volatile. 
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In essence, the NAMOS system developed here differs from other work in 

synchronization and reliability because it ties together four related concepts in one 

framework -- synchronization, reliability, modular construction of programs, and 

decentralized, distributed systems. Not only does this ensure that the solutions 

harmonize v.·ith one another, but in fact each problem is simpler when solved in 

conjunction with the others. The simplification occurs because it is hard to 

separate the four areas of synchronization, reliability, modular programming, and 

distributed systems cleanly from one another -- one has to think about certain 

parts of the other areas in dealing with any one area. 

1.4 Thesis Plan 

The remainder of the thesis is divided into two parts. The first part 

consists of an explanation of the object level interfaces, and the semantics of 

operations at this level. The second part discusses the issues of implementing the 

interface on a distributed system, handling low-level failures of communications 

and nodes, managing storage, and so forth. The description is done this way to 

adhere to standard top-down design. 

In fact, I think it is interesting to note that the actual thinking process was 

not top clown at all -- I \\'as much more concerned with what was implementable 

than with what to implement. Especially when dealing with fault-tolerant 

mechanisms, one has to be careful not to ask for too much from a mechanism -

it may not be achievable. No matter how much one may try to sweep the 

consequences of failures under the cover of the "system blanket," it keeps burning 

its way through. Consequently, some notion of the kinds of implementations that 

are possible shows through in the interface semantics, and I will allude to various 

notions in the description of the interface. 

Chapter two, then, provides some background m the problems of 

implementation. Failures of communications and nodes are described, and an 

argument is made that low-level error correction (such as link-by-link error 

correction, or reliable stream communication) is insufficient to solve the problem 

of failure recovery. Similarly, some of the interaction between communications 

technology of the packet network, reliability mechanisms, and proper 

synchronization will be discussed. 
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Chapter three begins the discussion of the object interface. Three basic 

notions, the system history, creation of hypothetical states, and the frozen system 

states m which computations can be executed (called pseudo-temporal 

enrironmcnrs). are described, and linguistic constructs that reflect these notions are 

developed. This chapter is long and involved because it presents all of the aspects 

of the interface. which is quite different in some respects from traditional 

synchronization mechanisms. Nonetheless, it is essential to the understanding of 

the rest of the thesis. 

Chapter four discusses several ways in which the object interface can be 

used. A very important case, the creation of multi-node transactions (as defined 

by Eswaran et a/.[Eswaran76]), will be shown to be easily handled with the object 

interface. More importantly, the definition of unplanned transactions, and the 

creation of conversational transactions will be shown to be easily accomplished. 

Other uses, such as consistent recovery from permanent mistakes or errors 

(backup), will be described. Finally, some "unstructured" ways to use the 

mechanisms will be shown, for two reasons. First, I want to show that even with 

my scheme, all is not perfect, and second, if there is no way for a mechanism to 

be misused, one should suspect that there are probably some perfectly reasonable 

uses that it cannot support. 

Chapter five begins the discussion of implementation, talking about a 

mechanism for implementing the hypothetical-ness of hypothetical states of the 

system. The basic idea is to build at a low-level in the implementation data 

representations that allow operations to be recoverable -- a term used by 

Gray[Gray77] to mean that there is a single instant during their execution when 

they "happen". If a failure occurs before this instant, it is as if nothing had 

happened, and if failure occurs afterwards, the operation is guaranteed to appear 

to have completed correctly. A mechanism called a commit record that I have 

developed is described, and various implementations are discussed. 

Chapter six continues the discussion of the implementation, talking about 

how the system state is built of states of individual objects related through the 

concept of pseudo-time, and the representation of object histories. Issues that are 

key to the implementation, such as the necessary synchronization of clocks, 

management of storage for objects, and the details of representation of object 

histories needed to ensure correct operation i:1 the face of failure, are discussed. 
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Optimization of performance of the mechanisms, and ways to eliminate deadlock 
are also discussed. 

Finally. chapter seven summarizes the,..._ p.ia& aoaJs aad directions for 
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Chapter Two 

The communications system and storage system 

In this chapter I want to discuss the interactions of the low-level 

components of the distributed system \Vith synchronization and failure 

management. The important components are the long-term memories of each 

node and the message p<~ssing network that connects the nodes, allowing them to 

call upon each other for services and access to data. In a sense, the characteristics 

of the components constitute my assumptions about where the technology is and 

where it is likely to go. 

The major problems with each component consist of reliability problems 

and synchronization problems. In turn, reliability breaks down into availability -

whether the component is available to have data placed into it and taken out of it 

-- and integrity -- whether the data entrusted to the component is damaged or not. 

Synchronization problems involve the ability to use the basic properties of both 

the message system and the storage system to control the order of actions taken 

by computations in the system. Since multiple computations will be proceeding in 

parallel, with only loose coupling between the computations at best, the order of 

actions taken in the system is relatively unconstrained. As shall be discussed, the 

message system and the storages system each add the opportunity for more 

unconstrained ordering of actions. 

Both the message communications system and the data storage system are 

quite similar in function. In each system, one places data into the system with 

some tagging of the intended destination, and then later the data is taken out, 

selecting the data by means of its destination tag. The differences between the 

two are basically either technological or in their intended use. Typically the data 

sent in a message is intended to be transient, used only once or not at all, and in 

any case, used fairly promptly. In contrast, the data stored in a data record is to 

be saved for many potential later uses, that can be separated by quite a long time 

from the initial transmission. 
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It is, in fact, the case that a communications system can be built on what 

seems to be a "memory" technology; for example, networks have been built by 

connecting multiple processors to a shared bulk memory, such that messages to the 

other processors are stored in queues polled by the other processors. The 

distinction between such a system and a shared memory multiprocessor system is 

slight. The construction of a memory system using communications hardware is 

conceivable, but seems not to be a viable way to go (although once upon a time, 

the cost per bit of delay lines was relatively quite cheap). Thus we cannot make 

the simple argument that communications and memory are basically different, and 

that we must therefore distinguish the two. 

I do, however, assume that there are two components, the communications 

system and the storage system. The communications system is an abstraction 

designed to capture the notion of data transport. The storage system is an 

abstraction designed to capture the notion of long term memory of information. 

These abstractions can be thought of as extreme points on a continuum that 

contains all real storage and communications systems. 

It is useful to distinguish the two components, given their basic similarity, 

for two reasons. First, the autonomy property of the distributed system argues 

against treating the shared network as a long-term repository of shared 

information. Because the network is shared, it should do as little as possible for 

its users in order to reduce user interdependence. Second, in the message 

transmission mechanism, the tradeoff between reliability, cost and delay becomes 

very important because of the large physical distances involved, whereas in a local 

node. reliability can be achieved with relatively little cost and delay. 

Consequently, the reliability strategies for data storage systems generally achieve a 

high degree of reliability in the transmission of information from source to user, 

while a significantly lesser degree is generally provided by message communication 

systems. 

Since 111 a distributed system, messages are used to request remote actions, 

the properties of the message system both in terms of reliability and 

synchronization have a serious effect on the ability to create actions that are 

composed of several subactions initiated at several nodes by messages. Taking no 

particular care to ensure reliability and synchronization of the delivery of 

messages, the behavior of such an action (its semantics) in terms of its effect at 
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the multiple receiving nodes, and its interactions with other such actions that may 

be initiated concurrently, is extremely complex to describe. 

To reduce the complexity of describing the behavior of such actions, a 

method based on numbering messages can be used to transform the problems of 

lack of integrity, variable delay, and duplication into a common problem, lost 

messages. The problem of coping with the unusual behavior of the message 

system is thus reduced to coping with the problem of coping with lost messages. 

2.1 Reliability of Message Communications 

Achieving integrity of the messages sent through the communications 

network is not usually a difficult problem. One can get quite a large amount of 

integrity by associating a checksum of an appropriate size with a message, 

checking upon receipt of all messages that the checksum correctly matches the 

data in the message. I am assuming that errors within messages are random. The 

result of the use of checksums is the transformation of all message content errors 

into lost message errors (thus transforming a question of the integrity of the data 

into a question of the instantaneous availability of the communications path 

between source and destination). By the use of encryption of messages, one can 

also treat attempts to modify messages in transit as random corruption of data in 

the unenciphered form of the messages[Kent76]. 

Messages are used either to communicate information to, or to cause 

actions by, a computation at some other node. In essence, then, it is unimportant 

where unavailability or lack of integrity occurs -- the important thing is that the 

system as a whole provide reliability from the source computation to the 

destination computation's use of the message. Any guarantee of reliability of the 

message system alone cannot ensure the reliable functioning of the system as a 

whole, unless we make the rather unreasonable assumption that the only unreliable 

component of the distributed system is the message transport mechanism. The 

relia bi li ty of the message system itself is much less important than the function 

the message system provides for coordinating responses to failures both inside and 

outside the message system. 
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To detect failure of a requested action, the standard mechanism IS positive 

acknowledgment, i.e. when the action is performed, a message is used to inform 

the recp1rstcr that the action has been performed. Of course, the need to wait for 

a positive response can lead to some rather serious problems. The basic problem 

lies in the knowledge that the requester has of the state of his action after a 

requesting message has been sent. If the requester receives a proper response, then 

it is sure that the action has been performed. However, if it has received no 

response. then the requester only knows that the request may not have been 

procrssed, not that it has not been wholly or partially processed. Achieving 

reliablr control of remote actions requires some tricky design of the remote 

actions. so that a request may be repeated if no response has been gotten in an 

appropriate time, without causing errors due to running the request more than 

once (such requests are idempotent). Handling repeated requests will be discussed 

shortly. 

As a basic assumption, I conjecture that the problem of unexpected loss of 

availability cnn be characterized by a request uncertainty principle, stated as 

follows: 

Once a remote action has been requested, the requester cannot 
always determine, in a bounded time, whether or not it 
has occurred. 

A program that requests remote actions must thus always be prepared to somehow 

handle the case that it has initiated a remote operation, but cannot determine the 

status of its request. In non-distributed systems, this case is usually so rare that it 

is not explicitly considered in the design of software. 

Unfortunately, if the requesting node fails, or chooses to give up after a 

while, it may be the case that it still does not know whether the request has been 

processed. It is important that the system give the requester the option of giving 

up without causing the possibly partially completed action to leave the system in 

an irrecoverable state. The option to give up on a request that has not yet been 

completed adds no difficulties that are not already present due to the possibility 

of a failure of the requester, and adds to the autonomy of the requesting node. 

- 34 -



It is important to note that a certain part of the unreliability of the 

message system cannot be reduced by using more reliable components. The 

portion I refer to is that caused by autonomy. The likelihood that a node owner 

will disconnect or shut off his machine is independent of the innate hardware 

reliability. Also, it is often not economically feasible to provide complete 

reliability of the message system, especially where long-distance communication, 

with hazards of natural disasters, wars, etc., is involved in the system. For this 

reason, the unreliability of the message system must be taken for granted, and 

reflected in the application programming interface. 

2.2 Synchronization of Message Communications 

The primary problems with message communications from the point of 

view of synchronization of remote actions are duplication and delay. In most 

communications networks both of these problems arise normally, as a result of the 

internal structure of the networks. Even '"'ere the network design specialized to 

prevent duplication and varying delay on messages, however, protocols that 

attempt to ensure the reliability of message communications will introduce these 

factors anyway. 

Duplication and loss of messages can be characterized quite simply. For 

every message sent in the system, that message will arrive at its intended receiver 

any number of times, from none on up. Delay can also be simply characterized 

for the purposes of the thesis -- the individual arrivals of the copies of a message 

may be at any times later than the sending of the message. 

Duplication is a problem in the use of communications systems because 

messages are usually used to cause actions at the receiver. Depending on the kind 

of action, 1 he repeated performance of the action requested by a message may be 

an error -- for example, a message that requests the receiver to subtract one from 

some integer cell will, if no attempt is made to prevent repeated execution due to 

duplicated messages, cause the cell to be decremented some number of times. One 

way to avoid problems resulting from duplication is to remember all messages ever 

received at the receiver, assuming that they are distinguishable. If the receivers of 

the system all ignore duplicated messages based on this information, then the 

behavior of the message system is simplified to the statement that for every 

message sent, it is received at the intended receiver either once or never. 
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Remembering all messages received is a quite expensive strategy in terms of 

the amount of memory needed at a node and the amount of time needed to 

verify that a message is not duplicated. Another strategy that does not require 

unbounded memory is to assign an identification number to all messages sent, 

where each receiver stores the largest number attached to any received message, 

and ignores any message that is received whose number is less than the number 

currently stored at the receiver. In this strategy, all duplicates are thrown away, 

but also non-duplicated messages that have a number Jess than the receiver 

number may be thrown away (some lost messages can never be resent in this 

strategy. since they may have identification numbers too low. A more expensive 

variant of the scheme is to have each receiver remember the highest message 

received from each source, so that the source can always retransmit the last 

message sent). To minimize the number of messages thrown away erroneously, 

the message identification numbers must be chosen so that messages are numbered 

in an order that ascends as the arrival time of the first copy. In most networks, 

the arrival time of the first copy is correlated strongly with time of sending, so by 

using the clock time of sending as the identification number, the number of 

messages falsely rejected as potential duplicates can be reduced. 

:"Jote well, however, that it is sufficient to number the messages arbitrarily 

to achieve duplicate rejection -- the use of clocks, and mechanisms that ensure 

that two different messages get different identification numbers, are only ways to 

ameliorate the false rejection problem. 

I have enumerated these strategies for avoiding duplicate messages here 

because they form a basis for the mechanisms that handle duplication of requests 

in the system to be described in the rest of the thesis. An alternative approach to 

the one I have taken would be to eliminate duplicates in a low-level 

communications protocol, then build the system assuming that message 

duplications never happen. I have not taken this approach for two reasons. First, 

eliminating message duplications at a low level cannot help with the problem of 

requests duplicated as a result of retransmission in an attempt to handle a request 

whose status is uncertain. In the system to be described, duplicate requests are 

rejected in any case by mechanisms analogous to the mechanisms used for 

duplicate message rejection. Since the only objection to a duplicate message is 

that it may lead to a duplicate request, duplicate messages will be handled by the 

higher level. 
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Varying delay of messages can lead to another sort of synchronization 

problem. Messages can arrive in an order quite different from the order in which 

they are sent. The simplest example is a computation that sends two messages to 

the same receiver. If the first is delayed more than the second, then it may arrive 

after the second message has been received and processed. However, this example 

Fig. 2. Reordering of messages by the message system 

A Site 1 Site 2 B 

l l 
send to I~ /send to I 

sen)to 2 receive rom A) / /sen}to 2 

receive (from B)~ (from B) 

~ 
-----_.receive (from A) 

is rather tame compared with the one in figure 2 where each of two computations 

send messages to each of two receivers. At one receiver, the message sent by 

computation A arrives first. At the other, the message sent by computation B 

arrives first. This possible order of arrival can happen no matter what order each 

computation chooses to send the messages in. The result of this reordering of 

messages is that it is not at all simple to understand what the result of a set of 

actions requested by messages to remote sites will be. In the case shown in the 

figure, there are four possible outcomes (assuming that the requests have effects 

only at their destination site, so that the relative ordering of a pair of requests 

destined for different sites can be ignored) -- 1) both of A's requests will be 

processed before both of B's, 2) both of B's will precede A's, 3) A will precede B 

on site 1, but not site 2, or 4) B will precede A on site 1, but not site 2. Given 
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n computations. each sending messages to m sites, the number of possible arrival 

orderings is (n!)m. Such a large number (if n=m==5, there are 25x 109 orderings) 

of possible interactions among computations can be very hard to comprehend 

when writing a program that requests remote operations. Certainly some strategy 

is needed to make sure that under all possible arrival orderings, the proper result 

is achieved. 

Fortunately. there are ways to overcome the complexity resulting from 

message reordering. The solution used in the thesis is based again on numbering 

messages. and accepting at a receiver only messages that have a larger number 

than the ones already received. If all messages intended for a particular receiver 

are guaranteed to have distinct numbers, then the possible orders in which 

messagr;-s can be receiwd at a receiver are limited to subsequences of the sequence 

defined by ordering all messages according to their message number. Messages 

rejected at the receiver due to a too low message number are indistinguishable, 

from the sender's point of view, from lost messages. 

Correlation between the order of message arrivals at several sites can be 

achieved with the same numbering mechanism. If in the example above, the two 

messages sent by A have the same number, and the two messages sent by B have 

the same number (without loss of generality, greater than the number used by A), 

then the possible orders of arrival of messages can be thought of as having A 

arrive before B at both receivers, and the subsequences that can result from loss 

of individual messages in that ordering. 

As in the similar scheme that allows detection of lost messages by 

numbering messages, the choice of numbers may be arbitrary, subject to the 

restriction that different messages intended for the same receiver have different 

numbers. Howe\·er, a completely arbitrary choice of message numbers can exact a 

heavy penalty -- many rejections of otherwise acceptable messages. In the 

example. if A's messagrs are generated and processed long before B even attempts 

to send his messages, yet B uses a number less than the one A used, then B will 

fail. By choosing message numbers so that they are chosen in an order that 

ascends in time, then the likelihood of such unnecessary failures will be reduced. 
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Here we lose a useful property if we "improve" the scheme so that each 

receiver remembers the highest message number received from each sender, and 

rejects those messages that arrive out of the order sent by it sender. The 

"improved" scheme cannot ensure a correlation among the messages sent by two 

different senders to two different receivers. Thus, if the two messages sent by A 

have the same number, and the two by B also have the same number, all orders 

of arrival are still possible, in contrast with the two choices (A first at both sites, 

or B first at both sites) achieved with the mechanism using a single highest 

number at each receiver. 

The method of numbering request messages and accepting messages only in 

increasing order at a receiver is the basis for synchronization of remote actions in 

the system developed in this thesis. However, as pointed out above, using the 

method at the message level without knowledge of the requirements of the higher 

level is probably not as good as using the method at the request generation and 

processing level to organize synchronization. At the level of the system concerned 

with the actual semantics of the requests, the grouping of requests sent out with 

the same message number can be chosen to have exactly the right effect. 

\Vithout semantic knowledge, the best the message level can guarantee is that 

messages sent later will be processed later or not at all. A particular advantage of 

handling delay and duplication at the request level is that out of order, duplicated, 

and delayed messages do not always cause problems, depending on the semantics 

of the actions and the objects they act upon. For example, if one asks for the 

balances of two accounts at some database representing a branch bank, it makes 

no difference if the responses are processed in an order different than the order 

of the requests. Similarly, if one deposits two checks to one's account, it is, in the 

long run at least, irrelevant in which order the checks clear. The mechanism 

described in the thesis can often tolerate messages that arrive quite out of order. 

Duplicated messages that cause no "side-effects" at the receiver (such as pure 

queries) are ah ... ·ays quite acceptable, and reordering such messages may often be 

acceptable. Requiring that such requests be processed in the order they are issued 

may cause a significant delay that is often unnecessary. 
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2.3 Reliability of Storage System 

As noted earlier, the integrity of storage systems can be made quite high, 

at reasonably low cost, by using error correcting/detecting codes. Further, the 

availability of information stored on disk or other large scale secondary memory is 

usually as good or better than the availability of the node to perform 

computations. Failures of information to be available are usually transient (a disk 

pack off-line), and only very rarely will a node's storage system (taken as a whole, 

including whatever local backup mechanism keeps extra copies of the state on 

tape) lose information stored in it. Consequently, I will generally assume that a 

node never loses information once it is properly stored on disk. This assumption 

is not absolutely required -- it is possible to correct for loss of information by 

"turning back the clock" and repeating the actions needed to create the 

information. However. the mechanism developed m the thesis cannot 

automatically correct for such loss of information, since once the information IS 

lost. there is no way to regenerate it except by going outside the system. 

If the basic storage mechanism is not reliable enough, replication of 

information to create redundant copies for the purpose of ensuring availability can 

be used. Two possible kinds of replication are possible, either multiple copies 

within a node, or multiple copies at several nodes. In the thesis, we assume that 

replication within a node is the primary means for achieving availability. 

Howe,·er, in chapter five, a strate,gy for increasing the availability of a critical 

class of system objects, possibilities, by multi-node replication is described. In 

chapter six, a mechanism for encaching versions of objects to increase availability 

and decrease delay is also described. 

Systems have both long-term and short-term storage. It seems to be the 

case in the real world, though it is not clear what the base cause is, that the more 

rapid accesses (stores and updates) are only possible from storage that tends to 

lose information upon failure -- core memory is more prone to failure than disk 
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or tape. 1 Thus the storage used to hold the frequently accessed transient states of 

computations must be of the more volatile sort. Following the approach suggested 

by Lampson and Sturgis[Lampson76) we capture this idea by considering two 

kinds of storage in the nodes, stable storage and volatile storage. Stable storage is 

the kind of storage used to hold objects for a long time (across system crashes), 

while volatile storage is used to hold intermediate values created as part of 

computations. Volatile storage will be thought of as belonging to a computation 

that uses it, such that failure of the computation or the node running the 

computation will cause the volatile storage to detectably lose its values. 

The best definition of volatile and stable storage is in terms of their 

interaction with failure. Once a stable storage record has been successfully 

written, succeeding reads are guaranteed to return the value stored. Upon a 

failure before the completion of an update is signalled, the updated storage 

location (record) contains either the old value, the new value, or an unambiguous 

indication that it is inconsistent. If an update signals its completion, the stable 

storage location is guaranteed to contain the new value. Our definition of stable 

storage is due to Lampson and Sturgis[Lampson76]. In contrast, once a volatile 

storage location has been written, it may lose its value (detectably) at any time. 

2.4 Synchronization of Storage Systems 

There are two basic problems of synchronization m the storage systems. 

First, there is the problem of making sure that the representation of data on 

stable storage correctly represents the state of the computations that are making 

changes to the storage. Second, there is the problem of making multiple changes 

to storage consistently, without other computations at the node being able to 

interfere by modifying data during the set of changes. 

1. Core memory is non-volatile, but it is randomly addressable. If a failure 
occurs in the addressing mechanism, it can destroy any part of the core memory. 
Tape and disk on the other hand, are not so randomly addressable, and have the 
property that only the portion of the tape or disk currently accessible can be 
damaged on a failure. 
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The problem of ensuring that the representation of data on stable storage 

Is correct arises because of the common use of virtual memory systems to make 

secondary storage look like primary memory and because of sophisticated disk 

queueing algorithms. Basically, in many systems, a write to secondary storage may 

not occur immediately when it is logically requested. Given two successive writes 

to secondary storage, one at time t 1 and one at time t2 (t 1 <tz). it is possible that 

the one specified at t2 will happen first, and if a failure occurs, may be the only 

one to happen. In the virtual memory case, the reordering of writes arises 

became writes directly change the primary memory (volatile) copy, only later 

modifying the secondary storage copy. Thus, if the modified pages of primary 

memory are written out in a different order than that in which they were written 

originally. the changes to secondary storage will be made in different order. Note 

that this is only a problem when the system encounters failure, since accesses to 

objects belonging in stable storage always go through primary memory. In the 

case of optimizing disk queueing algorithms that reorder the write queue in order 

to minimize seek time on movable head disks. the same problem can occur 

because of the reordering. The solution in either case is to provide a mechanism 

within the system whereby one can ensure that a particular modification to a 

stable storage object has been completed to the point that the copy on stable 

storage has been modified. In the virtual memory case, a call on the operating 

system to "synchronize" secondary storage can be provided, whose semantics is not 

to return until the secondary storage copy is identical to the primary memory 

copy. using a forced disk write if necessary. In the case of optimizing queueing, a 

call on 1 he operating system to wait until a queued write is completed is one way 

to l)fo'·ide the desired control. I will assume that such a mechanism is provided at 

each node, and is used to insure that writes to stable storage used in the 

algorithms executed at each node are done in the order specified by the algorithm. 

The other problem of synchronization within a node is coordination 

between seYeral computations that attempt to modify more than one data record 

on that node. This is the local node version of the general synchronization 

problem attacked in the thesis. I am going to assume that the solution provided 

in the rest of the thesis is used inside the local node for the general 

synchronization case. HoweYer, there will be occasions in the construction of an 

implementation where the need to synchronize action on a single data structure 

composed of multiple records will arise. This is a simpler case, because there is no 
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need to be prepared for synchronization constraints that may include any set of 

data objects on the local node. All that the nodes need to provide IS a 

mechanism for creating atomic operations on individual data structures. 

To this end, a node is expected to provide a very simple form of locking. 

Associated with a data structure of the sort I am concerned with, there will be a 

lock. Setting that Jock prevents other computations from either reading or writing 

the data structure. Only one lock may be set at a time by a computation, so that 

there is no problem \vith deadlocks. Now the problem that must be solved is the 

interaction of failure with the Jocks. If the computation that has the lock set 

terminates without clearing the lock, then the data object must be presumed to 

have been only partially modified. What must happen is that the data structure 

being modified must be restored to its original state before proceeding, thus 

having the effect that the local computation that set the lock appears to have 

never run. A very simple mechanism that can be used to implement these 

lockable data structures is shown in figure 3. 

Fig. 3. Lockable Data Structure 
Data Object Pointer __ ....,_ ____ _, 

Process 

Current Va1t--t-----• 

Saved Val-+-----+ 

The new value constructed by a process that modifies the data structure is 

constructed by copying enough of the original value to avoid actually modifying 

the saved value. Since the saved value is not modified, resetting the data 

structure to the saved value upon salvaging correctly causes the data structure to 

appear as if it never \\·as touched by the failed process. 

- 43 -



The header contains three parts. The Process field is either null, indicating 

that the data structure is not locked, or set to name a process that has the data 

structure locked. If the Process field is non null, then if the named process exists, 

only that process can read or modify the data structure. If the process named 

does not exist (since it has failed), then the data structure must be salvaged. The 

current ntl field is a pointer to the current value obtained by the process that 

locks the data structure. The saved val field is set to be equal to the current val 

field "··hencvcr the process field is set to a non-null value. The salvaging that 

occurs when a process attempts to lock the data structure and discovers that the 

process field is non-null and names a failed process consists of copying the saved 

val field in to the current val field. 

An alternative mechanism would be to have the process copy the value to 

be modified into another storage area, modify it as needed, and then when done, 

switch a pointer to the modified version in an atomic operation. It is still 

necessary in this scheme to ensure that other processes updating the object do not 

simultaneously make their own copies and manipulate them, so a way of 

indicating an update in progress and a salvaging mechanism of some sort, or a 

way of pre,·enting all but one such update are still needed in this mechanism. 

The purpose of the locks just described is to provide minimal locking 

needed to ensure correct synchronization of actions at a node. It is intended 

therefore that the locks be set for as short a time as possible. A restriction to 

help ensure- this is that no lock can remain set if the process waits for some 

external event. such as sending a message or receiving one. If a process does 

attempt to wait while it has a lock set, it will be terminated, thus effectively 

freeing the lock after the required salvage is performed. 

2.5 Remotely requested actions 

As noted earlier, actions are remotely requested by means of messages. A 

message that re-quests an action causes a computation to be started that performs 

the indicated request. The state of this computation is kept in volatile storage, 

and it can request one lock at a time as noted above. Due to duplicate messages, 

multiple instances of a requested action may run simultaneously. Actions may 

also run in an order diffe-rent from the order in which the actions are requested. 

Further, the computations running actions may fail at any time. 
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GiYen actions that have such complex behavior, it is fairly hard to 

construct a working multi-node program. Further, defining interfaces to such 

programs that can be used to interconnect multiple programs is even harder. The 

remainder of the thesis is concerned primarily with the development of 

abstractions at the next higher level that simplify the task of constructing such 

programs and interfaces. The intent, to be realized in chapters five and six, is to 

define a set of abstractions that are realizable in a relatively straightforward way 

in terms of the behaviors of remotely requested actions that result from the 

complexity of the message and storage systems. 
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Chapter Three 

Pseudo-time and Possibilities 

In this chapter and the next, I describe a semantic interface for shared 

objects and the operations on them. The emphasis in these chapters is on the 

behavior of the interfaces, rather than on their implementation. For this reason, I 

will take an abstract view of the nodes, objects and computations in the system, 

such that the view represents fairly accurately what the "applications programmer" 

might imagine the system to look like. Briefly let me outline what will happen. 

The key ideas of the thesis are presented in this chapter. Two key 

abstractions, pseudo-time, a way of relating and synchronizing the order of actions 

at multiple nodes, and possibilities, groupings of actions that must be done all at 

once or not at all, provide the tools by which a programmer can manage the 

effects described in the previous chapter. Objects that have indefinite scope and 

extent provide the mechanism for information sharing. Basic concurrency control, 

defining the interactions between independently executing computations accessing 

the same objects, is done locally at each object, resulting in defining the semantics 

of an individual object in terms of an object history. To achieve more global 

control of the interactions between computations, particularly exemplified by the 

notion of a transaction, pseudo-time is used to relate individual object histories to 

obtain a system history. The system history defines the notion of a consistent 

state of the system. Programs can then ensure that they observe consistent inputs 

and generate consistent outputs by the use of a pseudo-temporal environment, a 

dynamic naming environment that functions to "stop the action" seen by the 

program, even though the system is not necessarily stopped. 

As noted in the previous chapter, a key problem m distributed 

decentralized systems is dealing with the uncertainty resulting from an attempt to 

perform a remote action. The basic approach developed here to solve this 

problem is to make the changes involved in a remotely requested action in two 

steps. The first step tentatively performs the computation, such that no other 

independent computation can observe it. The changes made to each object are 

grouped into a set called a possibility. If the first step goes to completion 
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without a hitch, the computation ts confirmed by an act that converts the 

possibility into a "reality." If not, the possibility safely times out, eliminating the 

tentative changes from the system. 

Creation of composite actions out of independently designed actions whose 

implementation details may be inaccessible to the programmer requires discipline 

in synchronizing the component actions and in managing failures, both on the part 

of the programmer doing the composition and on the part of the programmers 

who designed the actions being combined. By using the same pseudo-temporal 

environment and possibility with all the actions being combined, easy combination 

of parallel actions can be achieved. To allow the construction of such composite 

actions in such a way that they are not dependent upon the correct behavior of 

their user, the possibility concept is extended to include the notion of a dependent 

possibility. 

3.1 Objects 

Objects are the means by which information is shared within the system 

between independently executing computations. An object is a named repository 

for information. Objects possess a state that can be observed and modified by the 

execution of programs that refer to the object as an operand. Objects are 

abstract, in the sense that while an individual object may in fact be represented in 

terms of a group of lower level objects, the representation is invisible to its users. 

The essence of objecthood is possession of a name. 

In this thesis, I am concerned with objects used to store information for a 

long time (e.g., longer than the time between system crashes, or longer than the 

life of an individual console session) and that may be accessed by an unknown set 

of users (programs, people). The objects may be catalogued in a file system, such 

that the names used by the user programs will be character data, rather than 

pointers. The scope and extent of such names are not even deducible from within 

the system. Even if the objects are named only by unique identifiers (pointers), 

due to the decentralization of the system there may be no way to determine what 

references to an object exist. In a centralized system, by tagging unique 

identifiers stored within objects, mechanisms for finding all references to an 

object are possible (e.g. to garbage collect objects no longer referred to). In a 

system whose design was centralized (top-down by one person), all potential 
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interactions are constrained at design time. Neither of these ways to limit 

interactions between computations will always be possible in a decentralized 

system whose design evolves in a decentralized way. The lack of constraints on 

scope and extent make the job of proper synchronization difficult, because the set 

of independent, asynchronous computations that could interact with an object may 

not be easily discovered. 

The semantics of objects are defined locally to their implementation. In 

the abstract, the state of an object reflects the history of operations applied to it. 

The implementation of the operations in terms of the underlying representation of 

the object's state is solely managed by a program called a type manager that is 

common to all of the objects of a particular type. Hiding the implementation of 

objects within its type manager allows the implementation of objects to be 

modified and controlled locally, without the need for users of the objects to be 

aware of changes. CLU[Liskov78] and ALPHARD[Wulf74] provide this kind of 

implementation hiding, as do ACTORS[Hewitt76]. ACTORS in addition provide 

local control of synchronization between independently initiated operations on the 

same object[Hewitt77]. In this thesis, the basic synchronization of independent 

computations also is provided local to the type managers of individual objects. 

However, the abstractions defined in this chapter allow construction of 

synchronization behaviors that involve multiple objects, whereas Actors can handle 

multiple object constraints only by the construction of intermediate objects to 

mediate accesses to objects requiring synchronization[Atkinson78]. 

In the rest of the thesis, CLU syntax[Liskov78] is used to represent 

programs and objects. The objects of this thesis, however, are different from 

CLU objects in an important sense. They are shared by multiple users and are 

used to store information for a long time. NAMOS also allows arbitrary 

parallelism, while the current definition and implementation of CLU does not. 

CLU is used because the standard languages, such as Algol 60, PL/I, FORTRAN, 

etc. do not provide facilities for the construction of abstract types and operations, 

but we are very interested in exploring the interactions between abstraction 

mechanisms used to build modular systems and parallel execution and long-term 

storage of objects. Because the CLU type abstraction mechanism is used to 

describe types of objects that are stored for long-term, shared use, we will have no 

syntax for describing the short-term, unshared types that CLU's object abstraction 

mechanism provides. This lack of syntax is not troublesome for the purposes of 
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the thesis because we shall have little neerl .to refer to such types in examples, but 

a real system should provide both mechanisms. 

Message sending is implicit in the programs we use in examples. Executing 

some part of a program may require the sending of a message from the site 

currently executing the program to another node -- the mechanism by which this 

message is generated is not important. The programs themselves are written as 

sequences of steps with the exception being the two constructs, either and all, 

which execute a group of statements with no predefined order of execution, in 

parallel. The all construct is equivalent to a parbegin block, in that all 

statements must finish for the execution of the block to finish. The either 

construct finishes whenever at least one statement of the either finishes. The all 

construct is primarily useful for expressing that a group of statements need not be 

evaluated in any particular order, while the either construct is useful for 

expressing computations where not all of the branches are required to finish 

(timeouts are particularly important examples of either). Sequencing among 

expressions to be evaluated on different nodes may be implemented by a request 

and positive acknowledgment mechanism, such that calling a procedure on a 

different node involves sending the request and then waiting for a response 

signifying completion and providing results, if any, at the calling node. If an error 

occurs, interfering with either the request, the invoked procedure, or the response, 

then no response will get to the calling node. Such an error can be detected by a 

timeout. 

When concurrent execution is introduced into a programming language 

(such as CLU), there are two possible ways of thinking about procedures (or 

operations of a data type). Since procedures in a von Neumann architecture are 

executed as a sequence of steps, we could view procedures as executing over a 

period of time, and unless otherwise prevented, all of the primitive operations 

ultimately composing the execution sequences of two concurrent procedure 

executions could execute in any arbitrary order. In this thesis, an alternative view 

is taken, viewing procedures as abstract "atomic" operations, whose internal steps 

are not interleaved with the execution of any procedure. The implementation of 

such procedures is one of the primary tasks of NAMOS. Either the traditional 

view of procedures or the alternative view taken by NAMOS degenerates into the 

same semantics, given a single execution point. What is missing in the NAMOS 

view is the ability to construct "sequencing control abstractions", such as a 
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procedure that at intervals of 10 seconds increments its (by reference) parameter. 

Our thesis is that such sequencing control abstractions are best handled by a 

separate linguistic construct (perhaps called a subroutine?), leaving the procedure 

construct to build abstract operations. 

Manipulation of objects is done by operations, requested by transmitting a 

message to a node capable of executing the type manager to which the operation 

belongs. A natural way to build objects that captures the physical 

decentralization of the nodes is to define the idea of an object home. The object 

home is a node that contains the type manager for the particular type and the 

mapping from the object's name to the component objects that make up its state. 

Implementing an object on a single node ensures that all operations that deal with 

the object go to a single place to do so, so that one can queue the requests in 

some order. There are, however, other implementations of objects that do not 

require that all accesses to an object go through a common system. 

First of all, if an operation on an object does not change its state, but 

merely returns some function of its state, there is no inherent need to go to the 

home if a valid copy of the state of the object is obtainable at another node. 

Thus, copies of the object can be distributed by a kind of read-only encachement 

of the state of the object. The home is then needed only to make sure that 

operations that change the state of the object all go through the same place. 

There must be a means by which the consistency of an encached copy with the 

state of the object at its home can be guaranteed, however. 

Second, there is no absolute need for a fixed home location. Consider, for 

example, an object whose purpose is to behave like an integer set, for which there 

are only two operations -- append, which adds an integer to the set, and member, 

which tests to see if an element is in the set. The append operation need only 

send a message to any one of several sites that maintain subsets of the total set 

object, whose union represents the entire set. The member object sends messages 

to all of the sites containing subsets of the set, requesting each node to test to see 

if the integer is a member. If any node responds yes, then the member operation 

returns true, while no responses from all nodes indicates that the member 

operation should return false. Other distributed implementations of objects exist. 

Johnson and Thomas[Johnson75] have suggested a strategy by which cells that 

contain scalar values can be implemented in a distributed fashion. In chapter five, 
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a distributed implementation of a special kind of "object" called a commit record, 

used to implement the possibility abstraction, is described. 

3.2 Object Histories 

Common to the implementation of objects with fixed homes and the 

various ways of distributing implementations of objects is a fundamental 

requirement. Since an object has state, the results of one operation depend on the 

parameters to some set of other operations that are applied to the object. 

Normally, this dependency is derived from the time-ordering of operations applied 

to the object. In general, the effect of an operation may depend on all operations 

executed before the operation finishes execution. The fundamental requirement is 

that the implementation must execute the operations applied to the object in some 

order. With an implementation that defines a home node to be where all changes 

are made, ensuring that operations are applied in an order is trivial. However, 

consider an implementation of an integer cell that has two copies, each of which 

must be multiplied or added to independently. Then if site A tries to multiply 

the cell by 2, while site B attempts to add 4 to the cell, the messages to the two 

copies may arrive in opposite orders, giving different results. In this case, 

operations were applied to the cell object in no order (of course, the actions 

applied to the copies were ordered, but that doesn't necessarily lead to an ordering 

of the operations as a whole). If one were to try to read the value of the cell, 

one might get either answer, depending on the node that the read is attempted at. 

Thus a major function of any implementation of objects is to assign an 

ordering to the operations applied to each object. Perhaps the simplest way to 

assign an ordering is to use the order of arrival of requests at a home node as the 

order in which requests are processed on the object. As noted in the previous 

chapter, the arrival ordering of messages may be very hard to control in order to 

achieve any form of synchronization among objects with different homes. The 

possibility of unpredictable delay leads to lack of control of when requests will be 

executed, while the request uncertainty principle leads to the inability to stop a 

request once it has been requested. 

- 52 -



Traditional approaches to synchronization of operations on objects attempt 

to control the arrival ordering in order to achieve synchronization. The only 

control that is usually possible is to delay computations originating requests, so 

that there is only one request outstanding to an object at any one time, and only 

after that request is known to have been processed can another request be 

originated. Use of locks or semaphores provide the mechanism for deciding when 

a computation should be delayed because a request is already outstanding. This 

approach is quite indirect -- in order to perform an atomic action on a group of 

variables, one must ensure that any other computation that might want to access 

those variables is stopped. 

It is not necessary that the arrival ordering be the ordering used to process 

operations on an object. A strategy that gives the originator of requests more 

direct control of the order in which operations are performed would simplify the 

task of constructing programs that need to synchronize operations. To develop 

such a strategy, it is necessary to re-examine the concept of updating an object 

that has state. 

Traditionally, updates have been thought of as modifying objects. Another 

possibility, almost unexplored, is to think of an object as a sequence of the states 

it has assumed and will assume as the result of all updates. The updates, then, 

simply create a new element of the group, but do not involve any notion of 

modifying any one of the states. Similarly, reading an object specifies some 

element of the group. 

With this transformation of the v1ew of objects, synchronization 

mechanisms become ways to bind the references that occur at different times in a 

computation to particular elements of the group of states of an object. Thus the 

synchronization problem is transformed into a naming problem. This viewpoint 

(which I find extremely fruitful) has led rather directly to the approach for 

synchronization in distributed systems presented here, and seems to be a rather 

nice way to think about synchronization in the design of programs. 

To capture the notion of synchronization as naming, some concepts must 

be developed. An object can be thought of as a sequence of versions, the states 

that the object has assumed and will assume as the result of the computations 

that are applied to it. We will call this sequence the object history. It is a 
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completely static picture of the object's behavior. Since the entire object history 

is not known until the system has finished execution, this is clearly a logical 

concept, rather than something that has a counterpart in the real system. 

Nonetheless, for the next few pages, we will suspend our practical judgement 

somewhat, and imagine that a program does execute in an environment where all 

the histories of all shared objects are known. 

Accessing an object requires a complete specification of which version is to 

be accessed (either read or created). The way to think about this is that objects 

have two part names consisting of an identification of the object itself combined 

with information that uniquely selects a version in the object history. There are 

two issues that must be considered in designing these two part names. First, how 

are they used in programs? The ways that programs can generate and use names 

influences very strongly the utility of this approach to synchronization. Second, 

what is the structure of the mapping from version selectors to versions within an 

object history? As we shall see, by carefully choosing this structure we can make 

it easy to define a notion of system global state that is not defined in terms of a 

snapshot of the distributed system at an instant of time. 

Since the entire history of the object is known, the idea of updating an 

object in this static view is somewhat strange. Each version of an object is the 

result of an update. Executing an update may be best thought of as checking to 

make sure that the update was preordained to occur by the "god" that set up the 

system history. Eventually we will modify our view so that the static history is 

only partially known, so we can view updates as filling in gaps in the already 

known part of the static history. 

3.3 Kinds of references 

The model of the memory that holds shared objects is a mappmg from 

completely specified names, called version references, to versions. A version 

reference is a kind of value supported by the system. It is a two-part name 

composed of an object reference and a selector called a pseudo-time (for reasons to 

be explained later). The mapping from a version reference v=(o,p) to the proper 

version V is done in two stages. o is used to select an object history out of the 

memory. p selects a particular version from that object history. An object 

history is just a function from pseudo-times to versions. Conceptually, then, the 
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shared memory of the system can be thought of as a hierarchy with two layers of 

selection, as in figure 4. 

Fig. 4. 

The entire structure of the memory represents the system's history for all time. 

The middle layer of nodes represent object histories. The leaf nodes represent 

versions of objects. The labels on the arcs represent object references (o1, o2, 

and o3) and pseudo-times (pl, P2· and PJ). 

Object references, pseudo-times, and version references are all types of data 

values that can be used by programs. Object references correspond to the pointer 

or reference data type. Pseudo-times don't have an explicit counterpart in any 

programming language that I know of, but their function, that of selecting a 

particular state of an object to act upon, is normally provided by the execution 

ordering of programs (they are analogous to array selectors, but have a different 

purpose). A version reference corresponds to a single access through a pointer or 

reference -- again, not a concept explicitly available to the programmer in existing 

languages. 
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Unlike pointers m ordinary languages, object references by themselves 

cannot be used for access to objects. Instead, a version reference is required to 

write or read a value in the memory. An object reference can, however, be 

combined with a pseudo-time to obtain a version reference. As we discuss later in 

the chapter, it is most convenient if the pseudo-time combined with an object is 

provided by an implicit mechanism we call a pseudo-temporal environment. Here 

we describe the operations that manipulate version references and object 

references using explicitly specified pseudo-times. Converting a program from the 

implicit use of pseudo-times to the explicit form shown here is done by a proc~ss 

of "desugaring" the syntax, replacing references to objects with code sequences 

that choose the pseudo-times to be used and then call on the appropriate functions 

to create version references that refer to the proper versions. The functions about 

to be defined can thus be thought of as "hidden under the covers" from the 

programmer's point of view. 

The only ways to use object references are as parameters to the following 

functions. In describing the implementation of these and succeeding functions, 

parameters are labeled by names indicating their type, so that or, orl, or2, etc. are 

object references, vr, vrl, vr2, etc. are version references, pt, ptl, pt2, etc. are 

pseudo-times, boolean is a boolean value, and value is some value of any type 

(integer, object reference, array of stacks, etc.). The result or results appear to 

the left of an assignment operation, and any error signals that can be generated 

appear in a list after the word "signals". The semantics of each operation is 

described in a few sentences following its parameter specifications. 

vr := version_ref$freeze (or, pt) 
This is a function that generates a version reference 
from an object reference and a pseudo-time. 

boolean := ob ject_ref$eq ( orl, or2) 
This is function that tells if two object references refer 
to the same object (in the sense of LISP's eq function or 
CLU's equal function). 

We can think of a version reference as referring to a particular value. 

There are three operations specific to version references. Explaining them is 

somewhat tricky, because of our static view of memory. Obviously in a real 

programming language that can be executed, we must make sure that a version 
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actually exists before we can return its value. In this description, however, we 

take the omniscient viewpoint that the entire system history is laid out before us. 

Later in this chapter the actual behavior of these operations will become much 

more clear. 

version_ref$define( vr, value) signals(nonexistent_state, 
redefinition) 
This operation creates the version specified by the 
version reference. It is used in the desugaring of an 
update operation on an object. The second parameter is 
a value that will be the value of the version referred to 
by the version reference, if no error is signalled. The 
nonexistent_state error indicates that an attempt to 
assign a version that never will exist (no version of the 
object exists for that pseudo-time). The redefinition 
error indicates that there was already a valid version 
associated with the specified version reference. The 
version_ref$define operation can be applied at most once 
to a version reference. 

value := version_ref$lookup(vr) signals(nonexistent_state) 
This operation gets the version associated with a 
particular version reference. It is used in the desugaring 
of an operation that reads the value of an object. The 
nonexistent_state error indicates that the version 
reference specifies a state that will never have existed. 

or, pt := version_ref$decompose(vr) 
This operation is just the inverse of version_ref$freeze. 

In terms of the static system history, there are two ways in which we can think 

about the execution of version_ref$define. Since the system history is determined 

for all time, we can think of the version_ref$define operation as succeeding only 

when the version specified is the same as the one selected. Thus a failure of a 

version_ref$define operation implies that the version specified is already defined to 

be some other value created at an earlier pseudo-time. Conversely, each value 

change associated with an object requires that an execution of version_ref$define 

must have happened. 
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Pseudo-times are ordered by a relation ~. The formula a~b is read "a 

precedes b". This relation is a total ordering, and in particular a~a (the relation 

is reflexive). We also a complementary relation, -+, "strictly precedes", such that 

(a~b)=--.(b-+a). We require that an object must exist (never signal 

nonexistent_state) for all pseudo-times between an initial pseudo-time of creation 

and some final pseudo-time of deletion. Thus for any object there is a time of 

creation tcreate• and a time of deletion tdelete· The nonexistent_state error is 

signalled if and only if the pseudo-time component, t, of the argument to 

version_ref$define or version_ref$lookup does not satisfy (tcreate~t~tdelete). 

The creation and deletion of objects is carried out by operations that specify the 

create and delete pseudo-times. 

or := object_ref$create(pt) 
This operation creates an object reference whose tcreate 
is specified by the parameter. 

object_ref$delete(or, pt) signals(bad_delete) 
This operation deletes the object specified by the first 
parameter, by setting the deletion pseudo-time to the 
second parameter. The signal bad_delete indicates the 
delete operation was not performed because the 
specified pseudo-time was inconsistent with the history 
of the object. This could be because the pseudo-time 
preceded the creation pseudo-time or because a version 
corresponding to that pseudo-time exists, or because the 
delete pseudo-time has already been set to another 
value. As in the version_ref$define operation, only one 
such operation may ever be applied to the particular 
object reference. 

More than one pseudo-time may refer to the same version. Essentially, if 

we think about all of the version_ref$define operations that correctly terminate 

when applied to a particular object, they can be totally ordered by the 

pseudo-time contained in their version reference parameters. Call the set of such 

pseudo-times U, the update history of the object. We can then say that if we 

have two lookups on the same object at different pseudo-times p1 and P2 that 

give different values, then there must be a p3EU such that (p3 -+ Pl)/\(PJ ~ P2). 

In simpler words, versions only change as the result of version_ref$define. 
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Thus, for all pseudo-time.c; hetween the creation and deletion of an object, 

the object has a defined value. The definition of the value at any particular 

pseudo-time, t, is the result of a version_ref$define operation whose version 

reference contains a pseudo-time that precedes t. 

The concept of describing the state transitions of a system by considering 

the sequence of states assumed by a variable was introduced by Van Horn in his 

Ph.D. thesis[VanHorn66] in order to compare the various possible execution 

sequences of concmrent programs in proofs. NAMOS incorporates the history 

idea into the set of mechanisms actually used by programs, rather than being 

reserved for use in proofs about programs. 

3.4 Pseudo-time and consistency 

Pseudo-time provides a very convenient way to define a consistent system 

state. \Ve say that a consistent state of the whole system is the set of all object 

versions referred to by version references containing a particular pseudo-time t. 

This leads to a different view of our memory model shown in figure 5. 

Here, the difference is that the first selection is on pseudo-time rather than on 
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object. The pseudo-times can thus be thought of as state references, selecting 

consistent system states, from which object references can select the proper 

version of each object. 

Since pseudo-times are objects that are used by programs, they give a tool 

for programming that allows explicit recognition of consistent states within the 

program. In contrast, traditional synchronization mechanisms, such as semaphores, 

locking, monitors, send-receive, etc. do not give a tool for representing or naming 

consistent states -- one can deduce the states assumed by the system by timing 

relationships among the execution of steps of programs. 

A particular virtue of the model is that it requires that programs always 

generate version references to refer to objects. Thus programs that refer to 

shared objects must always be written with synchronization in mind. This has a 

positive effect, in that it may result in software that is less likely to fail when 

used in situations where unanticipated concurrency arises. A typical example of 

such a failure would be the use of text files implemented as segments in Multics. 

Such files can be concurrently accessed by several processes, for example by a text 

editor and a printer being used to print the file. If the user editing does not 

know of the concurrent use of the file by the printer, it is possible that what gets 

printed may see the file while it is being modified. In a system based on 

NAMOS, we could queue a specific version of the file to be printed, so that 

future versions would not be printed, or alternatively, as we shall see shortly, the 

editor could arrange that the sequence of changes to the file are not observable 

by other processes by ensuring that the changes are made in pseudo-times that 

cannot be referred to outside the editor. 

3.5 Programs and Pseudo-time 

Since computations must always specify the pseudo-time in which shared 

objects are accessed, it is important that this specification not add a significant 

burden to the programmer's understanding of the program. One of the main 

arguments against the use of semaphores as a synchronization mechanism is that 

the use of semaphores (or other explicit locking techniques) just add to the 

complexity of specifying the algorithm the complexity of understanding the 

relationships between the data being accessed and the semaphores that must be set 

to prevent inconsistent results, along with the complexity of ensuring that 
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deadlock does not occur and that an adequate degree of parallelism is achieved. 

We want to make sure that by explicitly including synchronization mechanisms in 

the language we don't add an enormous burden of complexity in the process. 

What locking normally is used for is to insure that during the execution of 

some steps of a program, a particular object only changes state as the result of 

the actions specified in those steps. Thus for those steps, the program need not 

concern itself with interactions with other concurrent programs that refer to the 

same object. Locking is also used to hide inconsistency that results during the 

process of attempting to make some coordinated change to a group of objects. 

For example, if two objects represent the state of bank balances, a transfer of 

money requires debiting one account and crediting the other. If these steps are 

taken separately, then it may be possible that an observer can observe the 

transient inconsistency that money has been either created or destroyed -- the sum 

of the balances isn't constant. 

Giving the program the ability to make references to several objects with 

the same pseudo-time is the key to obtaining consistency. Pseudo-time is quite 

unlike real time in this respect. It is quite impossible for a program to guarantee 

to be able to access several distinct objects that may be implemented quite 

remotely from each other at the same real time. 

Thus, for example, it would be possible to write the following program that 

accesses a consistent state of the system, adding up three objects to obtain their 

value. 

objl_vref := value_ref$freeze(objl_ref,ptime) 
ob j2_ vref := value_refSf reeze( ob j2_ref,ptime) 
obj3_vref := value_ref$freeze(obj3_ref,ptime) 
sum := value_ref$lookup(objl_vref) 

+value_ref$lookup(ob j2_ vref)+value_ref$lookup( ob j3_ vref) 

The state to be accessed is specified by the value of the variable ptime. The 

three references to the three objects are named obji_ref for particular i; these are 

used to generate three value references with corresponding names. 
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One problem with the example program is that it is rather clumsy to have 

to specify explicitly which pseudo-time is to be used for each access to an object. 

It would be much nicer to be able to write something like: 

sum := objl + obj2 + obj3 

where the default is that objl, obj2, and obj3 are to be referred to with the same 

pseudo-time. Convenience thus leads to the development of the idea of a 

contextual mechanism for specifying the pseudo-times needed to resolve references 

to objects. The contextual mechanism is a pseudo-temporal environment. 

The pseudo-temporal environment provides a mechanism whereby a 

program can ensure that the objects it refers to change only as a result of actions 

requested as steps in the program. Thus, we can write a rather ordinary sequence 

of program steps that refer to shared objects, reading and modifying them, and 

when executed in a particular pseudo-temporal environment, the sequence of steps 

will have the same effect on the state of the shared objects as they would have on 

non-shared objects. However, we must be careful not to write any object twice 

with the same pseudo-time. 

It is quite convenient to be able to write programs that include multiple 

modifications to the same object -- at least because of the need for loops. So, for 

example, we might want to execute the following in a pseudo-temporal 

environment and gain the advantage of having exclusive control of the objects 

during the statements. 

aO := dequeue(queue) 
enqueue(queue, al) 
enqueue(queue, a2) 
a3 := dequeue(queue) 

% get what is in the queue. 
% put a 1 in queue 
% put a2 in queue 
% take out whatever is in the queue 
% (perhaps al) 

It is clear that the intent here is to make four references to the queue object 

queue. On careful thought, two of the four references are reads followed by 

writes (dequeue), and two are writes. To execute this properly, we must refer to 

five distinct states of the queue object, the initial state and the state resulting 

from each of the four queue modifications. 
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If we want to make this sequence of four steps an atomic operation, so 

that the states in between the initial and final states are invisible outside the 

operation, we must prevent any other program from interfering with the queue 

during the execution of the operation. To say that no other program can 

interfere with the queue during the execution of the program means that the 

pseudo-temporal environment must provide a means to reserve a range of 

pseudo-times for exclusive use of the program, so that no other executing program 

can access the queue object in that range of pseudo-times. 

We may imagine a pseudo-temporal environment as the generator of a 

sequence of pseudo-time values to be used in the execution of those program steps 

executed within its context. We must insure that in the sequential program above, 

each version_ref$define applied to a version of the queue object is applied at a 

different pseudo-time, and that they are ordered in a corresponding order to the 

order of the statements. In addition, the version_ref$lookup operations must be 

applied in pseudo-times that fall in the right place in that ordering. 

In the way pseudo-temporal environments are generated and manipulated, 

one hopes to capture a modular notion of program construction. When the queue 

operation above is constructed, compiled, and executed, the programmer or user 

may not be able to provide any information about how many, if any, 

version_ref$define operations the enqueue or dequeue operations actually carry out 

when invoked. Thus, the actual execution will involve executing the enqueue 

operation's implementation in a subrange of the pseudo-times contained in the 

program's pseudo-temporal environment. We can think of the structure of the 

pseudo-times as being hierarchical. The set of all pseudo-times, n, is broken up 

into subranges that begin and end in pseudo-times that are system-wide consistent 

states. One of these subranges that corresponds to the execution of a sequential 

program is further broken up into subranges that begin and end in pseudo-times 

that correspond to the states in between execution of operations that are separate 

modules. We can call all of these ranges (at all levels) pseudo-temporal 

environments. n is the "root" pseudo-temporal environment. 

Thus we have the following operation that defines pseudo-temporal 

environments as subranges of other pseudo-temporal environments. In defining 

this operation, a new ordering relation is introduced. Two pseudo-temporal 

environments x and y are ordered if and only if all the pseudo-times in the range 
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of x precede all of the pseudo-times in the range of y. This partial ordering is 

symbolized by the notation .-..; the formula x-y may be read as "x strictly 

precedes y." This notation is also extended to the case where either x or y is a 
pseudo-time. 

pte2 := pte$transaction(pte 1) 
The pseudo-temporal environment pte2 is a subrange of 
ptel. It is guaranteed that the result of two separate 
invocations of pte$transaction on the same pte will be 
two pte's x and y such that x.-..y or y-x. That is, x and 
y are non-overlapping subranges. Further, after 
executing w:=pte$transaction(z), w is a subset of z. 
pte$transaction can be applied repeatedly, in order to 
generate subranges of subranges. 

Pseudo-temporal environments are then used to provide pseudo-times for 

version references used implicitly in computations. There are two ways to get 

pseudo-times from a pseudo-temporal environment. If one is needed for a 

version_ref$lookup operation, there is no need to get one that differs from the 

one last used for a version_ref$define operation. If one is needed for a 

version_ref$define operation, it must be strictly later than any one used previously 

to define a version of the object. We ensure that by saying that the pseudo-time 

used for a version_ref$define operation is later than the pseudo-time used for the 

last version_ref$define or version_ref$lookup in the same pseudo-temporal 

environment. Two operations are thus used to select the next pseudo-time to be 

used in a program. The first, pte$current is used only for desugaring reads into 

version_ref$lookup operations, and the second, pte$next is used only for 

desugaring updates into version_ref$define operations. 

pseudo-time := pte$current(pte) 
If X is the set of pseudo-times returned by pte$next(y) 
operations or contained in pseudo-temporal environments 
generated by pte$transaction(y) operations executed 
before a:=pte$current(y) is executed, then for all xEX, 
x=>a. 
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pseudo-time := pte$next(pte) 
If X is the set of pseudo-times returned by pte$next(y) 
operations or contained in pseudo-temporal environments 
generated by pte$transaction(y) operations executed 
before a:=pte$next(y), then for all xeX, a-+x. 

Now we can give a procedure for desugaring a program that executes in a 

particular pseudo-temporal environment p, in order to convert from implicit use of 

a pseudo-temporal environment to determine the pseudo-time used for each 

reference to explicit code that selects a pseudo-time for each reference. \Ve must 

have a notation to indicate that a particular pseudo-temporal environment is to be 

used to control the execution of a statement and any operations invoked in that 

statement. This will be the in statement: 

in pte do statements end 

where pte is some pseudo-temporal environment, and statements is a sequence of 

statements. To execute the in statement means to execute the statements in its 

body, resolving object references to shared objects through pte. 

Basically, what we do is to change every object reference used to read a 

value from x to version_ref$lookup(version_ref$freeze(x,pte$current(pte))), every 

assignment to a shared object reference x:=y to 

version_ref$define(version_refSfreeze(x,pte$next(pte)),y), and any invocation of a 

separate module m(params) to m(params,pte$transaction(pte)). In order to handle 

separately defined modules, such modules always get an implicit parameter that 

specifies the pte in which they are to execute. The entire text of a module is 

implicitly contained in an in statement that specifies the pseudo-temporal 

environment 1': "E'd as parameter. 

In this desugaring of programs, it IS important to remember that 

pseudo-temporal environments and pseudo-times are not shared objects. They are 

merely objects local to the interpreter of the program (as is the instruction 

counter, for example). 
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As a brief example, the desugaring of the following program that sets the 

cell c to the sum of w and b, then calls a module d which divides the cell w by c, 

example = proc(w,b,c) 
d = proc(x,y) 

x:=x/y; 
end d 

c:=w+b; 
d(w,c); 

end example 

is (using the dummy variable p to hold pseudo-times and dummies ti to hold 

pseudo-times to clarify order of evaluation): 

example = proc(w,b,c,p) 
d = proc(x,y,q) 

t4 :=pte$curren t( q); 

t5:=pte$current(q); 

t6:=pte$next(q); 

version_ref$define( version_ref$f reeze{x, t6), 

version_ref$look up( version_ref$f reeze(x, t4)) I 
version_ref$look up{ version_ref$f reeze(y, t5))) 

end d; 

t 1 :=pte$current(p ); 

t2 :=pte$current{p ); 

t 3:=pte$next(p); 

version_ref$define( version_ref$f reeze( c, t 3), 

version_ref$look up{ version_ref$f reeze( w, t 1)) + 

version_ref$look up( version_ref$f reeze(b, t2)) ); 

d( w ,c,pte$transaction{p) ); 
end example; 

When this program is executed, t 1 ::)t2, t2-+t3, tr•q, t 3-+t4::)t5, and t5-+t6. Given 

these relations among pseudo-times of reference, it is easy to show, given the 

memory model that the program has the effect of setting w on output to 

w /(w+b), and c on output to w+b. An important part of showing this is knowing 

that the only version_ref$define operations that might change w, b, or c are those 
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executed with verswn references derived from the pseudo-temporal environment 

used in calling example. Since example is a module, by convention it is invoked 

with a pseudo-temporal environment that is a subrange of its caller's 

pseudo-temporal environment. 

The traditional interpretation of procedures would allow any parallel 

computation to modify the shared cell object w in the example above between any 

of its references in the program. So in addition to the functional effect the 

procedure would have were there no parallelism and sharing, there are many other 

possible behaviors the procedure could have on the state of the objects it refers to 

when executed. For example, if w is changed between the two statements of the 

outer procedure, almost any possible value could wind up in w, depending on the 

change made to w. In the interpretation of the program that is assigned by 

NAMOS, only the functional behavior, equivalent to dividing w by the sum of w's 

initial value and b and assigning to c the sum of w's initial value and b, can result 

from the execution of the example procedure. 

3.6 Programs with internal parallelism 

Not all programs are sequential. In fact in a decentralized system, doing 

remote operations sequentially (i.e. waiting for node A to finish its operation 

before starting the next operation, which is to be done at node B) may result in 

unnecessary and unsatisfactory delay -- thus writing parallel programs is 

encouraged. Although the pseudo-temporal environment concept is primarily 

intended for handling unanticipated interactions between computations run in 

parallel because they were designed and requested independently, the concept can 

also be quite useful in managing the interactions on shared objects resulting from 

designed-in parallelism. Two ways to create parallel computations are the either 

compound statement, which creates a set of parallel executions, one for each 

statement, and terminates whenever one or more of the executions terminate, and 

the all compound statement, which creates a set of parallel executions of the 

statements that terminates only when all of the parallel executions terminate. 

Termination conditions are important once we start discussing the interactions of 

failure with the synchronization mechanism. 
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In order to capture the essence of parallel execution, we have to extend the 

pseudo-temporal environment concept somewhat. It would be somewhat difficult 

to define the order of evaluation of pte$next operations in desugaring a parallel 

compound statement. By the definition of either and all, all of the actions on 

shared objects caused by the compound statement should deal with versions later 

in pseudo-time than those accessed by statements sequentially preceding the 

compound statement. Similarly, all of the actions following the compound 

statement must deal with versions later in pseudo-time than any dealt with by 

actions generated by the compound statement. 

The individual parallel branches are designed knowing that they are 

executing in parallel with other computations. They must therefore specify 

explicitly within themselves how their accesses to shared objects are to be 

synchronized (it may be the case that no shared objects are accessed, in which 

case they need not be synchronized at all). This they will accomplish by using 

pseudo-temporal environments constructed by the pte$transaction operation. But 

in order to ensure that we don't have to think about how the pseudo-temporal 

environment is manipulated by concurrent pte$transaction operations, etc., we 

invent an operation that constructs parallel streams of pseudo-time. 

ptel, pte2, ... := pte$paraction(pte0) 
pte$paraction returns multiple values. The values 
returned are parallel streams of pseudo-time. If we 
execute a,b,c,d:=pte$paraction(e), the set X=aubucud is 
a subrange of e that is ordered with respect to all other 
subranges of e generated by pte$transaction(e) or 
pte$paraction(e). X is also ordered with respect to 
pseudo-times generated by pte$next(e) and 
pte$current(e). Further, to capture the notion of 
parallel execution, anb=¢ as do the intersections of any 
other pair of results. Finally, if f:=pteStransaction(a) 
and g:=pte$transaction(b) are executed, then f and g are 
non-overlapping: f "'g or g"'f. Thus f gives exclusive 
access with respect to the other environments. 

Desugaring a parallel compound statement then just consists of preceding the 

compound statement with a pte$paraction{p) where p is the current environment, 

to produce as many results as there are parallel actions. Then each branch of 

execution is surrounded by an implicit in specifying the result of the pte$paraction 
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corresponding to that branch. 

We can also use the tool given by pte$paraction to specify the parallelism 

inherent in independent execution. Each user of the system can be thought of as 

executing by default in a pseudo-temporal environment that was initially created 

by an initial single execution of pte$paraction(n). Thus all independently initiated 

computations execute in fully parallel streams of pseudo-time in which transactions 

are guaranteed to be ordered with respect to transactions that happen in other 

streams. 

3. 7 But we can't know the entire history! 

Now is the time to answer the question posed by our static view of system 

history. Pseudo-times have been shown to provide a nice way to think about the 

synchronization relationships among computations in the system. However, we 

have been assuming that any computation can reach out and get hold of or assign 

to an object version at any time. Clearly, if the execution of the the system is to 

be physically realizable, versions must be defined before they are used. 

It is not really very difficult to ensure that a version is defined before it is 

used. The realization of a version_ref$lookup operation is simply to wait until the 

version is defined. Because certain versions may not be defined at a particular 

real-time instant leads us to define the concept of a known history. The known 

history of an object at any instant of real time consists of the mapping between 

version references and versions that has been defined so far. Thus the known 

history of an object at any time is a subset of the object history. More 

importantly, as real time passes, more and more of the object history is contained 

in the known history. Thus at two different real times, the known history 

corresponding to the earlier time is a subset of the known history at a later time. 

The known history changes as computations are executed in real time by a 

process called eduction (from the verb educe, meaning "to draw out, to elicit"). 

The eduction of a known history just consists of creating new versions and 

extending the range of pseudo-times that an already created version belongs to. 

There are two ways in which a known history is educed. First, a 

version_ref$define operation for a version reference not yet defined in the known 

history may be executed successfully. This results in creating the version 
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associated with th<lt version reference. 

The second way in which a known history is educed is v1a the 

version_ref$lookup operation. If a version_ref$lookup operation is applied to a 

version reference not yet defined, there are two ways that the system can respond 

with a version. Either the operation can be made to wait before responding with 

a version until some version_ref$define operation completes, or a version that has 

already been defined at some earlier pseudo-time can be returned. Returning a 

version defined at an earlier pseudo-time requires that all version references for 

that object for pseudo-times between the pseudo-time of definition and the 

pseudo-time of the lookup refer to the same version. Any attempt made at a 

later real time to use version_ref$define with a version reference that refers to 

such an intermediate version must be rejected as a redefinition. 

Figure 6 illustrates eduction of a known history by creating a new version. 

The labeled boxes are individual versions. The horizontal axis labeled 

"pseudo-time" represents the continuum of pseudo-times in increasing order. 

Versions are connected to pseudo-time by specifying their ranges of validity -- the 

set of pseudo-times for which the object is defined to have that version as its 

value. The object A, for example is the value of the object for pseudo-times 

between r and q inclusive. B is defined to be a new version of the object by 

version_ref$define( version_ref$f reeze( ob ject,p), ... ). 

Fig. 6. Eduction by creating a new version 
Pseudo-time 

' ' I 
~~ 
L:J 

Figure 7 illustrates eduction as the result of a lookup executed at pseudo-time v 

that returns the version B, where the range of pseudo-times in which the version 
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referred to was valid previously extended only to u. 

Fig. 7. Eduction by lookup of existing version 
Pseudo-time 

Both kinds of eduction interact strongly with the failure management 

mechanism to be discussed shortly. Thus, I have been a little imprecise in the 

previous paragraph, but the imprecision will be corrected later. 

Another fact of the real world is that maintaining the known history of an 

object would require the system to provide an ever increasing amount of memory 

as time goes on. Thus we would like to allow the system to maintain only a 

subset of the known history of each object. Consequently, a version_refSiookup 

or version_ref$define operation corresponding to a region of pseudo-time for 

which the known history has been decided, but which is not maintained in the 

system at the time of the operation must be rejected for a new reason, 

unavailability. This rejection is signalled as the condition forgotten_state by those 

two operations. In chapter six, we consider further the mechanism for choosing 

the subset of versions to be maintained. However, the most important 

requirement is that the "current" version of an object always be maintained (the 

one whose pseudo-time is the greatest within the known history). 

3.8 Generating pseudo-times and pseudo-temporal environments 

Pseudo-times have been shown to provide a relationship among the histories 

of system objects. In a real system, however, it would also be useful to relate the 

system history to the history of the system's interactions with the real world. So 

far, we have not made any assumption at all about the relationship between the 

rate of increase of pseudo-times in independent, concurrent processes. We have 
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.. 

shown only that pseudo-time increases or stays the same within a single process, as 

a result of executing steps of that process. The simplest way to relate the 

pseudo-times in concurrently executing processes is to create a correspondence 

between the pseudo-times used and real time. 

To understand the anomalous behavior that can result from not relating 

the pseudo-times to real time, imagine a system containing the data bases of a 

bank, allowing transactions that deposit, withdraw, and transfer money between 

bank accounts. When people step up to bank terminals, they invoke a transaction, 

which is executed in a pseudo-temporal environment whose output state is chosen 

at random. If we then construct a system history in which each transaction is 

executed, it will be, as I have pointed out, a serial schedule, and thus presumably 

will give correct results. But imagine the quandary of an individual customer. On 

Thursday May 25, 1978, he opens an account, depositing fifty dollars in cash ( his 

transaction is executed in pseudo-times between 3276800 and 3276805). On 

Friday, he wants to withdraw ten dollars, so he requests a withdrawal (run as a 

transaction that reads the account at pseudo-time 151970), getting the response 

"no such account!" 

The problem is obvious. Pseudo-time must be correlated with real time. 

First of all, the pseudo-times used for operations must be non-decreasing from the 

point of view of any user in the system. Further, since users can talk to one 

another outside the system about their interactions with the system, whenever 

two users are sure that a pair of interactions with the system were not 

simultaneous, the pseudo-times used in the interactions to specify output states 

must be ordered in correspondence with the real-time ordering. 

Lamport[Lamport78] has already observed this problem. The system must 

assume that if two interactions with the system are not close together in time, 

then they must be executed in the order that users will expect. In order to 

generate values that are ordered in correspondence with real time, one must have 

at each node a way of creating a pseudo-time value that exceeds all previous 

values created at that node. The pseudo-time value created must also exceed all 

values created at other nodes at significantly earlier times. In chapter six, I will 

discuss how the correlation with real-time is easily achieved by usmg 

approximately synchronized clocks. 
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3.9 Failures and Recovery 

In executing any real computation interacting with shared objects. failures 

must be expected. As noted in chapter two, the failures we are concerned about 

can all be modeled as failures to complete a requested action or group of actions. 

Thus, a program being executed may stop due to a crash of its associated 

processor, a requested operation may be rejected as inconsistent with the 

definition of the object (popping an empty stack, for example), a communications 

link needed to request a remote action may fail, preventing the action. Other 

occurrences that can be modeled as failures to complete a requested action are 

protection exceptions that result from a change in the requesting program's access 

rights to an object, rejection of a version_ref$define operation because the object 

referred to has already been defined for the specified pseudo-time, and rejection 

of version_ref$lookup or version_ref$define operations due to the forgotten_state 

signal, resulting from deletion of out-of-date versions. 

We would like to provide a basic mechanism to handle this kind of failure. 

None of these failures are preventable, so it is important that the mechanism be 

de&igned to handle such failures gracefully wherever they occur. Similarly, none 

of these failures can be expected to happen at "nice" places during the execution 

of a program. For example, if a program refers to an object several times in 

succession (as in the queue example), there is no guarantee that just because the 

first access succeeded, later accesses will also succeed. Further, once such a 

failure has occurred, it may be impossible for the program to take corrective 

action by undoing changes it has made -- if the node containing the program fails 

it certainly won't undo its changes, and if the protection status of an object, or 

the hardware communications leading to the object have failed, undoing the 

changes may be very likely impossible. 

The primary problem of failure management is that meaningful operations 

on shared objects are constructed out of multiple operations at a lower level. 

Usually when executing a meaningful operation (such as a transaction), if some 

one of the component operations fails, the result will be some sort of 

inconsistency that may not be tolerable, because the level of abstraction at the 

operation's interface is compromised. For example, if in a bank transfer of funds 

from one account to another, if one account is incremented while another is 

decremented, and either the increment or the decrement fails, the bank will either 
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lose track of some money or gain some money. This leads to the need to be able 

to manage groups of updates that must either be all done together or not be done 

at all. 

Because it unlikely that a set of changes can explicitly by undone in 

response to a failure, we would like the system to behave as if they were never 

done if in fact a failure occurs. This means that there must be a mechanism for 

creating tentative changes in the state of objects that cannot be observed outside 

the computation making the changes, such that within the computation making 

the changes, those changes will be observable. 

We can solve the problem again by taking the omniscient viewpoint. 'Vhat 

a program wants to know when it is about to do an assignment to an object is 

whether the group of assignments to which it belongs will properly finish, or 

whether some one of the assignments will fail. If we could send signals backwards 

in time, there would be no problem, since before the operation was begun, it 

could query the future about whether the operation will be allowed to complete. 

Then the operation would simply halt immediately with no effect if it were about 

to run into some kind of failure. In fact, sending signals backwards in time is not 

needed. 

Instead, we use an old magician's trick for predicting the future. A 

magician produces a sealed envelope for inspection. He claims that written on the 

piece of paper inside is the name of the playing card you will pick. You carefully 

make sure that the envelope is sealed, by gluing one of about a hundred or so 

different postage stamps across the flap. Then the magician holds the envelope 

while you shuffle the deck and pick your card -- the Joker. You then take the 

envelope from the magician and unseal it. Inside, the paper says "Joker." 

Amazing! 

Not really. Look at the envelope closely. There is an imprint in the paper 

of the front side that says "joker" as well. Look in the magician's hand. There is 

a small metal stylus taped to his right index finger. Inspect the paper from the 

envelope. Sure enough, it is carbonless copy paper that turns dark when pressed 

with a stylus. The magician's trick becomes clear. He merely waited for you to 

pick your card, then inscribed the name of the card on the envelope with a stylus, 

causing the paper inside to contain the name. He may be well schooled at writing 
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m concealment with one finger, a noble accomplishment, but he hasn't predicted 

the future. 

The essence of the trick lies in the envelope, because it prevented you from 

verifying that there was in fact the name of a card written on the paper. Given 

that you believed that something was written on the paper that you could look at 

any time you wanted to, you had to conclude that the magician knew in advance 

the card you would pick. But the magician knew that he could force you not to 

look at the paper until after you picked the card by placing it in an envelope. 

We can use a similar trick to implement the kind of "backward" signalling 

m time that we want. We define a special kind of envelope called a possibility, 
that is defined to contain a piece of paper that either has an X written on it or 

nothing written on it. One of these envelopes is associated with each group of 

updates that is to be performed. We are told that the group of updates will all 

be executed without failure if there is an X on the piece of paper, but if the 

paper is blank, then none of the updates is to be executed. In fact, the system 

holds the envelope. But instead of executing the updates by actually making the 

assignments, the system makes a note at each object where an update is attempted 

that says, in effect, "If there is an X on the paper, the value is <newvalue>. 

Otherwise, the value is <oldvalue>." Actually the paper was created blank, but 

when we tell the system that all our updates are done, it inscribes an X on the 

paper, and says, "see what I mean, I knew you would be done." If you ask to see 

the paper before all the updates are done, the system opens up the envelope and 

says, "see, you aren't done." Once the system opens the envelope the paper inside 

cannot be changed, and any further updates are refused by the system, saying, 

"I'm sorry, I just can't do that update for you." 

We represent the envelopes by entities within the system called possibilities. 
A possibility contains a boolean value (corresponding to the mark, or lack of it). 

This value is explicitly set to true when the associated set of updates complete. In 

the possibility mechanism, we also include a timeout, after which the possibilities 

value cannot be set to true. By including a timeout, we allow the system to 

bound the time that a group of updates may be in progress. Also, since 

prematurely opening the envelope aborts the group of updates by necessity, the 

timeout specifies a time before it is probably not a good idea to open the 

envelope. 
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Looked at in real time, there are three important states of a possibility. 

Before its value is decided, it is in the wait state, so named because an attempt to 

test the value will be forced to wait (at most until the timeout is past). If it is 

successfully set to true, it enters the complete state, so named because the group 

of changes made under it have been completed. If it is explicitly set to false or if 

the timeout is passed without it being set to true, it is in the aborted state. 

The operations defining the possibility entity are as follows. The variable 

possi stands for some possibility, and time stands for some real time. 

possi := possibility$create( time) 
The possibility is created with timeout equal to the 
parameter, and put in the wait state. 

boolean := possibilityScomplete(possi) 
The possibility parameter is put in the complete state, 
unless it is already in the aborted state. The result is 
true if the possibility is either already complete, or is set 
complete. 

boolean := possibilitySabort(possi) 
The possibility parameter is put in the aborted state, 
unless it is already in the complete state. The result is 
true if the possibility is either already aborted, or has 
been set aborted. 1 

boolean := possibilityStest(possi) 
The possibility parameter is tested to see if it is 
complete or aborted. If it is in the wait state, the 
operation does not return until the possibility is either 
complete or aborted. The result is true if the possibility 
parameter is complete, otherwise the result is false. 

1. The abort operation is logically unnecessary, since a possibility will eventually 
enter the abort state after a timeout anyway. However, delay may be 
significantly reduced for operations that do lookups dependent on testing the 
possibility if the possibility is aborted as early as possible. 
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As with pseudo-temporal environments, it is eas1er to treat possibilities as 

implicit parameters to operations, rather than passing explicit parameters 

everywhere. Consequently, we need a statement that binds the possibility to be 

used in all· computations initiated by the enclosed statement. For this, we have 

the were statement. 

were possibility do statements end 

The were statement binds the possibility parameters to all operations executed 

within the body to the specified possibility. All calls on modules are furnished 

with an extra parameter that is implicitly set by use of this possibility. After 

completion of operations run under a particular possibility, a program must 

complete the possibility in order to make the results of the computation available 

to other computations. The same possibility can be used in several were 

statements before executing a possibility$complete on it, although such usage 

seems unlikely to be common practice. 

We have to modify the version_refSlookup and version_refSdefine 

operations to explicitly represent the tentative nature of the version_refSdefine 

operation. Both operations now have an added parameter, a possibility. When 

the version_ref$define operation is executed, a reference to the possibility is 

associated with the tentative version being stored. Such tentative versions are 

called tokens because of their use as place holders in the known history. A 

related concept, that of a write-once cell called a "token," has been described by 

Henderson[Henderson75]. 1 One can think of a modifiable object's versions as a 

grouping together of many of Henderson's tokens that each represent an individual 

state of the object. 

A token in NAMOS thus defines a potential state of an object. Once the 

state of the possibility associated with the token becomes known to be true 

(complete), the token becomes a version. Since the eventual state of the 

possibility is unknown, though, any attempt to access the object in a pseudo-time 

for which the token might eventually represent a valid version must be forced to 

wait until the state of the possibility is determined. 

1. Except where explicitly specified otherwise, the word token m this thesis 
refers to the tentative versions, not to Henderson's tokens. 
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There is a problem, however, because a computation that creates a token 

may need to access that value later before the state of the possibility becomes set. 

Consider our queue example above. Suppose that all of the queue operations are 

executed in the same possibility. After the first queue operation the queue's state 

will be represented in terms of one or more tokens. The second queue operation 

should not be forced to wait until the state of the possibility is determined, 

because only after the fourth operation is completed will the possibilityScomplete 

operation be applied. 

The problem 1s resolved by supplying a possibility parameter to 

version_refSlookup. If this possibility parameter matches the one under which the 

token was created, then the token may be returned as the version requested. In 

this case, the range of validity in pseudo-time is extended just as if the token were 

a normal version. 

Thus the following redefinitions apply: 

value := version_ref$lookup(vr, possi) 

version_ref$define( vr, value, possi) 

For any particular object, imagine that we can examme the entire set of 

version_ref$define operations ever applied to it, such that no error signal was 

made. Then the subset of version_ref$define operations whose possibilities are 

(eventually) true is the update history, defining the mapping from version 

reference to version for all time. However, the results of version_ref$lookup must 

be defined in terms of the entire set, whether the possibilities are true or not. 

Add to the subset whose possibilities are true the set of version_refSdefine 

operations that have possibility parameters that match the possibility parameter to 

the version_ref$lookup operation, to get a new set. Then the result of the lookup 

operation is that version assigned by the version_ref$define operation whose 

pseudo-time is the largest pseudo-time not exceeding the pseudo-time of the 

lookup. 
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Figure 8 shows how a known history for an object looks, showing tokens 

and possibilities. 

Fig. 8. Known History with Tokens and Possibilities 
Pseudo-time 

In figure 8, possibilities are shown as circles, where the letter W, C, or A indicates 

whether the possibility is in the wait complete or aborted state. The value B is 

thus a token, because it refers to a possibility in the wait state, while the values A 

and C in the figure are versions. A version_ref$lookup operation whose version 

refs pseudo-time is between p and s might have one of several results. If the 

possibility parameter to the version_ref$lookup operation is the same as the 

possibility associated with token B, then B will be returned, whether or not B ever 

becomes a version. On the other hand, if the possibility parameter to the 

version_ref$lookup operation is not the same, then the lookup must wait until the 

possibility leaves the wait state. Then either B will be returned as the result if 

the possibility is complete, or A will be returned if the possibility is aborted. 

3.10 Recoverability 

Possibilities allow the construction of recorerable computations. The 

concept of recoverability was named by Gray[Gray77], although the idea has been 

kicking around m data base circles for a long time 

apparently[Davies73,Lampson76]. In this work, a useful concept is the reco.-·erable 

update set. A recoverable update set is a set of changes to objects that is either 

made entirely, or never made at all, from the point of view of any computation 

observing the objects changed in the update set. 
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All of the changes made under the control of a particular possibility form 

a recoverable update set, since any computations viewing the objects will either 

never see the changes (if the possibility is aborted), or will see all of the changes 

eventually (if the possibility is completed). 

If an operation makes all of its changes under the same possibility, it has 

particularly nice properties. In particular, if the operation finishes, it can be 

either totally aborted or completed, but there is no halfway state in which it can 

leave its changes. If the operation does not finish (e.g., because its node crashed), 

it can be aborted. Such an operation I call a recoverable operation. Not all 

operations are recoverable, nor should they be. In chapter four, I will discuss uses 

for operations that are partially recoverable. 

An atomic transaction has the property that it either happens completely, 

or not at all, as well as the property that when it executes no other operation can 

see or change the states of shared objects that it accesses. With the were 

statement one can construct an atomic transaction. The simple form of an atomic 

transaction is: 

in pte$transaction() do 
possi:=possibility(timeout); 
were possi do statements end 
possibility$complete(poss1) 

end 

If the statement does not contain any embedded m or were statements, then it 

will be executed as an atomic transaction. 

3.11 Modularity and possibilities 

So far, we have not dealt with the problems of modularity in handling 

failures. A very common kind of problem that will occur is that a module 

executing at a remote site may fail in the middle of execution, leaving its changes 

half made. If the module's implementation is unknown to its users, it would be 

very unwise to allow the users to be able to complete the possibility that would 

enable its changes to become visible. A module must thus be able to locally 

ensure that the updates it makes locally are completed all at once or not at all. 
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Failures of this kind lead to a need for a kind of self-protection at the 

interfaces to operations. For example, consider that a bank may want to offer an 

interface to transfer money between bank account objects. To protect itself 

against losing or gaining money, it would like to make this operation an atomic 

transaction. Similarly, a user of the bank system (some bank customer) who also 

makes use of an independently programmed checkbook recording system will want 

to have an operation built using the two systems that transfers money between his 

checking and savings account, recording the fact in his checkbook records. Both 

the bank and the user want to assure recoverability, but the bank cannot 

completely trust the user to properly abort the bank transaction upon failure. If 

the failure in the bank transaction is a failure in the middle, leaving only one 

account changed, the user may choose to complete his possibility anyway, such 

that the bank transaction is completed even though only one of the accounts has 

been changed to reflect the transfer. 

The user, on the other hand, does not wish the bank to proceed with the 

transaction unless his personal checkbook balance is also updated. Consequently, 

the agreement of both the user and the bank that the transaction is to be 

completed is required. 

Again, the problem IS that we would like to use modules in the 

construction of still larger modules, while preserving the level of abstraction 

provided by the lower level module interfaces. The designer of an operation, 

whether or not the module is to be used as a top-level module or many layers of 

modules down, would like to assume that the operation is recoverable (it is either 

completed or is not), in order to assure that the interface has simple semantics. 

An operation defined by a module has very simple semantics if it is, as a whole, 

recoverable (it either finishes correctly, or does nothing). However, operations are 

built out of smaller operations that also should be recoverable. If the smaller 

operations are designed without knowledge of their use, they cannot assume that 

their users will assist in ensuring recoverability. On the other hand, the smaller 

operations cannot make the decision to complete without the consent of the user 

operations. 
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By adding some power to possibilities, the problem of modularity in usmg 

possibilities as a failure recovery mechanism can be solved. The idea is to have 

the user create a possibility that controls the overall completion/aborting of the 

operation. The bank and the checkbook system each create a possibility specific 

to its own part of the operation. The bank and checkbook possibilities each 

depend on the user's possibility in the following way. If the bank's possibility is 

waiting or aborted either by timeout or abort operation, the user cannot make 

versions out of tokens created by the transfer operation by completing the user's 

possibility. If the bank's possibility is complete, then whether the new account 

changes become versions or not is wholly dependent on the user's possibility. 

The mechanism added is a kind of possibility called a dependent possibility. 

Dependent possibilities are created by the possibilitySdependent operation: 

possi 1 := possibilitySdependent(possi2, timeout) 
The result of the operation is a possibility that depends 
on possi2. The result, possil, enters the complete state 
if and only if the possibility parameter is completed and 
possibility$complete is applied to the result (normally, 
possibility$complete is invoked on the resulting 
dependent possibility before the parameter possibility 1s 
completed). If the timeout elapses, possibility$abort 1s 
applied to the result, or the parameter possibility is 
aborted, then the value of the dependent possibility 1s 
false. 

The bank example can then be built by having the bank construct a dependent 

possibility that depends on the one used to ensure recoverability of the whole 

action. In general, modules that interact with multiple shared objects will 

construct dependent possibilities that are used to control the entire group of 

actions. 

The introduction of dependent possibilities reqmres a small fix to 

version_ref$lookup. The problem is easily seen in the queue example. If the 

queue operations are each executed in dependent possibilities that depend on the 

possibility that reigns over the whole program, then we have to be careful to 

define how successive queue operations see the result of previous operations. Once 

possibility$complete has been applied to the dependent possibility created for the 

first queue operation, the state of the queue l'hould be made available to a queue 
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operation that is applied within the overall (not yet completed) possibility. Within 

this other queue operation, a new dependent possibility that depends on the 

overall possibility is what is passed as parameter to the version_refSlookup 

operation. The way the problem is handled is by properly defining what it means 

to have two possibilities match. 

Call the possibility that a dependent possibility depends on its parent 

possibility. For a particular token, the possibility that must be matched is found 

by following the parent chain from the possibility used in creation of the token 

until the first possibility is found that has not had possibility$complete applied to 

it. If this possibility, the match possibility of the token, is the same as any 

possibility in the parent chain of the possibility parameter to version_refSlookup, 

then the token can be returned as the value. Otherwise, the lookup must wait 

until possibility$complete is applied to the match possibility, and then the match is 

reattempted. (Note: if in searching the token's chain of possibilities, an aborted 

possibility is found, then the token is ignored for the purposes of the lookup, as 

before). 

3.12 Known Histories Revisited 

In figure 9, the pictorial notation for a known history is extended to show 

dependent possibilities. Dependent possibilities are shown as circles, with a further 

link to the possibility upon which they depend. The letter inside a dependent 

possibility is either W (indicating that no complete, abort or timeout has yet 

occurred to the dependent possibility), C (indicating that a complete has been 

applied before the timeout), or A (indicating that either a timeout or abort has 

occurred at the dependent possibility). The actual state of the dependent 

possibility can be determined by looking at the chain of possibilities upon which it 

depends. If any possibility in the chain is marked A, the dependent possibility is 

aborted. Otherwise, if any are still marked W, the state is wait, else the state is 

complete if all are marked C. 

In figure 9, version A was created in a dependent possibility, and that 

possibility was successfully completed. Similarly, version C was created within an 

independent possibility that \vas completed. Token B is created within a 

dependent possibility, and so far, both that possibility and its parent are not yet 

either complete or aborted. 
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Fig. 9. Object Known History 
Pseudo-time 

3.13 Summary 

In this chapter, I have described the user's and application programmer's 

vtew of the system mechanisms for synchronization, error recovery, and building 

composite operations. Pseudo-time, object histories, and computations that are 

recoverable are the basic ideas. These ideas are represented concretely in terms of 

pseudo-temporal environments, possibilities, and the known history of objects. 

The notion of an operation and its important special case, the transaction, have 

been described in terms of these concepts. 

The construction of modular interfaces has been very important in the 

design. The concept of a dependent possibility and the hierarchy of 

pseudo-temporal environments allow the construction of modules whose internal 

implementation is not visible outside the interface, even should an unanticipated 

failure occur within the module or should some other operation interacting with 

shared objects used by the module be executing concurrently. 
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Chapter Four 

Using the Mechanisms 

In the previous chapter, a number of language features and mechanisms to 

be used for synchronization of access to data have been described. Although 

some examples were given there, I have not really shown how these facilities can 

be used to handle synchronization problems. In this chapter, I will develop some 

examples that show how the language facilities can be used for various kinds of 

problems. First, I will discuss the well known problem of controlling database 

transactions. A simple example of a bank with distributed accounts is 

implemented with the tools that NAMOS provides, to allow the creation of 

account transfer transactions and statistics gathering transactions. An important 

point made by the example is that arbitrary transactions can be constructed and 

run at any time. 

Next, I will contrast the solution using my techniques with the solutions 

possible with locking mechanisms, and the kinds of solutions that are possible by 

use of synchronizing processes such as Hewitt's serializers. Both of these 

alternative approaches require both design-time planning to decide the class of 

transactions that may be run and careful discipline to ensure that the accesses 

made during transactions are properly synchronized. 

The next problem discussed is the problem of user mistakes or failure 

resulting in irrecoverable loss of data. The idea of a consistent state defined by a 

particular value of pseudo-time allows easy definition of a backup mechanism. 

The backup mechanism provides the capability of restoring the states of a set of 

objects from some earlier consistent state of the system. The problem of 

discovering what set of objects to restore to an earlier state is discussed, but no 

general mechanism is suggested to solve the general state restoration problem. 

The problem of conversational transactions is then discussed, and is shown 

to be one of the problems best solved with a partially recoverable operation. 

Other problems, such as keeping metering information or "memoizing" 

(remembering in a cache the result of a hard-to-compute function of a particular 
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set of arguments), are also shown to be cases where total recoverability IS not 

appropriate, but partial recoverability is very useful. 

4.1 Transactions 

Perhaps the most basic and important synchronization problem is the 

achievement of multi-site transactions. The reason for the importance of such 

transactions is that they provide a convenient approach to defining the consistency 

of a database in the face of failures. Further, transactions are easy to design, 

since the programmer need not worry about the problems of synchronization of 

his transaction with others that manipulate the same database. 

A transaction, according to Gray[Gray77), is a program that when run 

takes a consistent state of the system into a new consistent state. In other words, 

if a transaction is started with data that is consistent, the changes the transaction 

makes will leave the data consistent. During the transaction, after only some of 

the changes have been made, the data in the system may not satisfy any 

consistency requirements. Thus, running a transaction requires that: 

1) The data referred to by a transaction all be from one 
consistent state. 

2) Other computations that wish to see a consistent state 
be prevented from seeing the intermediate states of the 
system caused during the transaction. 

3) Since a new state is built from a previous state by 
selectively changing some objects, but leaving most 
objects the same, the unchanged objects in the state 
containing the input data must still be the same in the 
final state constructed by the transaction. 

Gray's definition of transaction is not complete. It only deals with what I call 

internal consistency -- consistency among the objects within the system. Another 

aspect of transactions is that they have a notion of external consistency -

consistency between the system as a black box and the history of inputs and 

outputs of the system. Imagine that upon completion of a transaction, the 

transaction printed out some date and time to indicate when the transaction was 

actually executed. It is useful to require that this date and time corresponds to 
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some time between the initiation and completion of the transaction. Then the 

system will be externally consistent if it behaves as if the transactions executed 

were actually executed one at a time in the order indicated by their date and time 

values. 

4.1.1 Building transactions in NAMOS 

By convention, NAMOS is to be used such that a particular pseudo-time 

corresponds to a consistent system state as in Gray's definition above. Also, by 

convention, the ordering of transactions is by the ordering of the pseudo-temporal 

environments. Consequently, if some pseudo-time in the range selected by the 

pseudo-temporal environment were printed out as the date and time of execution, 

the system will guarantee that the internal state is externally consistent with the 

ordering of execution implied by the times printed out. Note that requiring that 

date and time printed out correspond to some time between initiation and 

termination of the transaction places some constraints upon the way pseudo-times 

are chosen -- I will come back to this issue in chapter six. The pseudo-times 

chosen for "top-level" transactions, those initiated interactively by some user, must 

be reasonably close to real time. 

As noted in the previous chapter, construction of transactions m this 

system is relatively simple. Any computation that manipulates shared objects can 

be executed as a transaction, by 

a) Executing it in a pseudo-temporal environment 
constructed by the pte$transaction primitive, and 

b) Making all of the updates conditional on a possibility 
that is completed only if no errors occur that prevent 
the computation from finishing. 

Condition a) above ensures that the transaction reads consistent data, and that the 

only changes made to the state of the system during the range of pseudo-time 

composing the transaction are those that it initiates. Condition b) ensures that no 

matter what kind of error happens, the transaction never shows to the outside 

world of other computations any of the intermediate states that it creates as it 

proceeds to make changes. 
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Now consider an example. Consider a very simplified view of a distributed 

bank system. 1 The objects of the system will be account balances, and the 

transactions that I desire to implement are of two kinds. Transfers of money 

from one account to another are one kind of transaction, and another kind of 

transaction is a special one used by bank managers called the MIS transaction. 

An MIS transaction takes some subset of the objects, and computes some 

statistics, such as means and standard deviations, based on the value of the 

account balances. 

Suppose that we design the programs that implement these transactions 111 

the obvious way. Let's say that each account balance is stored as an object 

implemented by the account cluster,2 which defines abstract operations to credit 

the account, debit the account, and get the account balance. Each of these 

operations is implemented by a program that manipulates the representation of 

accounts; the account representation is not known outside of the account cluster. 

It is not necessary to understand the implementation of the account cluster that 

follows; it is included for completeness. 

1. NO attempt has been made to incorporate into this example any of the 
real-world aspects of banks. I\-fore precisely, I do not intend to imply that the 
simple bank system can be easily extended to incorporate the complexity of 
"float", the legal requirements applying to bank systems, or the user interface 
semantics provided by current bank practices. 
2. A cluster is the CLU mechanism for creating abstract types by specifying an 

underlying representation and the operations that are allowed to manipulate the 
underlying representation to provide the desired semantics for the type. \Vithin a 
cluster, the reserved symbol rep indicates the type defined by the cluster, the 
special marker cvt is used to indicate a parameter to an operation whose type is 
the one defined by the cluster, but which during the operation is manipulated as 
the underlying type. Only the operations and procedures contained within the 
cluster have the privilege to observe and manipulate objects of the type via its 
underlying representation. For further details, see the references on 
CLU[Liskov77a,Liskov78]. 
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account = cluster is debit, credit, get_balance; 
rep = record[credits, debits:int]; 

balance = proc(acct:rep) returns(int); 
return ( acct.credits-acct.debi ts ); 
end balance; 

debit = proc(acct:cvt, amount:int) signals(insufficient_funds); 
if balance(acct) <= amount 

then signal insufficient_funds end; 
acct.debits := acct.debits + amount; 
return; 
end debit; 

credit = proc(acct:cvt, amount:int); 
acct.credits := acct.credits + amount; 
end credit; 

% get_balance can be invoked by the shorthand account.balance 

get_balance = proc(acct:cvt) returns(int); 
return(balance(acct)); 
end get_balance; 

end account; 

Then a transfer between two accounts can be written as follows: 

transfer = proc(acctl, acct2:account, amount:int) signals(insufficient_funds); 
dp:possi := possibility$dependent(2); % create a dependent possibility 
were dp do 

account$credit (acct2, amount); 
accoun t$debit(acct 1, amount) 

except when 
insufficien t_f unds: 

possi hili ty Sabort( d p ); 
signal insufficient_funds; 
end; 

end 
possibility$complete(dp); 
return; 
end transfer; 
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When the transfer procedure is called it is executed in its own transaction 

pseudo-temporal environment, and with the caller's possibility. A new dependent 

possibility is created by the procedure to protect against a failure between the 

time account$credit is called, and the time account$debit finishes depositing the 

money transferred. If the transfer is successful, the new possibility is completed, 

otherwise it is aborted explicitly if there are insufficient funds, or implicitly by 

timeout on the possibility in the case of any other error or in the case that the 

computer executing the transfer stops in the middle. 

Similarly, we can write a statistical transaction as a procedure, which agam 

by default executes in a consistent unchanging pseudo-temporal environment. 

Since the statistical transaction is read-only, we need not be concerned with 

dependent possibilities. For an example, let us consider a procedure that computes 

the mean and standard deviations of the balances of a set of accounts specified by 

an array of accounts. 

summarize = proc(accts: array[account]) returns(real, real); 
o/o first result is mean balance, second is std. deviation 

mean, stdev:real; 
sum:int := 0; 
sumsq:int := 0; 

for a in array$elements(accts) do 
sum := sum + account.balance; 
sumsq := sumsq + account.balance ** 2; 
end 

mean := float(sum) I float(array$size(accts)); 
stdev := float(sumsq) I float(array$size(accts)) - mean**2; 
return(mean, stdev); 
end summarize; 

As in the transfer transaction, the summarize transaction again executes by 

convention in an environment that is unchanging. 

Now let us consider how these various transactions can interact. There are 

two interesting cases. First, there might be two approximately simultaneous 

executions of transfers out of the same account (or into the same account, or one 

transfer in at about the same time as a transfer out). Second, there might be 

approximately simultaneous executions of a summarize transaction and a transfer 
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affecting one of the accounts summarized. The following lemma is easily seen to 

be tru.e based on the definitions in the last chapter. 

Two pseudo-temporal environments, Pa and Pb· are ordered (that is, Pa""Pb 

or Pb--..Pa), if both Pa and Pb were created via the pte$transaction operation 

and neither Pa is derived from Pb nor Pb is derived from Pa· A 

pseudo-temporal environment x is derived from y if x was created by a call 

on pte$paraction or pte$transaction whose argument was y, or x is derived 

from some pte z which was derived from y. 

This lemma ensures that if we have two transactions executing, and one was not 

invoked on behalf of the other, then the pseudo-temporal environments in which 

they execute will be ordered. 

Now let us consider the first case. If we have two transfer transactions 

executing at the same time, they will be executing in two ordered pseudo-temporal 

environments. Thus one of the transactions "happens first" in the ordering of 

system states by pseudo-time (although not necessarily in real time). Suppose 

transaction A runs in the "earlier" pseudo-temporal environment and B runs in the 

later one. Then we also know, by the lemma, that the credit and debit 

transactions executed by A and B are ordered such that A's credit precedes (in 

pseudo-time) A's debit which precedes B's credit which precedes B's debit. 

Now consider the interaction in real time on the known histories of the 

account being debited by both transactions. If A performs its update on the 

account entirely before B accesses the account, there will be no problem. B will 

observe that the initial balance of the account is what was left after A finished 

his debit. However, if A's change to the account follows a successful read by B 

of the balance of the account, then B will have educed the known history so that 

the balance of the account cannot be changed in the range of pseudo-time 

available to A. A's attempt to perform an update will result in an error signal 

resulting from an attempt to redefine an already known version. This will prevent 

A from finishing the debit, and thus prevent the possibility from being completed. 

Consequently, the credit performed by A will be aborted, since the possibility 

controlling its incorporation into the system history is never completed. 
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The case of a summarize transaction in parallel with a transfer is similar. 

Either the summarize transaction precedes the transfer in pseudo-time or the 

transfer precedes the summarize in pseudo-time (by the lemma). If the summarize 

transaction precedes the transfer in pseudo-time, the interaction in real time is 

relatively simple. If the summarize executes first in real time, then the known 

history of all of the accounts it references are educed by extending the range of 

versions to pseudo-times from the summarize pseudo-temporal environment. Then 

the transfer further educes the range of its accounts' versions to the pseudo-times 

used to read the balance of the accounts, and creates new versions. If the 

summarize does not precede the transfer in real time, then the transfer \vill have 

first educed the versions of the accounts and done its updates. \Vhen the 

summarize is done, the pseudo-times used will refer to the versions of the accounts 

that were "current" prior to the transfer. Two possible results can occur. If the 

version of the account referred to by summarize has been kept as part of the 

known history, it can be used for the computation of the balance. Thus, the 

summarize effectively executes as if the transfer has not happened. If the version 

referred to has been thrown away (to save storage), then the forgotten_state error 

is signalled, and the summarize fails. The normal case would be to keep old 

versions for a sufficient period of time to ensure that it is likely that all 

transactions that may refer to them have finished. Thus, we can trade off storage 

(becoming cheaper as technology improves) against the probability of aborting a 

read only transaction as the result of an update. 

In passing, I note that in a system that does not retain old versions requires 

that a very large read-only transaction (one involving many sites and consequently 

much delay) lock out updates to anything it reads for a relatively long time. In 

particular, a system based on locking suffers from this problem. The use of 

naming for ensuring correct synchronization makes it easy to eliminate this from 

of lockout by retaining sufficient old history of objects likely to be involved in 

read-only transactions. The naming mechanism provides the method for properly 

managing the set of versions retained. 

If a transaction is aborted because of a forgotten_state or redefinition 

error, it is quite reasonable to restart it in a new pseudo-temporal environment. 

Restarting transactions is the normal method of recovery for transactions that fail 

because of these synchronization errors. There are two problems with restarting 

transactions, however. First of all, there is no guarantee that the restarted 
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transaction will not also be aborted because of a forgotten_state or redefinition. 

There is thus the possibility that a particular transaction may encounter starvation, 

never finishing because it is always aborted by new transactions accessing the 

same objects. Such a possibility is unlikely if the likelihood of two transactions 

simultaneously accessing the same object is low. Nonetheless, it may happen. 

Worse than starvation of an individual transaction is dynamic deadlock, 

where several transactions cause each other to be mutually aborted, and upon 

each restart, the timing of the transactions causes mutual aborting to recur. In 

dynamic deadlock, no work ever gets done by the transactions involved in the 

deadlock. Dynamic deadlock is also possible in NAMOS, although it is unlikely 

that the deadlock will persist in a distributed system because the exact timing that 

resulted in a transaction aborting another is unlikely to recur. 

In chapter six, a mechanism involving token reservations is developed that 

can be used to reduce the likelihood of starvation and dynamic deadlock where 

needed, at the cost of requiring that a transaction "reserve" its resources in 

advance. Where a transaction can predict the resources it needs (the resources 

used must be knowable without knowing the values contained in any of the 

resources to be used), the token reservation mechanism is useful. 

4.1.2 Constrast with locking and serializers 

Most of the discussion of transactions is couched in the language and 

mechanisms of locking. Gray[Gray77) gives quite a readable summary of the use 

of the locking approach in managing a database. In essence, the locking approach 

requires that one seize exclusive control of the objects to be read and written for 

a period of real time. Exclusive control is granted by 
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gaining possession of a lock associated with the object, such that only one process 

has the lock set at any one time. Transactions may not read or write any data 

for which they don't hold locks. 1 

In order to guarantee that a consistent system state is observed during the 

execution of a transaction, there must be one point during the transaction where 

all of the objects touched by the transaction are simultaneously locked. In 

Eswaran, et a/.[Eswaran76] this is called a two-phase transaction (the first phase is 

acquiring the locks, and the second is releasing the locks). Eswaran, et al. show 

that transactions that are not two phase can be executed in such a way that 

objects referred to by such transactions can be changed or observed by other 

transactions in the middle of the transaction. Further, there must be a 

mechanism that guarantees that all updates generated by a transaction are either 

completed or not done at all before any other transaction is allowed to read the 

updated objects. Thus, by the time any lock is released, all updates to be made 

must be known to the system. 

If the objects to be updated lie on several nodes of a distributed system, 

ensuring that there is a point in time when all locks are held simultaneously can 

be very wasteful, because there must be at least one node that knows that all the 

locks are thus set -- implicitly then, the delay built into the locking scheme is at 

least the time for all nodes involved in the transaction to send messages to a 

common node that the objects at the sending node are locked, followed by 

whatever computation is to be done, followed by the time to signal to all nodes 

involved to store whatever changes that have been made, followed by a wait for 

commitment, followed by messages to all nodes releasing locks and guaranteeing 

that all other nodes have committed. If a transaction involving a large number 

of nodes is executed with the locking scheme, it is clear that the period of time 

for which other transactions are prevented from looking at the objects it touches 

is potentially large. Thus, the likelihood of conflicts between transactions is 

increased, even under the assumption that it is rare that transactions involving the 

1. As a refinement, some systems opt1m1ze the case of reads of an object by 
defining read-only and update locking modes. Any number of transactions may 
hold read-only locks for an object, but if any transaction holds an update lock for 
an object, no other transaction can hold any lock for that object. This 
refinement doesn't affect the arguments that bllow. 
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same data are requested from different nodes at the same time. 

In contrast, in my system, I have traded off some space to reduce delay. 

The tradeoff is particularly clear when looking at the interference between 

read-only transactions like the summarize transaction above, and updates, such as 

the transfer transactions. Accessing a very large number of account balances to 

get statistics has little effect on transfer requests -- by the time the statistics 

gathering transaction gets to a particular account, the transfers accessing that 

account may have made a number of changes affecting later pseudo-times than 

the one used by the statistics gatherer, but since the statistics gatherer specifies 

what state of the system it wants to access, there will be no problem in getting 

the old version desired by the statistics gatherer. Of course, the implication is 

that multiple versions of an object have been preserved, rather than just the most 

current version, resulting in a cost in space. Quite often, though, space is much 

cheaper than the delay resulting from a statistics gatherer locking out all updates 

in order to get to a point where locks are set on all objects simultaneously. 

I am not aware of any scheme that uses locking in a distributed system 

that can execute transactions reliably in the face of failures, while preserving the 

nice properties of transactions as described above. This is not to say that such a 

scheme could not eventually be worked out, just that I have not seen one that 

simultaneously handled all of the problems. The most unfortunate kind of results 

of failures may be those that leave objects locked, when the transaction doing the 

locking has long since failed, or on the other hand, having a lock come unlocked 

in the middle of a transaction, without the node executing the transaction being 

aware that the lock was not locked for the whole of the execution of the 

transaction. 

The use of locks also raises the specter of deadlocks that can result if some 

discipline is not used in the setting of locks. In a distributed system, the 

requirements of autonomy preclude setting locks all at once, and may preclude 

defining a lock hierarchy in order to preclude deadlock. The reason is that the 

objects touched by an operation involving objects at multiple nodes may not be 

known or knowable in advance because of the hiding of the implementation of 

the objects provided to assure autonomy. Consequently, some deadlock detection 

and correction mechanism must be developed that will work in the face of 

failures. My system has the advantage that there are no locks, and therefore no 
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direct source of deadlock. Basically, deadlock is avoided by providing a time 

bound on the length of time a possibility can remain in the wait state. Thus, 

transactions may be aborted too often in my scheme, but there is no static 

deadlock that can arise. Dynamic deadlock can occur, however, as noted above. 

Another problem with locking is that it is hard to add new transactions by 

defining new modules. If we have an existing transaction, it sets whatever locks 

are necessary inside the transaction. If we wish to create a new transaction that 

consists of executing a sequence of existing transactions, we cannot simply call 

them in sequence because that would not result in a two phase transaction when 

the locks set and released by each transaction are considered as a whole. Thus, 

we must make it possible to seize the locks needed by all of the combined 

transactions before executing any one of them, and release all of the locks needed 

after the new composite transaction is completed. Thus, in building new 

transactions out of existing ones, the locks set by each transaction must be known 

outside the modules that require the locks to be set. It is thus hard to ensure 

that the locks needed by a module are set properly, since the module now depends 

on the caller to do it right. 

Another approach to consistency is to design the system such that any two 

objects that can be simultaneously accessed by a transaction must be accessed by 

requesting the action through a guard process, whose job is to ensure that the 

data being accessed is accessed all in a consistent state of the system, and that the 

operation is completed before other requested operations involving the same 

objects are started. The serializer concept of Hewitt and Atkinson[Atkinson78] 

provides this mechanism as a basic synchronization tool. Two basic problems with 

serializers do not trouble NAMOS. First, with serializers there is no explicit 

mechanism whereby a serializer can handle the problems of errors that occur 

making the objects protected by the serializers inaccessible. In a sense, the 

serializer is in the right place to ensure order, but without the tools that allow 

ensuring the order. Second, in a system that has independently designed 

mechanisms with autonomous parts, it is unlikely that a common synchronizing 

process will have been designed in from the start, yet without such a common 

process, synchronization may be very difficult to achieve. Again, if we allow 

construction of new transactions out of previously existing actions, it may be that 

two existing actions to be used in a new transaction are not protected by a 

common serializer. Such a common serializer would have to be constructed and 
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users of the objects protected by the new serializer would have to be changed to 

use the new serializer. 

The primary problem with serializers as a synchronization mechanism in 

the kind of distributed system I am considering is that they require foreknowledge 

of the kinds of transactions that the user may want to achieve. If the bank 

system considered above were designed with serializers, it is fairly likely that 

someone coming up with a later requirement for some statistics not provided 

normally through the serializer interface would not be able to get those statistics 

reliably until the system had been reimplemented with a serializer that handled 

the new transaction type. 

4.2 Backup 

An interesting problem that is closely related to synchronization is that of 

implementing what I call consistent backup. Suppose that, as a result of user 

mistakes, some set of operations that has made changes to the system was in 

error. The user may have typed something at a terminal that was wrong, or 

whatever, or some processor was temporarily producing incorrect results. \Vhat 

would be desirable as a recovery action would be to restore part of the state of 

the system to an earlier time. Now this really consists of two parts -- first, 

finding out the part of the state that should be restored, and then restoring the 

state of the objects that must be restored. 

Finding out the part of the system state that must be restored is often 

quite difficult, since it is possible that based on the changes made by the 

erroneous computation, a large number of other changes to the objects in the 

system have been made. Reversing those changes must be accomplished, as well, 

in order to completely restore the state of the system to a correct one. In order 

to do the reversal, the system would have to maintain a dependency graph, where 

an edge is present in the dependency graph whenever a version depends on 

another version. Such a graph could be maintained in NAMOS, if a list, called 

the depends-on-list, would be kept associated with each version. Each entry of the 

depends-on-list would be the name of a version of another object that has 

depended on the version containing the depends-on-list. Finding the objects that 

must be restored based on a computation· that has modified some set M of objects 

would then involve getting the transitive closure of the depends-on relation, and 
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then finding those objects whose current version depends-on the set M. 

Keeping the depends-on-list, however, may be quite difficult and expensive. 

An alternative would be to have a backup mechanism in which the user would 

have to guess what objects should be restored to their original state. It would be 

possible to design local depends-on-lists wherever the cost is justified, to help in 

discovering this. The result is that restoration of system state after this kind of 

error may not be correct, if the user or the modules that figure out the 

dependencies are incorrect. 

Once the set of objects to be restored is chosen, however, a consistent 

restoration of the object states is a quite simple operation. State restoration 

simply involves making the version of an object that was defined in the 

pseudo-time corresponding to the system state to be restored the version that is 

valid in the current pseudo-time. We can define the restoration of an object in 

terms of the existing version reference operations: 

version_ref$define( version_ref$f reeze( ob j 1 ,pt2), 
version_ref$look up( version_ref$f reeze( ob j 1, pt 1)), poss) 

will make the version of objl at pseudo-time pt2 the same as that existing at the 

earlier pseudo-time ptl. If we execute a group of these operations all under the 

same possibility, we can make the state of all the objects the same as the state 

that existed at pseudo-time ptl, thus reversing all actions taken at pseudo-times 

between ptl and pt2. In order that the code above will work, it is necessary that 

the version as of ptl still can be gotten without a forgotten_state error resulting 

from the system having discarded it. It is also possible that the restoration \\'ill 

fail as a result of some simultaneous transaction defining the version at pt2 

through a lookup with a later pseudo-time. 

At the language level, it is much more convenient to define a per-type 

restore operation, such that type$restore(objl,ptl) when executed in a transaction 

whose pseudo-temporal environment provides pt2 from its pseudo-temporal 

environment, will have the effect of restoring objl to the state it had as of ptl. 

In implementing type$restore for an abstract type, the definer of the type must 

make sure to restore the state of all objects in the representation of the object. 

The designer of the type must take into account the same issues he must deal 

with when defining a copy operation in CLU -- in particular, he must decide 
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whether objects referred to in the representation are part of the object or not. If 

a stack that has been pushed is restored, it certainly should be popped, but the 

objects referred to by the stack probably should not be changed by a restore on 

the stack (unless the objects referred to were actually changed by the operation 

being undone). All primitive types that can be updated, such as records and 

arrays, will have restore operations built in, so that abstract types can use these 

restore operations to build their restore operations. 

In addition to a restore operation for each type, we need at the language 

level the ability to obtain pseudo-times to pass to the restore operation. A simple 

interface would be to have an operation available at the language interface to 

obtain a checkpoint to which one can restore objects. The checkpoint operation 

would simply involve getting the current pseudo-time by invoking pte$current on 

the regnant pseudo-temporal environment. \Ve might write this as a statement: 

checkpoint c; 

where c is a variable whose type is pseudo-time. Desugaring the checkpoint 

statement simply results in an assignment into c from an invocation of pte$current 

on the regnant pseudo-temporal environment. 

Of course, certain kinds of failures may still prevent state restoration. In 

particular, if the object history for each object is not maintained forever, there 

may be a certain point in the past before which the state cannot be restored. 

Choosing how much to keep of an object history, then, must be a carefully made 

design choice that properly trades off the cost of keeping the old versions against 

the value of being able to restore on errors. 

As noted, this is only a partial solution to the problem of state restoration, 

but the ability to name individual versions of objects makes at least part of the 

problem quite simple. In a system without the autonomy constraints assumed in 

the thesis, constructing the depends-on relation may be more feasible on a 

system-wide basis. In such a case, a complete solution to the problem of 

consistent backup may be possible. 
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However, discovering the true dependencies between object versions ts 

highly dependent on the semantics of the computations that generate versions. 

The system, in the absence of such information, would have to make assumptions 

that are worst case -- e.g. if some process has ever touched object X, all objects 

ever touched by that process may depend on X. For example if discovering a 

particular value in X is what causes some set of earlier updates to be completed 

by completing some possibility, those values depend on version X. Just by seeing 

what the process actually did, one cannot discover that the earlier updates would 

have been completed in any case, independent of the value of X. Consequently, 

in the absence of any other information, the depends-on relation would be very 

bushy, requiring a much larger number of backups to recover from an error than 

might actually be the minimum required. 

Consequently, I suspect that the best approach, whether or not the system 

has the autonomy requirements of the distributed systems I have considered, is to 

leave keeping up dependencies to a much higher level, and use a mechanism like 

mine to do the state restoration, once the set of objects to be restored is known. 

4.3 Conversational System Interactions 

Unplanned transactions are not the most difficult kind of interaction that 

the system may have to support. One factor that unplanned transactions have is 

that the code for the transaction is entirely within the system at the time of 

execution. In the case of conversational interactions such as those that might be 

supported by an interactive database query application, a multi-node debugger, or 

an interactive program library system used by multiple people, not even the 

program to be executed can be known by the system in advance. Nonetheless, 

there is a need in such interactive environments to obtain and act upon data from 

a consistent state of the system. Further, there may be a need for running a 

particular set of operations, checking to see that the result is correct, and then 

either aborting or completing the operations. 

It is fairly easy to make a conversational interaction work in my system, 

with the use of the tools already present. The entire interaction ought to be 

carried out in a single pseudo-temporal environment, under a single possibility, just 

as in a transaction. The timeout specified when the possibility is created must be 

large enough to carry out whatever updates are contemplated. The interactive 
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user 1s then free to pursue whatever interaction he desires to make. Upon 

finishing the interaction, the user lets the system know that the interaction is 

over, specifying whether or not to complete the possibility. 

One basic problem with conversational interactions m any system is that 

the user must be prepared to have his interaction aborted. In my system, there 

are two kinds of failures - inaccessibility of a particular object version that is to 

be read, and aborting the possibility under which the interaction is carried out. 

Inaccessibility is a soft failure that the user may want to handle by ignoring it or 

by accessing another version. Aborting the possibility is important if updates are 

involved -- in which case the user can decide if he wants to try again or not. He 

must be aware that other values in the system may have changed, and so may 

want to inspect them again in the pseudo-temporal environment in which the retry 

is executed. I can imagine a simple kind of assistance that the system could 

perform, which would involve warning the user that his possibility is about to 

expire so that he can finish his updates, and which would also involve keeping 

track of those objects that are touched in the current input state, so that if the 

transaction is aborted, the values that change between that state and the retry 

state can be identified for the user. 

Conversational interactions are much more difficult in a locking based 

scheme. One must be sure that all of the locks are set, and that the locks are 

properly cleared when the transaction is done. More importantly, since 

conversational transactions take a long time, the interference caused by reading of 

data with updates may become severe. Because the conversational transaction is 

unpredictable in what it will access, the only recourse for handling deadlock is 

some sort of deadlock detection and correction scheme. In a locking based 

scheme, aborting is at least as difficult as in my scheme. 

Serializers allow for no conversational interactions other than the 

preplanned ones packaged up as part of the serializer requests. 

4.4 Partially Recoverable Operations 

In the previous chapter I noted that there is a need for operations that use 

multiple possibilities in their execution, making it more difficult to handle failures, 

since some of the actions carried out by a partially recoverable operation will not 
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be reversed by aborting a single possibility. I would like to give several examples 

to justify this need, and to show how good use may be made of the ability to use 

multiple possibilities in an operation. 

Perhaps the simplest example I can give 1s the keeping of metering 

information associated with an object. Perhaps it is desirable to keep track of the 

number of times attempts (whether or not aborted) to update an object are made. 

In order to do this, a way of keeping this count associated with the object 

without having it backed up when some failure having nothing to do with the 

object itself happens is needed. One simple way to build such a counter into the 

operations on the object is to update the counter under a brand-new possibility 

that is completed immediately after the update. In the bank example, one could 

build into the transfer transaction the following code: 

transfer = proc(acctl, acct2:account, amount, counter:int) signals(insufficient_funds); 
ip:possi :== possibility$create(2); % create an independent possibility 
were ip do counter := counter + 1; end 
possibility$complete(ip); % the counter is now permanently incremented 

dp:possi := possibility$dependent(2); % create a dependent possibility 
were dp do 

account$credit (acct2, amount); 
account$debit(acctl, amount) 

except when 
insufficient_[ unds: 

possibility$abort(dp); 
signal insufficient_funds; 
end; 

end 
possibility$complete(dp); 
return; 
end transfer; 

This code ensures that any attempt to transfer money results in the parameter 

counter being incremented. 

It is important to note that the program uses multiple possibilities here, but 

did not use a new pseudo-temporal environment. Thus the change made to 

debit.count is only visible after the output state of the transaction, whether or not 

it is completed. Had a new pseudo-temporal environment been used, it is possible 
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that for two transfers, the counting of the transfers would happen in a different 

order than the transfers actually happened, and might be actually not visible m 

pseudo-time till much later than either of the transfers. 

Another important use of local possibilities is m the form of run-time 

optimization often called "memoizing." In this form of optimization, upon each 

use of an operation on some object, the results of that operation are remembered, 

along with the state of the parameters that led to the result. Then later, if the 

operation is re-requested with the same parameters, or some operation that has 

similar parameters is requested, the saved results can be used to more quickly 

compute the new results. If all of the updates made by an operation were undone 

by aborting the possibility, then such memoizing would only help in cases where 

the overall computation that generated the saved results was completed. An 

important use of such memoizing might be to reduce recomputation in the case of 

failure, however, by detecting the fact that he computation requested is the same. 

By computing memoized results under a possibility that is completed once 

the saved results are available, the memoization can be completed independent of 

the completion of the enclosing computation. Since memoizing can be used in 

such a way as not to change the interface behavior of the object operations, the 

fact that the memoizing is not recoverable upon failure is not serious. 

The common theme among these examples of partially recoverable 

operations is that the primary results of operations, that is the changes made by 

the operations that are important at the interface, are still recoverable, having 

been made under the possibility that is current at the invocation of the operation. 

Only secondary changes are made under possibilities that are completed 

independent of the overall computation, and in some sense the completion or 

non-completion of these secondary changes does not change the important 

semantic properties of the interface. 
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Chapter Five 

Implementation of Possibilities and Tokens 

A key notion in NAMOS is the idea of a possibility. So far, a possibility 

has been described as a somewhat special entity that has no history in 

pseudo-time. The purpose of the possibility is to represent the ultimate choice 

made by a computation of whether or not to make a particular hypothetical set of 

changes computed for shared objects real and known to other users of the objects. 

In this chapter, we discuss the realization of possibilities in a decentralized system 

of the sort described in the first two chapters. 

An important problem in the implementation is dealing with multiple kinds 

of failures. Two basic kinds of failures are important here. Lack of availability 

due to communications failure or node failure (where refusal of a node to 

communicate is considered a "failure") is one sort of failure. The other sort is the 

failure of a computation somewhere in the middle. Both of these failures are 

really viewed as excessive delay -- the first sort being refusal to communicate for 

an overlong time, and the second sort being a long delay in the execution of a 

computation. Since long delays look like failures, one can never be sure whether a 

computation or communications path has stopped operating or whether it is still 

working, but slowly. Consequently, whenever a failure is discovered, the 

mechanisms that recover from the failure must not only recover in the case where 

the failing component is really dead, but they must also handle the case where the 

"failing" component is alive and continuing to attempt to operate on that part of 

the system state that has been the subject of recovery. 

It is in the handling of failures that the implementation of possibilities and 

tokens becomes difficult. The chapter will first discuss the overall problem of 

"atomic commit" that is basic to the implementation. We motivate the idea of a 

commit record as the implementation of a possibility, and contrast it with some 

similar mechanisms that achieve solutions to the atomic commit problem. After 

this discussion, the mechanism by which tokens become versions or aborted 

versions is described, and the effects of failures are shown. We then discuss 

enhancements to the basic commit record mechanism. Use of the commit record 
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to ensure atomic commitment of tokens introduces problems of delay and 

inaccessibility that can be reduced by encaching the state of commit records with 

the token. Further reduction of delay can be achieved by enhancing the commit 

record mechanism to automatically distribute changes of state at the earliest 

possible time. 

The implementation of possibilities is then described, first for an 

implementation where the possibility is represented by a single commit record at a 

single site, and then for an implementation where the possibility is represented by 

multiple commit records "distributed" among several sites to provide a greater 

degree of availability. Finally, the storage management mechanisms by which the 

storage used to implement possibilities can be reclaimed will be discussed. 

5.1 Atomic commit 

An "atomic commit" mechanism is one that causes some set of actions to 

happen "simultaneously" as far as any outside observers are concerned. In the 

case of the decentralized system, the actions that are to be performed 

"simultaneously" are transformations of some set of tokens from tokens to 

verstons. In fact, simultaneity is not the important factor, though it is often 

discussed in this way. The requirement is that of the two possible results for each 

object token, version or aborted version, the same choice gets made eventually at 

all object tokens. A mistake leading to one token becoming a version and another 

one becoming an aborted version would lead to an inconsistency in the system. 

The possibility is the abstract mechanism used for achieving atomic 

commit. All of the tokens created associated with a particular possibility form 

the set of objects affected by the atomic commit. The possibility$complete 

operation is an attempt to change all such tokens associated with the possibility 

into versions, while the possibility$abort operation is an attempt to change all 

such tokens into aborted versions. 

Some computation in the system will be the causal agent of the atomic 

commit. That is, the causal agent is the computation that is intended to complete 

or abort the possibility. It is important that the system protect itself against the 

loss of the causal agent (or alternatively, excessive delay in deciding what to do, 

or a failure of communications between the causal agent and the set of actions to 
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be performed). Thus, designed into the interface to possibilities is the idea of a 

timeout causing a default decision to abort the possibility. In the case where the 

causal agent either fails or takes an excessively long time to act, the possibility 

automatically goes to the aborted state. Then, no matter what action the causal 

agent may take (if it has not really failed) it cannot reverse the decision to abort. 

In my system, an atomic commit mechanism is built out of a mechanism 

that is specialized to the purpose. This mechanism we call a commit record. A 

commit record is a piece of reliable storage that is created with a fixed initial 

state, then can be changed by an atomic action to either one of two other states, 

and can never again be changed. Basically, it is a piece of non-volatile write-once 

storage that can be in one of three states. A commit record's state has one of 

three values at any instant that it is read -- call them waiting, complete and 

aborted, in analogy to the states of possibilities. Further, if any read of the 

commit record's state returns either the value complete or the value aborted (call 

these final values), then all other observations will return either that value or the 

value waiting. It is not necessary that reads be ordered with respect to writes, 

although in most real implementations once a final value has been returned, later 

reads will never return the value waiting. 

Lampson and Sturgis[Lampson76] have described a mechanism for achieving 

atomic commit. Their mechanism differs in some detail from that used in 

NAMOS, and uses a slightly different basic mechanism. Their basic mechanism is 

what they call atomic stable storage. 1 The property of atomic stable storage is 

that it behaves as if any attempt to write the storage either finishes or it doesn't 

start (leaving the storage unchanged). Thus any read returns a value that was 

written by the most recent write to complete, rather than allowing the possibility 

that failing or concurrent writes will cause reads to obtain values that mingle bits 

stored by several different writes. Commit records have this property, but in 

addition are also 'vrite once, and have the range of values restricted. 

1. Atomic stable storage is a further enhancement of the stable storage 
described in chapter two. The distinction is that with atomic stable storage there 
is no possibility that a modification to the storage will be left partially completed 
-- either the modification will never have happened, or it will have been 
completed. 
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Lampson and Sturgis describe a way of achieving atomic stable storage by 

using a disk with each record stored twice with an error detecting checksum. The 

atomic property is built by using a clever reading algorithm that reads both 

records, checking the checksum and comparing the two copies. If the checksum 

on the first record is correct, but it differs from the second copy, then the first 

copy is correct, and the second copy is old, so it is copied from the first copy. If 

the checksum on the first copy is wrong, then the second copy is correct, and is 

returned. Otherwise, either copy will be correct. Their algorithm as described 

requires that \\Tites be mutually exclusive, but this is easily achievable in a single 

computer system. The lock mechanism described in chapter two can be used to 

achieve this mutual exclusion. 

This mechanism could also be used in the implementation of commit 

records, by simply ensuring that the commit record is only written once. 

However, other implementation strategies are possible. 

Gray[Gray77] has described another mechanism for a centralized system to 

achieve atomic commit. Recovery from failure in his system depends on the fact 

that the whole system stops upon a failure, so that a recovery program can be run 

to back up the state of the variables changed before the failure, while no other 

computations can be observing the values created by the failing transaction. 

Because it assumes that the whole system is serviced by a centralized recovery 

algorithm that always gains control upon failure, and which can know how to 

restore all the states of objects touched by failing computations, it is not an 

acceptable approach for a decentralized system. 

5.2 Tokens 

The mechanism by which tokens become apprised of the change to a 

commit record is based on a passive mechanism. Stored with a token is 

information sufficient to designate and locate the commit record associated with 

the possibility under which it was created. Whenever it is necessary to check 

whether a token should really be a version or an aborted version, the system 

containing the commit record sends a query message to the system containing the 

commit record. The response generated for such a query will be the state of the 

commit record -- waiting, complete, or aborted. 

- 108 -



Since the commit record can never have been in both the complete state 

and the aborted state, if the answer to the query is either complete or aborted, all 

other queries referring to the same commit record will get either the same final 

ans\\'er, the answer "waiting" or no answer. A waiting response has basically the 

same information about the state of the token as no response at all. Since a 

waiting token is neither completed nor aborted, it is unknown what the final state 

of the token will be. Between the time the waiting response was generated and 

the time the site of the token receives the response, the commit record may have 

been set to one of the final states. However, once one token has received a final 

answer. all other tokens referring to the same commit record will receive the same 

answer if they wait long enough (assuming that the site containing the commit 

record and communications to it do not fail permanently). 

The mechanism described so far has a built-in delay, since determining the 

state of a token always requires sending a message to the commit record and 

waiting for a response. In addition, the commit record must occupy storage for a 

long time, since it must always be present to decide for each token whether it is a 

version or not. We would like to be able to reclaim the storage for a commit 

record relatively quickly. Finally, for the period that a commit record is 

inaccessible, all tokens that refer to it appear inaccessible as well. Thus the 

likelihood of inaccessibility of a token may be very high, even after the token has 

become a version. We would like the extra inaccessibility resulting from the use 

of commit records to be as small as possible. 

To improve the commit record mechanism, reducing delay, storage 

requirements, and inaccessibility problems, we introduce the notion of encaching 

the commit state in each token. In addition to the location of the commit record, 

the last known state (initially waiting) is stored with each token. Call this part of 

the token the ECS (encached commit state). Whenever a response from a commit 

record is received, if the response is complete or aborted, that value is stored in 

the token's ECS. Thus, once the commit record signals a state of complete or 

aborted, no further queries are needed to ascertain the status of a token. In the 

absence of errors, each token need wait for only one query and response after the 

commit record is set to the final state. Delay is thus reduced, and for those 

tokens that have already copied a final state, any inaccessibility of the token is 

irrelevant. 
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There is a b:'ls}c problem, however, in that there is always a period of time 

between the time the commit record enters its final state and the time that the 

tokens dependent upon it know what the final state is. Worse yet, due to the 

possibility of errors, this time cannot be bounded. Thus, even if the token is 

accessible some of the time, and the commit record is accessible some of the time, 

the token's state may be inaccessible for an unbounded period of time. 

Is this a bug? Unfortunately not -- it is due to the same basic difficulty 

that makes the two generals unable to bound the time needed to make a decision. 

If were to accept a non-zero probability of making a wrong decision, the delay 

could be bounded. However, given that we always want to make the right 

decision, the maximum delay is unbounded. 

Delay in encaching the information from the commit record can be further 

reduced by eliminating the delay due to the query sent by the token. If the 

response is labeled so that receipt of it before any query can be properly handled, 

then once the commit record reaches a final state, "unrequested responses" to 

queries about the status of the commit record can be sent to all tokens interested 

in the state of the commit record. These responses can be viewed as a pure 

optimization, since ignoring them does not cause incorrect operation of the system. 

However, if they are reflected in the ECS of each token that correctly receives 

the "unrequested response," then the delay due to querying the commit record 

after it is final will be non-existent. 

Keeping track of where the tokens interested in such "unrequested 

responses" are can be done in several ways. It turns out that much the same 

information is needed to reclaim the storage used by commit records safely, so I 

defer the discussion of this to later in the chapter. 

5.3 Possibility implemented as a single commit record 

The simplest implementation of a possibility is based on storing the state of 

the possibility as a single commit record at a single site. This site serves as an 

arbiter, funnelling the manipulations of a possibility through a single queue that 

processes each request to manipulate a particular possibility in the order of arrival. 

What, then, does a commit record look like in such an implementation, and how 

is it manipulated? 
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The commit record is stored in stable storage at the site. Crashes of the 

site do not affect the value of the commit record. As noted in chapter two, such 

st;1ble storage is, in practice, not perfectly achievable. However, the probability of 

failure of some devices, such as disks, optical memories, and others, can be made 

quite low at reasonable cost by judicious use of redundancy local to the site. 

The commit record contains at least the following fields: 

commit_state: a two bit quantity, set to zero when the 
commit record is created. The first bit, commit_state.c, 
is set to one in a possibility$complete operation. The 
second bit, commit_state.a, is set to one m a 
possibilitySabort operation, or upon timeout. The 
possible values are: 

00 waiting. The initial state. 

01, ll aborted. Aborting takes 
precedence over completing. 

10 completed. 

timeout: a clock time accurate to some preclSlon (say 1 
millisecond), set to the time after which the commit 
state should be turned from zero to the aborted value, 
if not already completed. 

The timeout is never changed, once the commit record is allocated. The commit 

state is write-once storage, that is written atomically. The atomic write property 

can be achieved in several ways. As an example, one might use write-once 

memory built by having a laser burn a hole in a piece of mylar as in the Ampex 

terabit memory for each one bit. Another possibility might be to use the same 

trick used by Lampson and Sturgis, storing two copies of the commit state on 

disk. 

There are three types of operations that can be requested for a commit 

record -- complete, abort, and test. They are implemented quite simply. The 

only detail that I have not mentioned is that the clock used as the standard 

against which the timeout is compared is the local site clock at the site of the 

commit record. It is really quite unimportant what clock is used, as long as the 
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clock will reproduce the intended timeout reasonably accurately. If timeout 

happens early or late, the logical correctness of the system is not violated, but 

performance may suffer (early timeouts prevent normal completion of operations, 

while late timeouts result in delay when checking a token created by a failed 

operation). The algorithms are: 

complete 

0. set commit_state.c = 1 

1. return not(commit_state.a) 

abort 

0. if commit_state.c=O 
then set commit_state.a= 1 

1. return commit_state.a 

test 

0. if timeout > time() 
then call abort. 

1. return commit_state 

In the implementation of these operations, mutual exclusion is necessary. 

Step 0. of the abort operation must be atomic with respect to other complete or 

abort operations. A simple way to insure the proper mutual exclusion is by 

having a lock that must be set to gain access to read or write a particular commit 

record. The lock is cleared at the end of operations, and cleared also whenever 

the site comes up after a crash or power-off. The locking mechanism for single 

objects described in chapter two is sufficient for this purpose. Since these 

operations are short, the overhead of locking need not be great, consequently an 

alternatiYe scheme that uses a single lock for all commit records at a site may be 
quite acceptable. 
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If the storage to be used by commit records is to be re-used, the addressing 

scheme I.ISed for commit records should incorporate a mechanism for detecting 

dangling pointers. Consequently, the name used to designate a commit record at a 

remote site might include not only information sufficient to designate the storage 

address, but also a unique tag (generated by reading the local site clock, perhaps, 

if a clock of sufficient resolution is available). Another field in 'the commit 

record would contain the unique tag. If the tag in the name for a commit record 

does not match that stored in the commit record, then the commit record has 

been deleted. The meaning of a deleted commit record when discovered by a 

query from a token will be discussed when we discuss reclamation of commit 

records. 

If a possibility is implemented by a commit record stored at a single site, 

the continuing accessibility of that site to the sites containing the created tokens 

may be a question of some importance to the nodes creating tokens, since the 

token may prevent transactions that manipulate the object containing the token 

from proceeding if the commit record is inaccessible. For this reason, a node may 

choose to refuse to create a token based on its lack of trust of the accessibility 

(or correct implementation) of the commit record based on its location. Nodes 

that provide highly accessible, correctly implemented commit records will be one 

of the necessary components of the system I propose. These nodes may either be 

provided as part of the network, or they may be provided by mutual agreement 

among those nodes that have resources that might reasonably be used together. 

Assuring the correctness of and availability of such nodes must be done by 

observations and agreements outside the system. 

5.4 Dependent possibilities 

There are at least two ways that dependent possibilities can be 

implemented. In one way, a dependent possibility is a commit record as above 

with an additional information field that refers to the possibility depended upon. 

The possibilityScomplete and possibility$abort operations on dependent possibilities 

would be exactly the same, manipulating the commit_state field of the dependent 

possibility's commit record. The possibility$test operation, however, would be 

different. The test operation on a dependent possibility that has been completed 

must involve testing the state of the depended-upon possibility. If the 

depended-upon possibility responds that its state is completed or aborted then the 
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the dependent possibility can return that value. 1 If the depended-upon possibility 

is waiting, then a new kind of response is sent, indicating that the dependent 

possibility is completed, and naming the depended-upon possibility. The 

depended upon possibility's name then replaces the dependent possibility's name m 

the tokrn, so that future tests after waiting bypass the dependent possibility. 

An alternative way to implement dependent possibilities is to represent the 

name of a depcndrnt possibility by a pair of names. The first element of the pair 

identifies the commit record that is modified by possibility$complete and 

possibilitySabort operations, and the second 

element idt>ntifies the dept>nded-upon possibility.2 The possibility$test operation 

then consists of testing the commit record that is first on the list using the basic 

test algorithm defined in the previous section. If waiting or aborted, then the test 

finishes immediately, returning waiting or aborted. Otherwise, the pair is replaced 

by the second element of the pair, and the test is repeated. 

The second approach suffers from the need to store potentially rather long 

names for possibilities in each token. However, once the token is turned into a 

version, there is no need to store the name of any possibility, so the storage is 

only required during the window of time while the token has not yet become a 

vers10n. The main advantage of the second approach is that the protocol for 

dealing with commit records is simple and uniform -- all of the complexity is 

localized in the algorithm executed at the token. 

5.5 Determining the right to access a token 

The representation of. the name of a dependent possibility as a pair 

consisting of the name of a commit record and the name of a possibility 

(dependent or independent) is very useful in determining whether a computation 

may obtain the value stored in a token, however. Recall from chapter three that 

a computation that attempts to read a token may obtain the value if the 

possibility in ,,,hich it is executing is "the same" as the one the token was created 

1. To reducr delay on successive tests, the dependent possibility can also encache 
the state of the depended-upon possibility. 
2. If the depended-upon possibility is a dependent possibility, then its name will 

be a pair also, and so on, until an independent possibility ends the chain. 
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m, where "the same" has a very particular meanmg. Algorithmically, the phrase 

"the same" can be understood to mean "search up the chain of dependent 

possibilities from the token until the first non-completed possibility is found. 

Then if that possibility is a member of the chain of possibilities under which the 

computation is executing. the token's value may be accessed by the computation." 

As a side effect of either implementation of dependent possibilities, the test 

·operation causes the token to know the name of the first non-completed 

possibility. This name can then be checked against the name of the possibility 

under which the computation is executing to see if it is a member of the chain. 

If the possibility under which we are executing is represented in the pair (or list) 

representation, this check is simple and local. If only the name of the topmost 

dependent possibility is known, then it would be necessary to inquire of that 

possibility whether the non-completed possibility matches any in the chain, 

possibly requiring a flurry of messages between sites containing the various 

commit records. 

5.6 Possibilities implemented using multiple commit records as voters 

In order to increase availability, one might desire to try to implement 

possibilities using several commit records at different sites. A number of 

algorithms that attempt to implement multiple-site updates of data stored 

redundantly at multiple sites are given m the 

literature[Alsberg76,Johnson75,Thomas76], however, these algorithms are too 

elaborate for the rather simple properties desired of possibilities. A modification 

of the majority rule approach developed by Johnson and Thomas[Johnson75] 

seems to provide an effective approach, however. 

The problem is to implement an object whose representation does not 

require that a particular site be up to read from or store into it. The behavior of 

the object must, however, be the same as a commit record, in that the complete 

and abort operations should be atomic. The essence of the majority rule solution 

is as follows. The state of a commit record is a composite of the state of N 

J-'oters, commit records stored at N different sites. The state of each voter is 

either waiting, completed, or aborted (just as before). When a majority of the N 

voters are in either the completed state or the aborted state, then the state of the 

possibility is the same as the state of the majority. In order to prevent a tie, the 
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case where exactly half have voted for the completed state ts defined to be a 

completed state of the possibility. 

Voters are not allowed to change their vote -- thus they have a state that is 

write-once. Further, to handle the timeout, if a voter has not decided which state 

to vote for after the timeout has been exceeded according to the local site clock, 

the voter must vote for the aborted state. Thus, in behavior, a multi-site commit 

record is created out of data structures that look just like the single-site commit 

record described above. 

Testing the state of a multi-site commit record involves taking a poll of the 

N sites. Because only a majority is needed to make a decision, the minimum 

number of sites that must be accessible to make the test will be LN/2J (in the 

case of a decision to complete) or L:N /2J+ 1 (in the case of an abort). However, 

the maximum needed to be accessible to make a decision is N, in the unlikely 

circumstance that the vote is nearly a tie and the voters are queried in worst-case 

order. Thus, we want to minimize the likelihood of a tie. 

I will generalize the notion of majority rule a little bit, since there is -really 

not some magic property of :N/2 that ensures that the multi-site commit record 

works. It is only necessary that there be some threshold value K (l~K~N) for the 

decision whether the possibility is completed or aborted. If K voters are 

completed, then the test says completed. If N-K+l voters are aborted, then the 

test says aborted. Otherwise, the state of the possibility is waiting. I call K the 

complete threshold and N-K+l the abort threshold (if N=l, both the thresholds are 

required to be 1, so this case is the same as the single commit record 

implementation). 

To execute a possibility$abort or possibility$complete operation on the 

multi-site possibility, the site requesting the abort or complete sends messages to 

all of the voters representing the possibility (some messages may be lost, of 

course). Each message is processed at the receiving site, and the voter is set to 

the completed or aborted state as required, unless it has already been set. The 

requesting computation does not proceed until all voters have been contacted and 

have responded, or until a sufficient timeout has expired due to inaccessibility of 

one of the voters (the requesting computation retransmits requests to decrease the 

probability of lost messages). 

- 116 -



In the case that the computation requesting a possibility$complete on the 

multi-site possibility fails in mid-stream, before sending some requests to voters, 

each voter independently times out, based on a local clock, entering the aborted 

state if no complete request has been received promptly enough. The timeout at 

each voter site also handles the case of a site that was inaccessible to a 

computation that requested a possibility$complete. The voter at the inaccessible 

site will eventually enter the aborted state. 

There are two cases that lead to a high likelihood of having a near-tie m 

the state of the voters. One case is that of near simultaneous abort and complete 

operations. If an abort gets to approximately N-K+ 1 of the voters first, while a 

complete gets to approximately K, a near tie occurs. In the use of the system, it is 

easy to avoid the circumstance. First, the abort operation is logically unnecessary 

because of the timeout, so it should only be used in order to speed up the process 

of aborting when it is known that no complete operation may be attempted. 

Second, in designing programs, it is normally the case that the execution sequences 

that explicitly abort will never go through an attempt to complete (as in all the 

chapter four examples). 

The second case is when a complete operation happens to signal the voters 

at around the time of timeout. Thus, some of the voters may have timed out 

already when the complete arrives. The probability of this circumstance arising 

can be drastically reduced by a simple trick. If the clocks local to each site· are 

reasonably synchronized (with some small probability of being more than E 

seconds out of synch), and if network delays are roughly bounded (with some 

small probability of being more than o seconds), then if a complete is attempted 

within o+£ seconds of the timeout on the possibility, it should be refused out of 

hand at the requesting site, before sending anything to voters (in fact, it may send 

aborts just to speed up the aborting process). Thus the probability of a timeout 

overlapping a complete can be made small by making the timeout somewhat 

bigger than the expected time to complete the operation done under the 

possibility. 

In order for these algorithms to work, the requesting site must have enough 

knowledge to locate each voter of a multi-site possibility separately -- so the name 

of a multi-site possibility may be somewhat larger than names of objects (that 

naturally have a single home). In addition, for the refinement just mentioned, the 
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requesting site must be aware of the timeout set on the possibility. Also, the 

requesting site must know K Thus a reference to a multi-site commit record looks 

like figure 10. 

Fig. 10. Reference to Multi-site Commit record 

complete threshold 

abort threshold 

Timeout 

I 

1 
list of sites \ 

L------------------~ 

In appendix A, an analysis of the probability of availability of a possibility 

implemented as multiple voter commit records is given. The basic conclusion is 

that as you increase N. two factors affect availability. First, if the probability of 

failure during a possibilityScomplete operation is low, the likelihood of a near-tie 

decreases as N increases. Opposing the first effect, however, is a second one. 

The probability of failure during a possibilityScomplete operation increases as the 

number of sites to be notified increases. This can increase both the likelihood 

that a near tie will occur, and the likelihood that the possibility can't be 

completed. In addition, the cost in terms of messages sent, load on the network, 

etc. increases as N increases. Thus, there is probably an optimal value of N 

which is relatively small, given normal site availability and network reliability. 

If K is about half of N, it is equally easy to find out that the possibility IS 

aborted as completed, whereas as K decreases, determining that the possibility is 

completed becomes easier and easier. Since the normal case is that operations are 

completed, smaller values of K ought to increase performance overall, reducing the 

number of responses needed to determine the state of a possibility. Values of IC 

greater than one half of N don't seem to be useful, though. 
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5. 7 Reclamation of commit records 

So far, commit records have been considered to be permanently allocated. 

The cost of permanent allocation of commit records can be very large, since every 

transaction or other operation involving shared objects will require a distinct 

commit record to represent the possibility associated with the operation. 

Consequently a scheme to reclaim commit records when they are no longer needed 

is desirable. 

Since the state of commit records is eventually encached within the versions 

and aborted versions stored as part of the object known history, it is clear that 

eventually there will be no references to a commit record. When there are no 

references from tokens still outstanding it is quite safe to delete a commit record. 

It is not a good idea to delete a commit record while it is still in the wait state, 

though, since some computation may still refer to the commit record through the 

possibility mechanism. That computation may yet create new tokens that depend 

on the possibility for realization. 

The key issues in implementing a deletion mechanism for possibilities are: 

1. It must be possible to detect or create the situation that 
no token exists that has a reference to a particular 
commit record. 

2. Since computations may refer to commit records 
through possibilities, the use of possibilities that refer to 
deleted commit records must be prevented. 

It is extremely dangerous to delete a commit record that has not had its state 

encached in all of the tokens referring to it. The result of such a deletion would 

be to make all such tokens permanently inaccessible, thus blocking read operations 

on the known histories containing those tokens. Consequently, any deletion 

algorithm should err only by not deleting unneeded commit records, never by 

deleting needed commit records. 

- 119 -



Bec<1use of the modularity of programs, at the time a possibility is 

completed the program doing the completing may not be aware of the entire set 

of references to the commit record that have been generated by operations 

invoked in the possibility. For this reason, an explicit delete-commit-record 

operation that can be used by application programs is not a reasonable solution. 

Even if the program could figure out the set of references to the commit record 

that exist in objects, the possibility of programming errors in using the explicit 

deletion would argue <1gainst such a strategy, the cost is quite high if such a 

mistake is made. 

A commit record must thus contain enough information to allow 

determination of when it is safe to delete the commit record. Then the site 

containing the commit record can be responsible for ensuring that the commit 

record is deleted only when no references to it exist in tokens. If the commit 

record site behaves improperly, deleting it even when the site knows that 

references exist, tokens depending on the commit record will become permanently 

locked up. For this reason, a basic tenet of the system is that any site creating a 

token must trust that the site implementing the commit record associated with the 

token does so correctly. If a non-trustworthy site is proposed as the home for a 

commit record, the token may simply not be created, and an error response be 

generated. 

\Vhen a token is created, it is necessary to know that the commit record on 

which it is to depend (a) still exists, and (b) is not completed or aborted. To 

msure (a) and (b), the site creating the token must first inquire of the commit 

record its state. If either condition is not satisfied, the token is not created, and 

an error is returned. Since a message exchange with the commit record is already 

needed, we can use the message exchange to tell the commit record that a token 

referring to the commit record is about to be created. Thus, when a commit 

record receives such a request, it can record the name of the token (object name 

together with pseudo-time it is valid from). 

It is not too difficult for a commit record to obtain the list of all tokens 

that depend on it. To use the list, the commit record must be aware when a 

token on the list no longer depends on it. This can happen three ways. 

- 120 -



1. A token depending on the commit record successfully 
encaches the state of the commit record. 

2. A token depending on the commit record is deleted. 

3. A token listed as depending on the commit record was 
in fact never created (the list is formed before tokens 
are created, so a failure after a token was entered on 
the list could prevent the creation of the token). 

\Vhen a token encaches the commit record state or is deleted, a message can be 

sent to the commit record indicating that the reference is deleted. However, a 

failure in the sending of this message would result in not deleting the commit 

record even though it is deletable. Consequently, the primary means of checking 

the dcletability of the commit record is by polling from the commit record. The 

commit record, once it reaches a final state can poll the objects named in its 

dependency list. 

A trick that can be used is to encode an aborted commit record by 

immediately deleting it. Any request for the state of the commit record after it is 

deleted can be answered by saying "no such commit record exists." If the request 

was from a token, it knows that the token was not completed, and since commit 

records in the wait state are not deleted, it must be aborted. However if the 

request for the commit record comes as a result of an attempt to create a token, 

the token will not be created. 

The messages between tokens and commit records are thus the following. 

T->CR create-ref(CR-name, token-name): query to commit 
record whether token referring to the commit record 
may be created. CR-name is the name of the commit 
record queried, while token-name is the name to be used 
to refer to the token. 

CR-> T permit-create(CR-name, token-name, ok?): response 
to create-ref. If ok? is yes, then the commit record was 
in the wait state, and an entry was added to the list of 
tokens referring to the commit record. Otherwise, the 
commit record was in either the complete or aborted 
states. A deleted commit record also returns a "no" 
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response. If no response is received, the create-ref may 
be retransmitted. 

T->CR test(CR-name, token-name): message that is sent by 
a site containing a token to get the state of a commit 
record, in order to decide whether the token value can 
be returned as the result of a read or not. 

CR-> T state(CR-name, token-name, s): sent either 111 

response to a test() or when it is desired to delete the 
commit record after it has been completed. In the case 
of a deleted or aborted commit record, s is "aborted". 
If the state of the commit record is complete, then s is 
"complete". If the state is waiting, no state(s) response 
is generated. 

T->CR no-ref(token-name): sent when a state("complete") 
message is received, once the token encaches the fact 
that the commit record is complete or immediately if 
the token has already been deleted (see chapter six for 
details about deletion of tokens). The commit-record 
deletes the token named token-name from its list of 
tokens referring to the commit record. 

The no-ref message allows the deletion of commit records. All of the other 

messages are needed already for the function of commit records, independently 

from ddetion. Once a commit record enters the complete state, it immediately 

starts polling the dependent tokens by sending state("complete") messages to all 

the tokens on its list, until such tokens are all removed from the list by 

no-ref( token) messages. Once such tokens are all removed, the commit record can 

be deleted. A nice property of this scheme is that it reduces delay in encaching 

the state of commit records into tokens, since an immediate attempt is made to 

broadcast the commit record state to all dependent tokens. 

:\-Iulti-site possibilities can be managed by a modification of the same 

mechanism. However, individual commit records making up the possibility cannot 

be deleted until the possibility as a whole is aborted, or until the possibility is 

completed (as a whole) and that fact is encached in all tokens referring to the 

possibility. The fact that the possibility as a whole is aborted or completed is 

normally detected by some token as the result of a number of messages from 

individual voters specifying their state. The token will then encache the state of 
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the possibility. In the single commit record implementation, the token would 

respond to the state() request with a no-ref() request to signal that no reference 

remained to the commit record from the token. In the single commit record case, 

the no-ref() request is not needed if the state of the possibility is aborted, since 

the commit record could be immediately deleted no matter how many references 

existed to it. However, since the token is the only entity with knowledge about 

the state of the possibility as a whole, the token must initiate the deletion of the 

commit record. 

Consequently, in the multiple commit record implementation, a new request 

is required -- the overall-state(CR-name, token-name, state) message, sent from the 

token discovering the overall-state to at least one of the commit records (it may 

be sent to any number as an optimization). As a result of receiving an 

overall-state message, the commit record receiving it knows the overall state of the 

possibility. This knowledge is sufficient to initiate deletion. It also can be used 

to optimize further requests from tokens -- since the overall state is known at a 

commit record, that commit record can act in behalf of all other commit records 

and unilaterally specify the state of the entire possibility. We can take advantage 

of this optimization by allowing two additional values to be returned by the 

state() request from the commit record to the requesting token -- one meaning 

"the possibility is completed overall" and the other meaning "the possibility is 

aborted overall". These messages have the effect at the token of immediately 

deciding the voting without further tallying of votes from other voters. Once a 

commit record knows that the possibility is aborted, it can delete itself (thus 

discoYery of a deleted commit record in a possibility means that the possibility is 

aborted overall). However, if the possibility is aborted, all tokens referring to the 

possibility must he known to have encached the state of the possibility before any 

of the commit records are deleted. 

The set of tokens referring to commit records representing a possibility is 

the union of the private lists maintained by each individual commit record as the 

result of "yes" permit-create responses, minus those tokens that have sent 

overall-state() messages to one or more of the commit records. A relatively simple 

algorithm for determining when the commit records can be deleted is to have the 

recipient of an overall-state message poll all other commit records to determine 

the entire set of tokens that have references to the possibility and to collect the 

set of overall-state messages so far received at other commit records. Then the 
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recipient of the overall-state message can poll all of the tokens by sending a 

state("overall complete") message to each token. In response, each site will send 

back an overall-state("complete") message to confirm (note that this always has to 

be sent, even if the token has been deleted) that the token has encached the state 

and no longer will refer to the possibility. When the set of tokens referring to 

the possibility has been determined to be empty in this manner, then the commit 

record that determines it can signal all others to delete themselves and delete 

itself. If any of the messages are lost at this point the others may not know to 

delete themselves. Since no tokens refer to the commit records any more, the 

commit records would never be deleted. 

To guarantee that all of the commit records are deleted eventually, we 

need to ha\'e each commit record poll periodically to see what the state of the 

other commit records making up the same possibility is. For this purpose, we can 

organize the commit records into a "ring" so that each commit record knows 

about a left and right neighbor commit record. Periodically, each commit record 

polls both its left and right neighbors with a test operation. If it gets an "overall 

aborted", or a "deleted" response, it deletes itself. If it gets an "overall completed" 

response, then it marks itself as knowing the commit record is "overall completed" 

as well. Any other response can be ignored. 

As noted above, when a token is created, it sends out create-ref requests to 

all of the voters. Each voter that receives such a request records the name of the 

token that might be created (the object id and the pseudo-time of creation) on a 

private list to be used in the deletion of the commit record. The 

permit -crea te("yes") response is returned by a voter if the voter is still in the 

waiting state, othen ... ·ise a "no" response is sent. In order for a token to be 

created, the possibility as a whole must be in the waiting state. Thus, a token 
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may be created only if max(N-K+ l,K) voters send back "yes" responses. 1 Each 

successful token creation will thus result in at least max(N-K+ 1.~<) entries among 

the private lists of references maintained by the commit records making up the 

possibility. Thus, when taking the union of the lists to determine the set of 

tokens referring to the possibility, one need only include those tokens included 

max(N-K+ 1 ,K) times. 

5.8 Summary 

In this chapter we have discussed the implementation of possibilities in 

terms of commit records. Two basic strategies have been described -- a single 

commit record implementation and a multiple commit record implementation. 

The single commit record implementation is much simpler and more efficient, 

though it does have the drawback of decreasing the availability .of tokens since 

the availability of a token depends both on the availability of the site containing 

the token and the site containing the commit record (and the communications in 

between). Although the availability decrease due to use of a commit record can 

be made smaller by broadcasting its state once it changes and encaching the state 

in the token, still, there is a window during which the availability of the token 

depends on the availability of the commit record, and the size of this window 

cannot be reduced. 

The multiple commit record implementation increases the availability of the 

possibility as a whole during that window, at the cost of a more expensive (in 

terms of messages sent, storage, and CPU cycles) and more complicated 

implementation. We conclude that the multiple commit record implementation 

should only be used when availability is more valuable than the costs of 

implementing the multiple commit record implementation. It is possible for both 

1. Actually, if the permit-create request were modified to indicate whether the 
present state of the voter was completed, aborted, deleted, or waiting, then the 
number of responses needed to create could be somewhat reduced -- the token 
need only prove that the possibility is not yet out of the waiting state. This 
optimization is not important, since it only makes things better when the 
possibility is in the middle of changing its state to either the completed or aborted 
state overall, and the ability to more speedily create a token at the point after its 
possibility is being forced into its final state is of dubious value at best. 
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implementations to coexist 111 the same system, with the multiple commit record 

implementation to be used only for those operations that deal with objects that 

have high availability requirements. It would be perfectly reasonable for a request 

to create a token for an object to be rejected by the manager of the object on 

the basis that the possibility controlling the conversion of the token into a version 

has not been implemented with sufficient availability guarantees. 
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Chapter Six 

Implementation of Objects: Known Histories, Versions, etc. 

This chapter completes the description of implementation of the system. In 

chapter three, the behavior of objects was described in terms of known histories 

that provide a mapping from pseudo-time to versions valid in particular 

pseudo-times. Many issues that are important in a practical implementation were 

not discussed in chapter three, and will be discussed here. Some of the issues are: 

* maintenance of pseudo-time at multiple sites. 

* maintaining the set of versions in the known history. 

* creation and deletion of objects. 

* storage reclamation of versions that are out-of-date. 

* data objects that can have special implementations. 

* copying versions of objects (encachement). 

* handling related groups of objects, by "paging." 

* reducing the likelihood of dynamic deadlock. 

First, the relationship of pseudo-time to real time, and the mechanisms of 

implementation of pseudo-time will be explained. The next few issues have to do 

with the representation and manipulation of objects at their home node. First a 

set of mechanisms are developed that can implement what I call a cell data type, 

or what might be also referred to as a mutable record type. This is a universal 

data type, out of which any other type can be built. However, there are possible 

better implementations for particular data types -- two of these types in particular 

will be discussed, queues and accumulators. Finally, certain enhancements to the 

mechanism that can be used to optimize special performance problems are 

discussed -- a space and delay problem due to computations dealing with many 

small objects is solved by a grouping called "paging", a delay problem when 
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dealing with primarily read-only data is solved by encachement of versiOns of 

objects, and a delay problem when there are computations that manipulate the 

same objects close together in time is ameliorated by an optional mechanism 

called token reservations. 

6.1 Representation of Pseudo-times and Pseudo-temporal Environments 

In chapter three, we discussed the properties required of pseudo-times and 

pseudo-temporal environments. Pseudo-times are values beionging to an ordered 

set. Pseudo-temporal environments are objects that keep track of the progress of 

a particular computation. We require that the pseudo-times used for updates 

executed as part of two sequential steps in a computation be ordered, such that if 

step A precedes step B, all pseudo-times used in A for updates precede all 

pseudo-times used in B for updates. In other words, the pseudo-times given out by 

the pteSnext operations executed on a pseudo-temporal environment must be given 

out in increasing order. 

A pseudo-temporal environment essentially is a way of keeping track of the 

largest pseudo-time used so far in its associated computation. The pte$next 

operation simply returns a still larger pseudo-time and changes the 

pseudo-temporal environment to reflect the new largest pseudo-time used. 

There IS further structure to pseudo-time and pseudo-temporal 

environments, however, due to the existence of concurrent computations. We wish 

to guarantee that two concurrent updates to primitive objects do not execute in 

the same pseudo-time, so that any two updates to the same object are totally 

ordered. More strongly, we wish to guarantee that the pseudo-times used for 

updates in two independently executing (possibly concurrent) transactions are 

ordered such that all pseudo-times used in one transaction follow all pseudo-times 

used in the other. 

At the top level, there are a set of concurrently executing computations 

that are executing independently, that is, with no a priori relationship of the 

ordering between steps in distinct computations. Each of these computations has 

its own pseudo-temporal environment from which it gets pseudo-times, by 

pteScurrent and pteSnext, and pseudo-temporal environments in which to execute 

multi-step transactions. For the moment, let us ignore the complication 
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introduced by multi-step transactions, and think about a transaction as dealing 

with two pseudo-times, an input state reference which the transaction uses to read 

all of inputs, and an output state reference which the transaction uses for all of 

the updates it eventually makes. What we want is for a transaction executed in a 

top-level pseudo-temporal environment to be atomic with respect to all other 

transactions -- that is, the pseudo-times between the input state and the output 

state are not used for updates by any other transaction. 

A top-level pseudo-temporal environment is a list of two integers, last-time 

and pteid. Each top-level pseudo-temporal environment is assigned a unique value 

of pteid. The last-time field is used to guarantee that the pseudo-times resulting 

from successive pte$next operations in a computation are monotonically increasing. 

Pseudo-times returned by pte$next in a top-level environment are obtained 

by reading a clock (about which more will be said later), waiting until the clock 

value is greater than the value of last-time, then updating last-time to the clock 

value, and returning a top-level pseudo-time consisting of a list containing the new 

last-time and the pteid. The pteid guarantees that pseudo-times from pte$next 

in different top-level pseudo-temporal environments are distinct. 

In general, a pseudo-time is represented by a list of integers. Two 

pseudo-times are ordered by finding the first position in which the pseudo-times 

differ (if the lists are of different lengths, then the shorter list is thought of as 

being extended with zeros to the length of the longer), and using the ordering of 

the integers at the position of difference. Thus, for example, two pseudo-times 

resulting from different pseudo-temporal environments by pte$next are ordered 

first by the times obtained from the clocks read, and if the times happen to be 

equal. the tie is broken arbitrarily by using the ordering of pteids. 

Now, how are pseudo-temporal environments derived from top-level 

pseudo-temporal environments? All pseudo-times obtained from such a derived 

pseudo-temporal environment must belong to one tick of the top-level clock. The 

trick is to add "low order digits" to pseudo-time, such that the increases in 

pseudo-times returned from a derived pseudo-temporal environment are confined 

to these "low order digits". Thus, all the pseudo-times obtained by pteSnext and 

pteScurrent from a pseudo-temporal environment derived using pte$ transaction 

from a top-level pseudo-temporal environment are four element lists, where the 
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first two elements are the same for all such pseudo-times, and specify the "instant" 

of top-lrn'i pseudo-time. The third elements of successive pseudo-times derived in 

this way are in increasing order. The fourth element is always zero for a 

transaction pseudo-temporal environment, but in one of a set of parallel executions 

resulting from executing pteSparaction, the fourth element uniquely identifies the 

particular derived pseudo-temporal environment. 

A derived pseudo-temporal environment has three parts, last-time, pteid, 

and time-derived. The new field, time-derived, specifies the "instant" of 

pseudo-time in which the computation carried out in the derived pseudo-temporal 

environment executes. For a pseudo-temporal environment derived from a 

top-level pseudo-temporal environment, time-derived is a list of two integers. The 

pteSnext operation ,..,.orks as before, but returns a value that consists of 

time-derived concatenated with last-time and pteid. 

\Ve can handle any depth of derivation with this structure -- time-derived 

just IS a longer and longer list. To execute pte$transaction in some 

pseudo-temporal environment, we get a new time, L, larger than the last-time 

field in the deri,·ed-from pte. The new pte is constructed by setting its last-time 

field to L, its pteid to zero, and making up a ne,..,· derived-time by concatenating 

the derived-time field of the derived-from pte with (L-1) and the pteid of the 

derived-from pte. The pteSparaction operation constructs the derived pte's m a 

similar way, such that the derived pte's differ initially only in the pteid field. 

As a pre1ctical matter, we can observe that individual steps in a 

computation are unlikely to execute more frequently than once every microsecond 

or so, on today's hardware, so a resolution of one microsecond on the integer 

clock values is sufficient. Similarly, it is unlikely that pseudo-times referring to 

the state of objects more than a few years in the past will be in use. So the 

integer clock times can easily be encoded in a fixed 48-bit field, by storing the 

time in microseconds since some fixed reference time, modulo 248. With the 

exception of top-le,·el pseudo-temporal environments, the pteid field need be no 

more than 8 bits or so to distinguish all of the parallel executions created by one 

paraction call. Top le"el computations can be uniquely identified by their time of 

creation, which can again be encoded in 48 bits. So a pseudo-time could be easily 

encoded in 96 + 56n bits where n is the number of levels of derivation. In a 

system that did not make use of derived levels, i.e. one that does not support the 
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modular composition of transactions, a fixed size 96-bit allocation would suffice. 

In this representation, if we ignore the modulo-248 encoding (by limiting 

the lifetime of the system to 248 microseconds), we can think of pseudo-times as 

simple binary fractions on the interval [0,1). Pseudo-temporal environments for 

two transactions such that one is not derived from the other can be though of as 

disjoint subintervals. Two parallel actions created by the same pte$paraction 

operation can be each thought of as the union of disjoint subintervals 

(corresponding to sub-transactions), such that the union of the parallel action ptes 

is a subinterval of the pte from which it was derived. 

6.2 Maintaining the time - pseudo-time relationship 

In conventional systems, operations make their changes always to the 

"current" state of the system; what is needed is to ensure that a notion of the 

current state be embodied in the construction of NAMOS. In NAMOS, the 

pseudo-times obtained from top-level pseudo-temporal environments function as 

the current state would in the more conventional system. 

To achieve this behavior, a mechanism is needed for choosing the instant of 

pseudo-time in which a transaction is executed that is later than the pseudo-times 

of operations that execute before the current operation in real time. One possible 

mechanism would be to use a central service that gives out pseudo-time values in 

increasing order -- essentially a central sequencer as defined by Reed and 

Kanodia[Reed78]. The problem with this approach is that the sequencer becomes 

a bottleneck in the system, both in terms of performance, and in terms of hanging 

up the system when it becomes inaccessible. 

It is important to note that the mechanism that chooses pseudo-times need 

not perfectly follow the requirement that pseudo-times be given out in ascending 

order -- regardless of the order in which they are chosen, they may actually be 

used in a different order anyway. For example, transaction A may choose its 

instant of pseudo-time before transaction B does, but there may be some delay 

that prevents A from actually completing its operation until after B is completed. 

If A and B deal with disjoint sets of objects, this switching of execution order will 

have no effect on the the transactions or correct operation of the system, while on 

the other hand if some data is common to them both, the rules for educing 
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known histories will prevent inconsistent results, perhaps aborting A to insure 

correctness. The system is thus highly tolerant of pseudo-times for transactions 

being chosen out of order. 

Since it is my basic assumption that transactions that conflict on their set 

of objects to be manipulated will not be likely to happen close together in time, a 

mechanism that chooses output pseudo-times such that two such choices separated 

widely in real time will give pseudo-times that are ordered in correspondence with 

the real time ordering \viii suffice. The easiest way to do this is to use 

approximately synchronized clocks. By using a set of approximately synchronized 

clocks, one per node, one can ensure the property that any time one gets a value 

it will be greater than the values obtained at all other nodes at times sufficiently 

far in the past. 

As noted above, the clocks at different nodes need not be in perfect 

synchrony. However, if one clock is consistently slow, it will have a serious effect 

on the performance of operations originating at that node. If operations 

originating at two different nodes encounter a conflict that causes one of them to 

abort, the one whose clock is slow is the one that will be likely to abort. If the 

clock at a site is extremely slow, it is possible that its updates will always abort, 

resulting in effectively preventing that site from having an effect. 

Synchronizing the system clocks whenever they come up by usmg the 

operator's watch will usually get the system time accurate within a few minutes. 

Depending upon the rate at which clocks drift, and the likelihood of two 

operations running \vithin a few minutes of each other attempting to update the 

same data, this may be sufficient synchronization. By taking great care, but 

without using particularly expensive technology, clocks that are synchronized 

within a fe\v microseconds are possible, using broadcast signals such as those from 

station \V\VV as a time standard, and reasonably stable clock circuits. 

Given that we are using these techniques, one can do still better by using a 

technique proposed by Lamport[Lamport78]. Essentially the mechanism is this. 

Whenever any mess<1ge is sent between two nodes, it contains the time the 

message \\·as sent at the originating node. The receiver of the message inspects 

the timestamp, and if the time is in fact greater than his own real time clock, one 

of two things is wrong -- either the source's clock is fast, or the receiver's clock is 
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slow, in either case by an amount at least as great as the difference between the 

message timestamp and the receiver timestamp. Lamport proposes a strategy that 

amounts to adjusting the receiver's clock forward in such a case so that whenever 

a message is received that originated at time 1, the receiver node's clock is set to t 

if it is not already greater than t. This has the effect of synchronizing each clock 

to the rate of the fastest clock in the system. 

There is a problem with this approach, however. If some clock advances 

much too fast, or if it is deliberately set far into the future, the node containing 

the clock will get priority in all operations, and more importantly, be able to lock 

out all updates from other nodes until those nodes advance their clocks. A 

modified version of Lamport's strategy, in which a message that has a timestamp 

very much greater than the receiver's clock will not be processed, helps to solve 

this problem. This technique will also help to solve the problem of incorrectly set 

clocks. 

6.3 Known Histories 

The known history 1s the mechanism that maintains the relationship 

between versions and their pseudo-time of validity. It is realized as a data 

structure stored at the home of an object. The primary purpose of the data 

structure is to keep track of the individual versions, tokens and aborted versions 

associated with the object, and to change as operations are applied to the object. 

Implementation of known histories is fairly straightforward, but it does involve 

some slightly tricky details. 

It is assumed, as a basis of robust operation, that once an operation on the 

object has signalled its completion, that the changes made by that operation are 

safely stored away on stable storage. Thus, it is required that all of the versions, 

tokens, and the known history data structure itself be stored on stable storage 

before signalling the completion of an operation. Further, it is necessary that no 

matter where in the process of manipulating the known history the home node 

fails, the known history be left in a consistent state. The local locking mechanism 

described in chapter two can be used to achieve this result, by keeping the 

previous consistent state of the known history such that it is automatically 

restored if the manipulation fails while the known history is locked. 
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The known history data structure in its simplest form consists of a list of 

entries that contain a pointer to the representation of the value of a particular 

version, the start and end pseudo-times that define its validity, a reference 

(possibly to another node or set of nodes) to a commit record(or records) to 

specify the possibility under which the version is created, and the cache for the 

Fig. ll. Known History Entry 

value 

start PT 

end PT 

commit record 

commit state 

preVIOUS 

commit record's state (see figure 11 ). These entries are threaded together as a 

singly threaded list in reverse chronological order of pseudo-times. This threading 

ensures that it is easy to add a new entry in between any pair of elements by a 

single atomic pointer swap. The object itself is then represented by a cell in 

stable storage, called the object 

Fig. 12. Known History Representation 

Object Header List of Known History Entries 

l thread --iii----.....,_---. 

header (see figure 12), that contains a pointer to the head of the list of known 

- 134 -



history entries. 

The two basic operations on the known history are the basic lookup 

operation, which attempts to find the version of the object that corresponds to a 

particular pseudo-time, and the new-token operation, which attempts to make a 

new token that is valid from a particular pseudo-time. I will consider these in 

turn. 

The lookup and new-token operations provide basic tools that allow the 

creation of objects represented as cells that contain record values, where the value 

of the cell is loaded to inspect the state of the object and the value of the cell is 

changed by a store operation to change the state of the object. While cells are in 

a sense complete -- they can be used to construct any kind of mutable object, 

there are some kinds of objects that may be better represented in a slightly 

different way, taking direct advantage of the constraints provided by the 

restriction on the kinds of operations allowed on an object. In this sense, what is 

about to be described is a default implementation strategy that is known to work 

for all kinds of mutable objects. After this strategy is described, alternative 

implementation for special types of mutable objects will be discussed, with the 

example being queues. 

6.3.1 Lookup requests 

The lookup operation is a search of the known history, looking for the 

version or token whose start and end pseudo-times bracket the pseudo-time 

searched for. If no such version or token exists, then the version or token whose 

start time comes closest to, but does not come after, the specified pseudo-time is 

found. If this process results in finding a token, then the state of the commit 

record must be queried to determine whether or not the token's data can be 

returned as the version looked for. If a version is found in the search, then it is 

returned, and its end time is extended, if necessary, to include the pseudo-time 

specified in the search. Figure 13 illustrates the message passing structures that 

can result from a lookup request. 
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Fig. 13. Communication in a lookup request 

(1) lookup 

requestor object home 

(2) value 
(a) The version referred to is not a token. 

object home requestor 
test 

ommit recor 

. state 
va ue 

(b) The version referred to is a token. 

The lookup operation is invoked as a response to a message from some 

remote user, in many cases, and there is a question with regard to how the 

waiting for a response from a token should be managed. One possibility is that 

the action on finding a token is that a query is sent from the home node to the 

site of the commit record, and another message is sent to the requesting node, 

indicating that it should try again later. This approach has the advantage that no 

memory of the pending lookup operation need be maintained at the node 

containing the object. Since no memory is allocated while waiting, if the response 

is lost, there is nothing to clean up. The requester recovers from an error by the 

simple mechanism of resending the request after a timeout. At some time in the 

future, a response will come from the commit record, and if that response is that 

the commit record is complete, then the token becomes a version that can be read 

later. This approach, while it simplifies recovery after a lost message, has the 

drawback that it may cause a rather large delay in the case where a token is 

accessed soon after it is updated. 

The other possible approach for handling the waiting is to send the query 

to the tokrn's commit record, but not respond to the requesting node until the 

commit record responds either positively or negatively. This mechanism requires 

remembering the request at the home of the object while waiting, to recall what 

node the lookup request came from, and wh1t pseudo-time was specified as the 
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target of the lookup request. However, the advantage is that as soon as the state 

of the commit record is known, it can be reflected back to the requester. There 

is a disadvantage, however, in addition to the memory required, in that the 

requester cannot distinguish the delay due to querying a commit record from a 

delay resulting because the original lookup request was lost before arriving at the 

object's home node. 

Neither of these approaches is completely satisfactory, but a combination 

of the t\vo can solve most of the problems of each. Upon receiving a request to 

lookup a specific version, the home node responds to the requester immediately, 

either with the ,·ersion, or with a message meaning "I have a token to check on." 

If this latter message is sent, a query is sent to the token, and in volatile storage, 

an entry is made that remembers the request -- the requester node, the object, and 

the pseudo-time -- enabling the immediate forwarding of the response from the 

commit record back to the requester. When the commit record's response comes 

back, the volatile storage entry is used to find the particulars about the request, 

and if the token is now a version, the result of the lookup is forwarded to the 

requester. If the token is aborted, then it is deleted from the known history, and 

the lookup operation is reinitiated, resulting in looking at the next previous entry 

of the known history. 

As a general rule 111 the implementation of NAMOS, we may use volatile 

storage to hold information that allows early forwarding of messages, or for other 

performance enhancements that are not strictly required for NAMOS to work 

correctly. 

The combined approach has the advantage that if no error occurs, the 

response to a lookup that encounters a token is just about as fast as possible. On 

the other hand, because volatile storage is used to remember the information for 

forwarding a request, there is no problem in recovering the storage used to 

remember the state of requests involving tokens, should some failure occur. Let's 

consider the three kinds of failures that can occur. First, the commit record can 

become unavailable, either through loss of the query to the commit record, the 

loss of the response from the commit record, or loss of availability of the site 

containing the commit record. In this case, the requester node will get no 

response other than possibly the response that says the home has received the 

request. After some period of time, the requester will time out and resend his 
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request. Then, the home node will aga111 query the commit record, and the 

request will proceed as before. 

Second, the requester can fail after making its request. This can occur 

either because the requester times out, or because of a crash. Eventually, the 

home node may send a response to the requester, but there is no awaiting a reply 

from this response, so the requester cannot destroy the system by failing. 

Third, the home node can fail, losing volatile storage. In this case, the 

response from the commit record may never get reflected back to the requester, 

who will then time out and retry. The response from the query to the commit 

record may come back at a time when it can be reflected in the state of the 

token of interrst -- this will only optimize a retried request, or the response may 

come back while the home node is inaccessible, in which case, the retried request 

will perform as if the original request had not happened. 

6.3.2 New-token requests 

The new-token request is much simpler than the lookup request, since the 

new-token request does not depend on the state of tokens already in the known 

history. The purpose of the new-token request is to install a new token in the 

known history to reflect a pending change to the object. Parameters to the 

new-token request are the \'alue of the new token, the commit record that 

represents the possibility under which the token is created, and the pseudo-time at 

which the new token is to be valid from. The basic action is to create (if 

possible) a new entry in the known history whose start and end times are equal to 

that specified in the new-token request. 

As notrd in the previous chapter, if the commit record must be reclaimed 

once it is no longer needed, it is important that before a token is placed in the 

known history, the commit record know about the token that may depend on it. 

Consequently, a create-ref message is sent to the commit record, and when a 

permit-create response is received, the fate of the token is decided. Figure 14 

shows the pattern of messages that make up a new-token request. 
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Fig. 14. New-token request processing 

requestor object home commit node 
~~--~~--~_, 

Again, to handle the problem of failures at the home node, the requester is 

responsible for ultimately causing the retransmissions needed to handle lost 

messages and unavailable nodes. While the create-ref message is outstanding, no 

response is made to the requester. An entry in volatile storage is made to handle 

the permit-create response when it comes back. This entry contains the 

parameters of the new-token request. 

The new-token request fails if there is already a version whose start and 

end pseudo-times bracket the pseudo-time the token is to be valid from. If such a 

condition is detected when the token is to be created, then no change is made to 

the known history, and an error response is sent to the requester. This condition 

can be detected either before or after the create-ref /permit-create exchange. 

As noted in chapter five, we need not be concerned if the new-token 

processing fails after the create-ok message is sent; there is no problem if the 

commit record has a reference to a nonexistent token, since the query from the 

commit record to the object will generate a no-ref response indicating that no 

token exists that refers to the commit record. 

If a token already exists that was created at the pseudo-time specified in 

the new-token request, then it may be the case that an earlier attempt to perform 

the new-token request failed after the token was entered into the known history, 

but before the response reached the requester; the requester may resend a 

duplicate request to recover from such an error. It is also possible that the 

new-token request \Vas duplicated in the network. In either case, an error 

response should not be returned. Instead, the name of the possibility specified in 

the token's knO\vn history entry should be compared with the name of the 

possibility that is specified in the new-token request. If equal, then the message is 

a duplicate, and a response indicating the request was successfully performed is 

generated, since returning no response would not help the requester in the case of 
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a failure that prompted retry of his request. If the possibility is not the same, 

then an error response should be generated, since this results from the case where 

a requester (or multiple requesters) try to create the same version under different 

possibilities -- a meaningless thing to do. 

Having discussed the mechanism for implementing the new-token request, 

let us contrast it with an alternative mechanism that can be used to achieve the 

same effect, but perhaps with fewer messages and less delay. The observation 

that motivates the alternative mechanism is that a new token can never be created 

before polling the commit record to inform it that a possible reference is being 

created. This requires a pair of messages, increasing the delay significantly if the 

commit record is not local to the node containing the object of the new-token 

request. One fewer message can be used by sending the new-token request 

through the commit record site on its way to the home of the object. When it 

passes the commit record. a reference to the new token that might be created is 

entered onto the commit record's reference list, and a notation that is equivalent 

to a create-ok message in information content would be added to the message 

before forwarding it to the home of the object. The new token could then be 

immediately added to the known history of the object, and the response could 

then he sent to the requester. The triangular pattern of messages that results is 

shown in figure 15. 

Fig. 15. Alternative new-token processing 

requestor 

( 1) new-token & create-ref 
3) token-created 

object home 1+---------------t:ommit recor 
(2) new-token & permit-create 
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\Vhat is wrong '"'ith this approach? The basic problem is that it does not 

admit of any case where the requester is unaware whether or not the request he is 

sending involves the creation of a new token, or any case where the requester 

cannot knmv the name of the new tokens that are being created. If objects are 

implemented by an interface that hides their internal representation, then very 

commonly, the name used for the object by the requester will be quite different 

from the name(s) used for the object(s) that is(are) a part of the object's 

representation. So, for example, an individual's bank balance. may seem at some 

level to be a single object that can be changed by certain requests. However, 

internally. the balance may consist of several lower level abstract types of objects 

that are located at several nodes. A request to change the bank balance may 

involve updates to objects the requester never even dreamed existed, so there is no 

way to inform the commit record what objects may refer to it. In some 

implementations, such a request could involve creation and modifications of new 

objects, as well. These new objects would have to be created by the requester in 

order to make sure the commit record is properly informed. 

There are, however, techniques for reducing the number of individual 

create-ref /permit-create exchanges that occur as part 

and thus reducing delay as well as message traffic. 

discussed later as part of the section on "paging". 

6.4 Non-cell object types 

of a composite operation, 

These techniques will be 

So far, with the new-token and lookup operations, we have the basic tools 

for implementing cells having load and store operations. Other types of objects, 

such as stacks, queues, accumulators, databases, etc. can be implemented using 

just cells as their basic tool for achieving mutability, but it may be that more 

optimal mechanisms can be used when the operations are more complex than 

simple load and store operations. 

A general class of object types for which particularly nice implementation 

techniques exist are called accumulator types. The best example of this kind of 

object is an integer cell that has operations like adding a constant to the cell, 

subtracting a constant from the cell, and multiplying the cell by a constant, none 

of which return a value, and another operation to obtain the value of the cell. 

Implementing such an object using the mechanism described so far requires that 
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the operations on an object be performed one at a time, m the order of the 

pseudo-times assigned to the operations. Thus a delayed request to perform an 

operation on an object will be aborted if an operation at a greater pseudo-time 

was already executed. 

It is possible to implement the cell very efficiently by storing just the 

operation (add subtract or multiply) and the constant operand in each entry of a 

modified known history. A new token in the known history contains the 

operation and operand with the pseudo-time at which the operation is to be 

performed. That token becomes a version when its associated possibility is set to 

the complete state. The actual computation of the values resulting from the 

operations can be deferred until a value is actually requested. When the value of 

the cell is requested, however, it will be necessary to actually perform the 

computations requested by the operations whose pseudo-times precede the 

pseudo-time at which the value is requested. First, all tokens must be either 

aborted or become verswns. Then, starting with the oldest (in pseudo-time) 

version whose value has not yet been determined, the values of all versions whose 

range of validity precede the pseudo-time of the value request are computed. 

Since each version depends on the previous version, the range of validity of the 

previous version must be extended to close any gap in pseudo-time that may exist 

between successive versions. 

This implementation of the accumulator allows update operations to be 

performed without aborting each other if they happen particularly close together 

in time. The only time at which the update operations will be aborted in this 

scheme is when a value for the accumulator is desired. Then, any updates that 

have not yet been communicated to the accumulator home, but whose 

pseudo-times precede that of the value request, will be aborted. 

In general, an accumulator type is a type of object for which there are one 

or more operations that change the state of the object without returning any 

results that depend on either the old or new state of the object. The technique 

just described can always be used to implement such operations. The advantage is 

always that the update operations do not delay or abort each other. 

Disadvantages include more complex implementations of such objects and longer 

delay whenever an operation whose result does depend on the state of the object 

is executed. 
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The accumulator implementation strategy is akin to a strategy often used 

to procrss updates like deposits to bank accounts -- the strategy of hatching 

updates together and performing them during slack time on the system unless 

there is an urgent need to determine the effect of the updates before such a slack 

time (usually overnight) comes about. The strategy is also a special case of "lazy 

evaluation" or "call by need". What NAMOS does is provide a framework for the 

synchronization of updates to an object so that the arrival order of update 

requests for an object is not significant in assuring that results are consistent. 

An interesting variation on the accumulator type is exemplified by the 

symbol table type. A symbol table has three operations, insert, which adds a new 

name and associated value to the symbol table, delete, which removes the entry 

corresponding to a name from the symbol table, and lookup, which returns the 

value associated with a particular name. To make the symbol table into an 

accumulator type, we must define the insert operation when the name already 

exists in the symbol table to change the associated value to the one specified in 

the insert; if an error were signalled in this case, the insert operation would have 

a result that depended on the state of the symbol table (error /no error). 

Similarly, a delete operation on a name that was not present would just return 

with no error. The techniques used above could be used to implement the symbol 

table as an accumulator; however, another technique could also be used. 

Suppose we were to choose a tree representation for the symbol table, with 

binary search to do the lookup. Imagine the symbol table as always containing all 

of the names e,·er to be used (inserted, looked-up, or deleted), and have a known 

history for e<lch name, associating with the (name,pseudo-time) pair a particular 

value. Since we don't know in advance all of the names that will be used, we 

simply add to the symbol table tree whenever a new name is looked up, inserted 

or deleted. \Ve need a way to symbolize in each known history that at a 

particular pseudo-time the name had no associated value (i.e., lookup signals an 

error). A reserved value is used. The insert, delete and lookup operations can be 

implemented with this representation in a rather interesting way. All three 

operations begin by finding the known history associated with their name 

parameter (creating it if it doesn't exist). The insert operation checks to make 

sure that another value is not already associated with that name at the insert's 

pseudo-time and if not, makes a new token with the new value (otherwise a 

redefinition error, like the one for version_refSlookup, is signalled). The delete 
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operation Is similar. except that instead of a new value, the reserved value 

indicating no value exists is to be placed in the known history. The lookup 

operation checks to see if either a normal value or the reserved value is associated 

with the pseudo-time of the request (extending the range of validity of an earlier 

value if necessary). If such a value exists, lookup returns it. If no version or 

token exists for the pseudo-time of the lookup or any earlier pseudo-time, the 

look up request creates a token with the reserved value as its value, and then 

returns the fact that the name is undefined. 

In this symbol table implementation, the arrival ordering of requests 

affecting diffrrent names is completely irrelevant. The only requests that can 

abort each other are requests with the same name. Were our original mechanism, 

or the accumulator enhancement just described, to be used, operations on 

different names could cause each other to be aborted. To do a lookup or insert 

in a binary tree composed of individual record objects whose updates are 

controlkd by NAMOS, the states of all records above the record containing the 

name referred to would have to be known, so operations on those names could be 

interfered with. 

A final example of interest is a FIFO queue type, with enqueue and 

dequeue operations. We assume that the enqueue operation does not return a 

value depending on the state of the queue (so a queue overflow error cannot be 

part of the interface). The queue object is an accumulator because of the 

enqueue operation, but, as with the symbol table, there is a better implementation. 

The important observation to make about the two queue operations is that 

when the dequeue operation executed in pseudo-time t' returns the value enqueued 

in pseudo-time t, the only knowledge that can be deduced knowing the results of 

dequeue operations thus far is the set of values enqueued in pseudo-times up to 

and including t. In particular, nothing is known about enqueues that may be 

executed between t and t'. This observation and the fact that values are returned 

in the order enqueued lead to a nice implementation. To represent the history of 

enqueue operations we use the same structure as a known history, where each 

known history entry has as its v<~lue part the value enqueued at its start 

pseudo-time. The enqueue operation is performed by adding a new token to this 

enqueue known history in the usual fashion. A second known history represents 

the history of dequeue operations. The values in this known history represent the 
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pseudo-time at which the value dequeued was enqueued. Thus, the dequeue at t' 

above would result in adding an entry to the dequeue known history whose value 

was t, and whose start pseudo-time was t'. 

A dequeue operation works by first doing a lookup on the dequeue known 

history, to obtain the pseudo-time the value previously dequeued was enqueued. 

Then the enqueue known history is searched to find the entry with the earliest 

pseudo-time after that pseudo-time. If no entry is thus found, the dequeue 

operation returns an empty-queue error, recording the pseudo-time of the dequeue 

as a new token in the dequeue known history. Otherwise, the entry found 

contains the value to be returned by the dequeue, and the pseudo-time at which it 

is enqueued is recorded in the dequeue known history as a token with a start 

pseudo-time equal to the pseudo-time of the dequeue request. Before returning, 

the dequeue operation extends the range of validity of the preceding version in the 

dequeue known history to close up any gap. 

The resulting queue implementation, though complex to describe, allows 

enqueue requests to arrive in quite a different order than the assigned 

pseudo-times of the enqueues without aborting the enqueues. The queue type is 

particularly nice in this respect. 

Figure 16 illustrates the effect of a sequence of transactions on a particular 

queue. For simplicity, the pseudo-times in which the queue operations are 

executed are rendered as a pair of integers. The first integer is the pseudo-time in 

which the input state of the queue would be observed in ordinary implementations 

of the queue operations, while the second is the pseudo-time associated with the 

modification to be made to the queue. The enqueue and dequeue known histories 

are shown after each operation. The changes are highlighted by underlining. It is 

fairly easy to see that the arrival order of the queue operations is not severely 

constrained -- only the final enqueue shown is aborted because it arrives out of 

order with respect to its pseudo-time of execution. 

Of our three examples, the symbol table example has perhaps the largest 

practical importance, since our example symbol table could be generalized to any 

associative lookup mechanism, for example a large relational database. All of the 

optimizations described in this section, however, rely on the fact that the object 

implementation can be exclusively locked for the duration of the execution of an 
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Fig. 16. History of several queue operations 

Operation State (PT) Value Enqueue Known History 

Enqueue 
Enqueue 
Enqueue 

Dequeue 

Enqueue 

Dequeue 

Enqueue 

Input Output Dequeue Known History 

10 
5 

20 

21 

24 

25 

7 

11 
6 

21 

22 

25 

26 

8 

A [ 11 I 11 ,A ][0,0,-] [0,0,0] 
B [ll,ll,A] [6,6,B][O,O,-] [0,0,0] 
C [21,2l,Cl [ll,ll,A] [6,6,B][O,O,-] 

[0,0,0] 
B [21.21,C] [11,ll,A] [6,6,B] [0.~.-] 

[22,22,6] [O.Il.O] 
D [25,25,0] [21,2l,C] [11,11,A] [6,6,B] [0,5,-] 

[22,22,6] [0,21,0] 
A [25,25,0] [21,21,C] [11,1l,A] [6,10,B] [0,5,-] 

[26,26, 11] [22,25 ,6] [0,21 ,0) 
E [25,25,0] [21,21,C] [ll,ll,A) [6,10,B] [0,5,-] 

[26,26,11] [22,25,6] [0,21,0] 
... fails. because there is already a version in the enqueue known history valid in 8. 

Legend: 
Known History Entry 

[Start PT, End PT, Value] 

operation, so these tricks can be applied only to single node objects. 

6.5 Creation and Deletion of Objects 

So far, we haven't yet discussed the mechanisms by which objects are 

created and deleted. In the following discussion, I assume that objects are 

explicitly deleted, so that a means for detecting "dangling references" must be 

provided. If some sort of automatic deletion of objects based on knowing that 

there will ne\'er be any references to an object after a particular pseudo-time can 

be provided, then the mechanism could be simplified by eliminating the need for 

detecting references to an object after it is deleted. Such an automatic deletion 

scheme would be hard to provide, however. First of all, NAMOS is intended to 

be used in 1 he decentralized multi-node environment described in chapter one. It 

would be rather difficult, and certainly rather expensive to provide a distributed 

garbage-collection algorithm, although a scheme based on reference counts might 
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be a good \vay to begin, were the second complication to be described not to 

exist. Second, and perhaps more importantly, the automatic deletion algorithm 

must know, for each object reference to an object, what pseudo-times are to be 

used with that reference in order to refer to a particular version. By taking the 

least pseudo-time, L, that can still be used (either because it is still to be past in 

some executing computation's pseudo-temporal environment, or because it is stored 

in some checkpoint as suggested in chapter four) with any object reference, the 

system could construct the transitive closure of the refers-to relation, where an 

object refers to another if some version of the object valid after L refers to the 

other object. All objects reachable from executing computations in this closure 

cannot be deleted. Any components of the closure that are unconnected to 

existing computations could be deleted. This strategy for garbage collection is 

both difficult to implement in a distributed system, and does not guarantee to 

find all deletable objects. 

The important issue m creating and deleting objects is that the creation 

and deletion of an object has an effect on the observable behavior of an object in 

pseudo-time. Thus, the pseudo-time of creation of an object defines the earliest 

pseudo-time that the object can ever be assigned a value or read, while the 

deletion pseudo-time defines the latest such pseudo-time. Thus the known history 

as a whole must keep track of these times, once they are known. Consequently, 

the object header must specify the creation and deletion pseudo-times, once they 

are known. 

It is possible that an object is created by a composite operation that later 

fails. Consequently, the creation must be mediated by a commit record. The 

protocol mechanism for this is simple. Creation of an object occurs in a 

particular state, by the creation of the first token of a known history. The first 

token is special, in that it must be committed before any other operation on the 

object C<in be performed. To allow later tokens to be committed would imply 

that the object existed, though it may never be created. This paradox can occur 

only if there is a way that the new name can be passed to another operation 

before the current operlition finishes -- implying two possibilities, one for the 

object that contains the name, and one for the named object being created. Use 

of multiple possibilities is not the normal mode of operation, and as noted in 

chapter four, may lead to peculiar results if we are not careful. 
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Thus, in nddition to the creation pseudo-time, the object header must 

contain a flag indicating \vhether the object was really created. This flag simply 

encaches the commit state of the of the initial token. The encachement is 

necessary to allow the initial version to be eventually deleted, by the version 

deletion mechanism to be discussed. 

Deletion of an object does not imply the freeing of storage of the object, 

stnce there may exist requests yet to happen that will attempt to refer to versions 

of the object that correspond to pseudo-times earlier than the pseudo-time 

associated with deletion. If storage were immediately freed, then those requests 

could not be satisfied, an unfortunate kind of behavior. Consequently, deletion 

simply prevents operations at a later pseudo-time from the deletion from being 

able to access the object. A separate mechanism for deletion of individual 

versions will enable the eventual freeing of storage for the object. 

Deletion of an object requires care in implementation. Deletion of an 

object basically consists of freezing the evolution of the known history at a 

particular point -- however, the freezing must be mediated by a commit record. 

Deletion thus marks the object header as "potentially deleted," and saves the 

commit record pointer associated with the deletion and the pseudo-time of 

deletion in the object header. Later attempts to access the known history that 

would require that the cursor be advanced are delayed until the deletion is known 

to have happened (by the commit record entering the complete state) at which 

time the requests are denied. If the deletion fails (its commit record goes to the 

abort state), accesses past the pseudo-time of attempted deletion are permitted. 

As a result of the modifications made to the object header to handle 

creation and deletion, it now looks as shown in figure 17. The object header can 

be freed once it is successfully deleted by the above mechanism and all versions 

have been also deleted by the mechanism described in the following section. 

6.6 Deletion of Object Versions 

Object ,·ersions may be deleted form the known history, thus reducing the 

memory needed to retain the known history. Certain restrictions apply. The 

main restriction is that once a version has existed for an object, no other version 

can ever be made valid in the range of validity of the deleted version. 
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Fig. 17. Object header, revised to handle creation and deletion 

Object Header List of Known History Entries 

thread 

create PT 

created flag 

delete PT 

del~te 
commit rec. 
delete state 

Consequently, there must be some way to represent in the known history the 

ranges of validity of all versions that have ever existed. 

An approach that saves some of the storage associated with verstons ts to 

delete only the value associated with a deleted version, while keeping the known 

history entries and marking them as deleted. A deleted known history entry 

would then just be place holder, preventing new tokens from being created there. 

This approach is still inadequate because storage required for an object that can 

be updated remains unbounded. 

Essentially, the result of deleting verswns is to save space at the cost of 

possibly causing certain operations that are still looking into "old" states to fail. 

Depending on the characteristics of use of data, some rather flexible strategies can 

be used. For example, one may implement many of the objects in a traditional 

large data base such that all versions and tokens (except the most recent version) 

whose range of validity strictly precedes N seconds before the current real time 

are deleted. This strategy will work quite well if transactions against the data 

base are executed in environments whose input state corresponds to the real time 

the transaction began, and if all the transactions have a high probability of 

completing in Jess than N seconds. 
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Implementing this strategy in the known history is quite simple. In the 

object header the value N would be stored, and any attempt to create a new 

token or lookup a ,·;due in a pseudo-time older than the current real time minus 

~ would be prevented, giving an error message indicating that the version referred 

to no longer can exist. Versions and tokens whose ranges of validity end before 

the current real time minus N can be deleted when convenient. One other rule 

must be applied, in order to avoid losing the only version. The latest version and 

tokens with later pseudo-times may not be deleted, even if their ranges of validity 

lie before the current real time minus N, unless the object has been deleted. 

Thus we are assured that an attempt to get the current value (the value using the 

current real time as the pseudo-time of reference) will always succeed unless the 

object has been successfully deleted. 

A more restrictive strategy is to keep only the most recent version and 

later tokens. In high update traffic where occasionally there are long executing 

transactions that attempt to do a coherent query of many data base records, this 

may prevent these large coherent queries from being very likely to succeed. 

Howcn'r, this strategy is logically equivalent to a locking strategy, in that one is 

only guaranteed to be able to access the "current" version. Except in abnormal 

cases, only one token will exist, so this strategy can be viewed as a complete 

methodology for the distributed locking problem. As I noted in chapter four, I 

am aware of no other methodology that handles the problem of maintaining 

consistency by locking in a distributed data base in the case where arbitrary 

crashes and loss of messages can occur. Consequently, if the advantages of 

maintaining multiple versions, and supporting interfaces that work in environments 

that are unknown at design time, were not considered important, the methodology 

of this thesis still can be of great help in designing distributed data bases. 

In some implementations, old versions might never be deleted, but rather 

would be moved to some kind of write-once, low cost backup storage. Not only 

does this provide a complete audit trail of changes to the data base, but, as noted 

already in chapter four, it makes possible undoing later changes to parts of the 

data base where such changes may have resulted from user error. One can simply 

use the backup storage versions to retrieve old versions that are consistent in a 

particular state, and install them as the present state. 
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Once a versiOn has been copied to backup storage, it doesn't really make 

sense for its range of validity to be changed. Consequently, to implement this 

strategy, the idea of using the value (real time)-N as a boundary before which 

tokens cannot be created and versions cannot have their ranges of validity 

chang('d is still important. This value is also used to select versions to move to 

backup storage. Versions are written into backup storage with associated 

information that specifies the range of validity. Since there may be holes between 

the versions put in backup storage, at the time each version is "frozen" for backup 

(when its end pseudo-time is less than (real time)-N), its range of validity is 

extended to include any following hole, in order to make sure that a backup copy 

exists for any pseudo-time that lies in the range from creation to deletion. 

If this strategy of keeping old versions in archival storage is used, it may be 

inappropriate to try to retrieve them for ordinary accesses because of excessive 

delay. Consequently, an appropriate mechanism must be used to distinguish 

references that are prepared to fetch from archival storage when necessary. A 

mechanism that is somewhat general is to specify how long a request is to wait 

for a value before it is declared inaccessible. The same mechanism would be 

useful for controlling the wait for a value that is on a node currently inaccessible 

due to a system crash or communications failures. 

It is important to note that applying these implementation techniques 

blindly to the queue implementation described earlier will result in bad behavior. 

The version deletion mechanism for the known history that represents the values 

enqueued must recognize that there are references in the known history containing 

the last dequeue pseudo-time that will be left dangling if the (real time)-N 

strategy is applied blindly to the enqueued values known history. The proper 

approach is to delete only those versions in the enqueued value known history that 

are not referenced by the last dequeue pseudo-time known history. 

6. 7 Small Objects and "Paging" 

An attracti"e way of handling storage and encachement algorithms for related 

groups of small objects is "paging". Simply put, in paging a group of objects are 

handled as a single object for the purposes of synchronization and storage 

management (including encaching as noted in the previous section). 
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In the model proposed here, it is possible to reduce the overhead of storing 

ranges of validity with object versions and keeping known histories by sharing 

rangt:>s of validity across multiple objects in a "page." This strategy is particularly 

inviting from the space reduction viewpoint when composite operations that affect 

most or all of the objects in a page are common. 

The basic mechanism is to maintain a known history for the page, 

consisting of page lWSions and rnc:c tokens. Every change to any object in the 

page causes the generation of a llt'W p<1ge version (although changes to multiple 

objects in the page that are effective in the same output state with the same 

commit record will result in only one new page version -- how this is achieved is 

described shortly). Every attempt to change an object will generate a new page 

token unless the correct one already exists. 

The only trick is managing the page tokens such that multiple changes to 

the page token are allowed. Our earlier protocol description for record objects 

would suggest that the second attempt to update the page token would be ignored 

as a duplicate request. In fact, we need a mechanism that allows multiple writes 

to the same page token if the writes are to disjoint objects. Basically, with the 

page token, we must keep a list of the objects for which new tokens are created, 

to which objects new update requests should be treated as duplicate messages. 

This list, like the pointer to the commit record, is not needed after the page token 

is committed. 

Use of pages introduces some restrictions. For example, creation, deletion, 

and relocation of individual objects on a page seems to be possible, but allowing 

for it greatly complicates bookkeeping, and may not be worth the trouble to 

implement. Howewr, creating, deleting, and relocating all of the page's objects as 

a group is quite simple. 

Perhaps the greatest advantage of the "paging" strategy in this system is 

that in creating a page token and then doing all of the later changes, only one 

create-ref /permit-create exchange need be done. Thus, if a number of objects are 

used to represent a particular abstraction that are usually all changed at the same 

time, the message overhead of communication with the commit record on each 

new-token request will be drastically reduced. 
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6.8 Copying of Object Versions 

Since object versions are immutable, they can be freely copied to nodes 

other than their home node. One rnight want to perform such a copy to optimize 

performance, where an operation needs to refer to a particular object quite 

frequently, yet the object changes (generating a new version) only rarely. There 

are, of course, other considerations that would argue against copying versions of 

objects -- in particular, the information hiding afforded by keeping the 

representation of the object only known at its home node, and the protection 

resulting from that information hiding that can restrict the ways in which the 

object can be inspected. However, given that copying is possible for the particular 

object, the system keeps enough information to allow the copying to take place. 

\Ve can view the copying of an object version as an encachement of the 

object, since the home of the object still contains the master copy of the versions 

of the object. When the object version is copied, it and the range of validity in 

pseudo-time of the object version are transmitted to the using system. At the 

using system, whenever a lookup request is requested for that object with a 

pseudo-time in the range of validity known to the using system, the copied version 

can satisfy the request. 

A small detail of the mechanism for encachement may not be obvious, 

though. In particular, object versions can be copied when the end of their range 

of validity is unknown, either because there is a token following it that has not 

been committed, or because no read has extended the range of validity up to the 

time of the next version. In either case, the full range of validity of the version is 

not yet known at the time of the copy. 

If a lookup request for the object is not in the range of an encached 

version, the encached version might not be useless. By augmenting the protocol 

for doing a remote lookup, it is possible to extend the range of validity of the 

encached version without the full cost of recopying the entire version. Basically, 

we add to the remote lookup request a parameter specifying the final time of the 

closest preceding encached version on the requesting site. The handler of the 

request may then need only to ship a special message that says, in effect, "your 

version that started at pseudo-time T is valid through time T'." Although this 

may not reduce delay, it certainly can help reduce the volume of network traffic. 
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In fact, this will be a very common case, where multiple re!'d operations in 

successiYely later pseudo-times are issued at a site. An optimization that will 

reduce delay somewhat for this case would be to remember at the home site the 

locations of encached versions, to enable immediate transmission of the updated 

range of validity of encached versions. When new versions are created, the entire 

version could be shipped in the same way to the cache site. When a site no 

longer wishes to be a cache site, it should just forget about the encached object 

versions, and respond to updates with a no-cache(object) message, signalling the 

object home to remove from its memory the existence of the cache. 

Some applications of the encaching strategy seem to be extremely useful. 

For example, the strategy seems to be just what is needed for distributing new 

versions of programs. NAMOS is so easily extended to include encachement 

because the information needed to synchronize the encached copy with the master 

copy is already needed for maintaining inter-object consistency and proper 

synchronization. Encaching writable data in a database using locking for 

synchronization would not result in such a uniform mechanism. 

6.9 Reducing the amount of work aborted 

\Vhrn an operation is aborted due to the failure of a new-token request, 

the oprration may have done a substantial amount of computation that will all 

have to be redone. This wasted work results from the fact that tokens are not 

created until it is known that a ne\v value ,·viii be assigned to a particular object, 

so another interfering computation may perform a read that extends the range of 

validity of an earlier version, preventing the creation of the token. 

If it were known in advance that a particular object will be updated by an 

operation, then a much better strategy would be to have the operation reserve the 

right to create a token in advance, and abort itself if that reservation cannot be 

made. It is not (llways possible. of course, to know what will be updated by an 

operation, so the case where such information is available should be treated as an 

optional optimization. A mechanism to make such reservations is fairly easily 

added to the system. 
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A new kind of entity, a token reservation, ts the tool by which such 

reservations are made. A token reservation is represented by a known history 

entry that looks just like a token, but which has no value. A token reservation 

refers to a particular commit record, and may be deleted from the known history 

at any time -- its purpose is to mark the fact that a token may be created at 

some later time, but it does not guarantee that the token can be created. Of 

course, deleting the token reservation right away without giving the operation a 

chance to actually create the token obviates the purpose of. token reservations. 

The times when a token reservation ought to be deleted are (a) when the commit 

record enters either the aborted or completed state (if no token has been created 

by then, the operation will not ever attempt to create a token), or (b) after a 

sufficiently long time -- the timeout can be set to be some value greater than the 

timeout on the commit record, or (c) if the commit record has been deleted. 

Case (b) ensures that· the token reservation does not depend on the accessibility of 

the commit record for its deletion, while case (c) ensures that the commit record 

need not record references to it from token reservations, thus eliminating the need 

for create-ref /permit-create exchanges at the time token reservations are created. 

A token reservation is converted into a token when a new-token request 

specifying the same pseudo-time arrives at the home of the object. At that time, 

the create-ref /permit-create exchange of messages occurs. If a different commit 

record than the one under which the token reservation was created is specified in 

the new-token request, an error is signalled -- while this error signal is unnecessary 

(the token reservation is just an optimization), using different commit records is a 

misuse of the mechanism. 

The lookup request is affected by the existence of token reservations as if 

the token reservation were a token, with two differences. Before querying the 

commit record, the local timeout on the token reservation is checked, and if 

expired, the token reservation is deleted, and the lookup continues with the next 

previous version or token. Also, if the result of the query is a state("aborted") or 

a state("complete") message, the token reservation is deleted. Thus, a reservation 

is only held while the commit record remains in the wait state. 
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The use of token reservations can help reduce the likelihood of dynamic 

deadlock in the system, as well. By making all of the token reservations as 

quickly as possible, the likelihood of having two conflicting operations that run at 

nearly the same time is reduced. by our assumption that conflicting operations are 

rarely close together in time. An even more potent strategy that can be used to 

prevent dynamic deadlock would be to define an ordering of objects, and to ask 

for the token reservations in all operations in a sequence that is a subsequence of 

the order on all objects. As it does in the case where one is requesting locks, this 

strategy would guarantee that in any conflict situation, at least one operation 

would be allowed to finish, eventually breaking the dynamic deadlock. 

I should reiterate here, hm-..·ever, that the use of token reservations ts 

entirely optional -- if they are used correctly they will improve the performance of 

individual operations in some cases, perhaps at the cost of reducing the 

performance of other operations. To show how other operations could be 

adn·rsely affected, consider the strategy of obtaining token reservations on all the 

objects that an operation might want to update, rather than just the objects that 

we are sure will be updated. Eventually, those objects that are not updated by 

the operation will delete the token reservations either due to timeout or detecting 

the completion of the operation's associated commit record. However, while the 

token reservations are around, they will slow down responses to lookups by forcing 

them to go look at commit records. Consequently, other operations that are later 

in pseudo-time than the one creating the token reservations may be delayed 

excessively as a result. Judicious use of token reservations is thus very important 

to good performance. 

6.10 Summary 

In this rather long chapter, a number of mechanisms involved in the 

implementation of objects in the system have been discussed. The really 

important part of the system design is in the management of clocks and the 

generation of pseudo-time, and in the management of the known histories of 

objects. Although we have seen a number of optional enhancements, such as the 

encachement of objects, special representations for special types, and token 

reservations, the system without optimizations is sufficient by itself to solve a wide 

range of synchronization problems. 
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Chapter Seven 

Conclusions and Directions 

In this dissertation, I have developed a new approach to the synchronization 

of accesses to shared data. In this chapter the key concepts, the range of 

applicability, and the limitations of the new approach are explored. Then possible 

directions for further development of this approach are suggested 

implementation, modification to remove limitations, and specialization of the 

approach for particular applications. 

7 .l Concepts 

There are several key concepts that I would like to reemphasize by listing 

them here. They include a new view of the semantics of updates, the notion that 

abstractions must be preserved properly in an environment where concurrency, 

sharing, and failures are unavoidable, the close tie between synchronization and 

error recovery, and the idea of defining a system-wide state without reference to 

an instantaneous snapshot of the entire system. 

7 .l.l Synchronization of shared data 

In the thesis \ve have concentrated our attention on one aspect of 

synchronization -- control of simultaneous accesses to shared data objects. It has 

been traditional to treat such synchronization with the same ideas and mechanisms 

as other problems of synchronization, such as disk queue scheduling and 

inter process control communication, 1 even though synchronization of access to 

data is a very simple and important case. The power of synchronization 

1. Interprocess control communication (IPCC) is a generic term for mechanisms 
that allow one process to block itself when it has nothing to do, and be awakened 
by another process when something for it to do arrives. Although IPCC has been 
used in the implementation of mechanisms for controlling access to shared data, 
IPCC is more generally useful for controlling the timing of processes that must 
synchronize themselves for other reasons. 
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mechanisms has been measured by determining what "synchronization problems" 

they can and cannot solve, v•here such problems usually have little to do with the 

very important case of access to data. 

As we have seen, by treating data synchronization alone, we need not be so 

concerned a bout the timing of programs accessing data, but rather we concern 

ourselves with the more relevant requirement that the program access the correct 

states of its data. The division of synchronization into two classes, data access 

synchronization and process (timing) synchronization, seems to be a useful and 

powerful division. 

7 .1.2 New update semantics 

Our view that a data object really stands for a sequence of states and that 

accesses to the object (both read-only and update) are operations on that sequence 

is rather powerful. By defining a naming mechanism for selecting the point in the 

sequence of states to be operated on and allowing programs to use that naming 

mechanism, programs accessing shared objects can be defined without need to 

consider their timing. Since timing of programs is one of the attributes of 

program execution over which the designer has very little control, reducing the 

importance of timing in understanding the execution of programs simplifies the 

task of the designer. 

This view has also facilitated the ability to manage "out of date" states of 

data objects. By keeping states of a data object older than the current one, the 

system can allow more concurrency. In particular, it is not necessary for read 

accesses to an object to lock out subsequent writes. In a geographically 

distributed system, where delays are large, this locking introduces delay, since any 

write must delay sufficiently to determine that no remote computation has 

requested a read prior to the write. But since "out of date" versions are kept for 

a period of time, writes can be begun with confidence that read requests for an 

earlier version will not be interfered with. 

The ability to manage "out of date" states of objects also enables the 

encachement of objects to support frequent remote reading that was described in 

chapter six, and the restoration of old system states for the purpose of recovering 

from severe errors. 
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It is interesting to note that our semantics ts somewhere between the 

traditional von Neumann machine semantics based on changeable memory 

locations and more recent "side-effect free" machine semantics best illustrated by 

dataflow machine architecture[Dennis75]. Although the objects implemented in 

~A~IOS can be updated, they are built on a substructure consisting of immutable 

object rersions that correspond to the structured objects available in a dataflow 

machine. The immutability of object versions leads to the same advantage that is 

accrued from immutability of objects in a dataflow architecture, that the timing 

of concurrent programs is not important to the behavior of the program. 

However, by supporting an update semantics on top of the immutable versions, we 

support a user view of the system as being an extensive memory with state 

changing operations, a view that seems to be better for inter-user sharing. Thus 

we may have gotten the "best of both worlds." 

7 .1.3 Abstraction and parallelism 

Updates to objects shared among parallel computations make it very 

difficult to construct programs out of modular parts. In non-parallel 

computations, one can view the execution of a subroutine as an operation whose 

internal implementation is largely invisible to its user. For example, a sorting 

routine can be thought of in terms of a rather simple specification that relates the 

states of its input to the ultimate outputs. The implementation of a sorting 

routine, on the other hand, can vary quite a bit while satisfying the same 

specification. 

In the case of parallel execution on shared data (unavoidable in the case of 

a multi-user database or file system), the semantics of a routine depends on the 

pattern of accesses made by the implementation of the routine, so it is possible to 

"look inside" an interface at the implementation by executing the routine in 

parallel with other computations that access the same data objects. Thus in the 

parallel execution of computations, the ability to construct abstract operations is 

severely curtailed. 

A partial solution to the problem of constructing abstract operations m a 

parallel execution environment is to add explicit locking to the language, so that a 

routine can gain exclusive control of a set of resources to inhibit concurrent access 

to the data it accesses. The solution is only partial, however, since it becomes 
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necessary to include in the interface specification of a module what locks it needs 

set in order to use that module as part of a larger module that also needs to set 

locks. By exposing the set of resources that must be locked outside the module, 

the implementation is exposed in a slightly different way -- one need not try 

running computations in parallel to discover the implementation, since much of 

the structure of the implementation may be deduced from the resources it 

accesses. 

Our thesis is that it is both possible and extremely desirable to have system 

support for modules whose behavior does not depend on the behavior of programs 

accessing the same data concurrently. The designer and user of such modules 

need not concern themselves with parallel execution, locking, etc. in order to make 

sure the modules work as expected. In particular, the transaction pseudo-temporal 

environment and the dependent possibility support the implementation of such 

modulrs. 

Preserving the degree of abstraction afforded by a module interface has 

required that certain problems be solved that are normally very difficult to solve 

in a system that uses locking for synchronization. In particular, our approach to 

synchronization can handle cases where the data objects to be accessed by an 

operation are dependent on the input values to the operation. Predicate locking, 

proposed by Eswaran, et a/.[Eswaran76], attacks a similar problem, but still 

requires some care in specifying the class of objects that a program may access. 

7 .1.4 Synchronization and Recovery from Failures 

In a system designed to be used in building modular abstract operations, 

both' the synchronization and recovery mechanisms must be designed to preserve 

the degree of abstraction provided by a module interface. Failures during the 

execution of a module may cause its implementation to become important to the 

users of the module, while failure of a module being used to implement part of a 

larger transaction must be reflected to the other parts of the larger transaction -

undoing any changes that may have already been made if the failure requires that 

the larger transaction be aborted. 
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Since both failure management and synchronization are tightly tied to the 

construction of abstractions, they must be carefully designed to work together . 

.Most of the attempts to solve the problems of synchronization assume that the 

problems of assuring reliability are solved at a lower level. While it is possible 

with enough redundancy to construct a system whose reliability is high enough 

that the likelihood of hardware failures can be ignored, it may be that the cost of 

achie,·ing reliable systems in this way is far higher than the cost of achieving 

reliability given knowledge about which parts of the implementation of the system 

must be reliable. Since we must already cope with unexpected loss of availability 

of objects and computational resources in a decentralized system (because of 

autonomy), handling failures of the communications system in the same way may 

achieve a cost saving by removing the need for a separate set of mechanisms to 

handle hardware failures. 

7 .l.S System-wide state defined independent of time 

By defining a correspondence between the states of individual objects, we 

have defined a concept of a system-wide state, such that the system goes through 

a sequence of such states as a result of computations executing in the system. 

The mechanism for defining the correspondence, using pseudo-time, has the 

advantage that it is only loosely coupled with the passage of time. A definition 

of system state that uses time to relate states of individual objects runs into 

serious problems for several reasons. First, there is the problem that in a 

geographically distributed system, such a definition of a system state requires that 

to observe all the objects in a particular state, one must take a snapshot of all of 

the objects at an instant of time -- since communication delays in such a system 

make precisely simultaneous observations practically impossible, system states thus 

defined are not observable inside the system. 

A second problem is that the running of transactions concurrently in the 

system makes it very unlikely that the system state at any particular instant of 

time is consistent with some external ordering of actions. The result of this is 

that it is very hard to use that notion of system state in describing the behavior 

of programs to ensure that the system's behavior matches some external 

specification of correct operation. Such a definition of system state has led to the 

unsatisfying notion of defining a system as operating correctly in terms of its 

behavior after some "quiescing" action. For example, Thomas claims that his 
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algorithm for synchronizing updates guarantees that if new requests to update are 

halted (the system is quiesced), the system will eventually stop in a state where all 

updates have been processed, in the proper order[Thomas76]. The problem with 

such a specification of a system is that the system may never be thus quiesced (an 

airline reservation system, for example, may always have several uncompleted seat 

reservation transactions for different flights in progress). In fact, a system may 

satisfy such a specification by entering a correct state only when the system is 

quiesced, but nonetheless processing all requests incorrectly! 

Our definition of system state, since it is independent of time, allowed the 

definition of consistent system-wide states without having to talk about quiescing 

the system. A transaction in progress in the system does not preclude an 

observable consistent state within NAMOS, since the transaction does not destroy 

the existing consistent state it observes as its input state, it only creates a new, 

presumably consistent state. 

7.2 Applicability of the concepts 

In chapter one, we emphasized that the primary application of the ideas in 

the thesis is to the problems of synchronization and failure management in a 

decentralized, possibly geographically distributed, computer system composed of 

multiple. separately managed nodes sharing information via a communications 

network. Certainly the decentralized system application was the primary 

motivation for our work, but the ideas do seem to have wider applicability. 

Our approach to synchronization has been motivated by a particular desire 

to support modular design and implementation of programs, and we believe our 

approach is a quite effective way to manage synchronization and error recovery 

problems in a system where program development is decentralized to the point 

that there is no one central designer who specifies the set of atomic transactions 

that the system ,,·ill support. Even if the system were entirely confined within a 

single processor system, using shared secondary memory for the shared objects of 

interest, NAMOS seems to be a good way to support modular design. In such an 

application of NAMOS, the costs of managing individual object known histories, 

both 111 terms of space and time, can be controlled somewhat by an 

implementation specific to the single system case. Space can be conserved by 

storing only the most current version and at most one token for each object 
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(requiring that an update arri,·ing at an object with a token outstanding \\·ait until 

the token is turned into a version or aborted). In the single system case, the 

complex protocols described in chapter five for recovering the storage for commit 

records need not be used because we can assume that the whole system is either 

up or down -- thus the commit record can immediately signal all tokens referring 

to it when it is completed, aborted or timed out. Similarly, in a single system, the 

system usually knows when a process is terminated due to some error, so in 

normal failures the aborting of the commit record(s) associated with a 

computation can be made to happen sooner by reflecting the failure immediately. 

The mechanisms of NAMOS can also be applied to solve synchronization 

problems where none of the problems of modular system construction exist. An 

example would be a "garden variety" database system used to support some sort of 

recordkeeping application such as accounting, payroll, inventory control, etc. In 

such applications, usually the whole system can be designed (by a "database 

administrator"), put into use, and will remain virtually unchanged for quite a long 

time. \Ve certainly don't need the ability to add new transactions dynamically to 

the set of transactions that can be executed. The advantages of NAMOS over 

other methods in these applications are that geographically distributed data can be 

properly synchronized, that both synchronization and error recovery do not 

require as large a design effort as would be needed if explicit locking and 

checkpointing had to be designed in, and that later modifications to add features 

to the system, if needed, will not require existing synchronization code (probably 

there is some such code in each module of the system) to be modified. 

For such a database system, :NAMOS can be simplified to reduce its 

complexity. Since support for modules as abstract operations is not needed in this 

application, dependent possibilities are unnecessary, and all transactions are created 

at the top level. If the database system is not distributed, then the optimizations 

noted above for the single-processor case can be applied. 

7.3 Limitations 

\Ve cannot claim, however, that the ideas described here are universally 

practical. \Ve have made certain basic assumptions about the environment in 

which NA~IOS is to be used, and where those assumptions are violated, NAMOS 

works poorly, if at ail. 
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A key assumption we have made is that the likelihood of two transactions 

concurrently accessing the same data is reasonably small. If this assumption is not 

true. then tr<1nsactions that read values out of objects will with high frequency 

cause transactions that perform updates on the same objects to be aborted. 

Although our assumption is true in many systems that allow sharing of objects, 

some systems do manage such objects that have high rates of contention; those 

systems may need additional mechanisms to support their concurrency control. 

Essentially, in the case of high contention, a more efficient way to do business is 

to schedule conflicting transactions so that one transaction completes its accesses 

to the shared data before any later ones are allowed to proceed. NAMOS's 

mechanism of token reservations, described in chapter six, serves as a kind of 

scheduling mechanism. but since it requires reservations to be made for all objects 

to be touched it may be quite costly in terms of communications overhead. An 

alternative, more centralized, scheduler could be designed that ordered transactions 

based on high-level knowledge about which transactions are likely to conflict. Of 

course, such a scheduler must be designed to deal with failure of a transaction, so 

that such a failure does not prevent later transactions from being scheduled. 

The mechanisms of NAMOS will still be useful in a system with such a 

central scheduler. NAMOS's recovery mechanisms still provide a good way to deal 

with failure of transactions. The synchronization mechanisms of NAMOS can be 

thought of as dynamic verification that proper synchronization is being achieved 

by the central scheduler, such that if the central scheduler erroneously schedules 

two transactions acting on the same data at the same time, the NAMOS 

mechanisms will ensure consistency or abort one or both of the transactions. In 

fact. this suggests an interesting strategy for the design of a central scheduler. 

Instead of being conservative, always deferring one transaction whenever there is 

the slightest chance that two transactions will conflict, the central scheduler can 

be more optimistic, and only defer a transaction when it has a high chance of 

conflicting v•ith one already executing. The basic mechanisms of NAMOS then 

ensure proper synchronization and recovery, while the central scheduler optimizes 

performance, increasing the chances of proper termination of transactions. 
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7.4 Directions for further research 

So far, we have seen a relatively complete design for a mechanism to 

handlr the problems of synchronizing and managing failures of accesses to objects. 

It is. however, only a paper design, so many of the aspects of its performance and 

usability can be characterized only qualitatively. Constructing a prototype 

implementation for the purpose of evaluating its implementability, performance, 

and usability seems to be the obvious next step. 

The full NAMOS system need not be constructed for some of its attributes 

to be evaluated. A first step would be to replace the transaction synchronization 

and recovery mechanisms of some ex1stmg database system with the 

synchronization and recovery mechanisms of NAMOS. The objects of the system 

would be the data records or relation tuples maintained by the data management 

system. The transactions of the data management system would be implemented 

as computations executing in a transaction pseudo-temporal environment. This 

would serve as a test of the performance of NAMOS. An extension along this 

direction would be to distribute the database (requiring a way to decide where a 

particular record or tuple is located), so that communications failures, and perhaps 

autonomy, can be incorporated into the substrate on which the NAMOS 

mechanisms operate. 

A test on an existing database system would not show the usability 

afforded by NAMOS's support of modular construction methodologies. To test 

these features, a more interesting use of NAMOS would be required. One possible 

application of NAMOS would be in the construction of a decentralized network 

of "personal computers" where a strong need to share permanently stored data is 

needed. One kind of data that might be shared among such a set of computers 

would be useful user-written and maintained programs, such as sophisticated 

editors, compilers, etc. Small databases, such as files of papers in progress (i.e. 

journal articles or letters), annotated bibliographies, etc., might also be structured 

objects that are shared. It is reasonable to assume that such shared objects will 

occasionally be updated by the provider or users of the objects, so there will be 

problems in managing the concurrent accesses to the objects that are likely to 

occur. The mechanisms of NAMOS can be used to manage such sharing. 
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Another possible test of the ability to build modular systems in NAMOS 

\vould be to build a continually modified database system (such as, for example, a 

system like that the :'vl.I.T. registrar uses to keep track of the subjects taken, 

grades. and other information it keeps about each student -- this system needs to 

be changed regularly as the rules and structure of M.I.T. change) using NAMOS. 

One could then see if the tools provided by NAMOS lead to a simplification of 

the task of modifying the system to incorporate new features. 

A direction for exploring the issues surrounding NAMOS that is more 

speculative is to incorporate the synchronization and failure recovery semantics of 

NA\-IOS directly in the computational model of some computer design. Such a 

direction is not without precedent. Randell has explored a similar direction in 

de,·eloping a hardware support for recovery blocks[Randell75], and numerous 

hardware designs have incorporated synchronization mechanisms such as 

semaphores. The advantage of directly implementing the NAMOS synchronization 

and reliability mechanisms in hardware is performance. The algorithm that finds 

the correct version of an object given a version reference composed of an object 

identifier and pseudo-time should execute as fast as possible, since it is used on 

every access to an object. Similarly, defining a new version must be as fast as 

possible. In a distributed system, where the time to access an object is controlled 

primarily by communication delay, accessing and updating objects using the 

mechanisms of NAMOS may not be very costly, but using NAMOS inside a single 

system for purely local operations might be rather costly if NAMOS is 

implemented entirely in software. The attributes of NAMOS, particularly the 

support of modular synchronization and reliability, make it otherwise attractive 

for synchronization of accesses purely local to a single system. Incorporating the 

basic operations of NAMOS in a computer design, using special hardware designed 

to optimize the naming of versions, would make NAMOS attractive in such a 

case. 

Other future research could be directed at removing the major limitation 

of NAMOS -- that it can't handle a high degree of contention among the 

transactions acting on a particular object. We have suggested above a strategy 

that mixes together NAMOS and some sort of centralized transaction scheduling 

discipline. This approach must be explored in more detail to see if it does fulfill 

its promise of supporting high-contention situations. Another related idea that can 
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Appendix A 

Analysis of Availability of Multi-site Possibility 

To show that the multi-site possibility provides more accessibility than a 

single site possibility, an analysis of the probability of availability is needed. Here 

I include an analysis based on some simple, but reasonable assumptions about the 

~n·ailability of sites and reliability of messages. I lump site availability and lost 

message probabilities together, and assume that all sites behave the same. 

First, consider a test of the state of the whole commit record. If the test 

does not make a decision within .,. seconds, the commit record is considered to be 

unavailable. Each voter site is assumed to behave similarly when its state is 

polled, providing a response saying whether the voter is complete or aborted 

within time r with probability q. The value of q includes both the probability of 

site inaccessibility and the probabilities of transient loss of messages to and from 

the site. 

When a complete or abort operation is attempted, we assume that there IS 

no problem with interference from local voter timeouts (we assume the probability 

of this is negligible, because of the trick described above). If some individual site 

does not acknowledge an attempt to complete or abort it within time .,.·, the 

requesting site gives up. The probability that a site does not process a complete 

or abort sent to it within time r • is p. The probability p again includes both the 

probability of message loss and the probability of site failure or inaccessibility. 

Finally, we assume that the requesting site sends out the messages 

sequentially, and may fail in between any of the N messages. To characterize the 

probability of failure. I assume that with probability 1-<P it will fail before sending 

the kth message, given that it has sent the (k-1)st. Thus we assume that the 

number of messages sent before a failure is represented by a geometric 

distribution. The value of ¢ will be quite close to 1 -- a site with mean time to 

failure of one hour and which takes one thousand instructions to send a message 

at one microsecond per instruction will have an ¢ of a bout 0. 9999997. 
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~ow let us consider the problem of accessibility. What we want to know 

is the likelihood that some attempt to test the state of a commit record will be 

unable to decide the state of the commit record within time r. There are two 

cases, depending on whether there was an attempt to complete the commit record 

or not. If a complete was attempted, the probability that a tester will not be able 

to decide we call P cfail• and if no complete was attempted, we call the probability 

of not deciding Pafail· For a single-site commit record, P cfail=P afail=l-q. For a 

multi-site commit record, the situation is more complex. 

Pafail for a multi-site commit record is the easiest case. To decide that the 

commit record is aborted, at least N-K+ 1 sites must respond. The probability of 
N N 

this is 1: ("i) qi(l-q)(N-i). Thus, Pafail is the probability that at most N-K 
i=N-K+ 1 

sites respond. 
N-K 

p afail = 1: (~) qi(l-q)(N-i). 
i=O 

P cfail is more complex. If an attempt to complete the commit record has 

been made, there is some probability distribution among the states that the voters 

may h;n-e reached that depends on p and </>. The probability P cfail can be 

expressed as 1-Pc-P A· where Pc is the probability that the tester will decide that 

the commit record is completed, and P A is the probability that the tester will 

decide that the commit record is aborted (these are clearly mutually exclusive, so 

with P cfail the probabilities sum to 1 ). Each voter can be viewed as an 

intermediate station in a message transmission from the complete request to the 

tester of the commit record. The probability that a message sent by the requester 

will get to the tester is pq. If we assume that the requester got to send exactly k 

messages before failing, then the probability that the tester will decide that the 

commit record was completed is Qk = .~ (~)(pq)i(l-pq)k-i. The probability that 
t=K 

the requester got to send exactly k messages, once deciding to attempt to 

complete, is cflN if k=N, and <t>k(l-<t>) otherwise. Thus, 
N-1 

Pc = </>N QN + 1: </>k(l-<1>) Qk. 
k=K 

Similarly, g1ven that k messages were sent by the requester, the tester has a 

certain probability of determining that N-K+l voters are in the abort state. Now 

we ha"e two cases. Among the k sites that messages were addressed to, some of 
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the sites will enter the aborted state because of messages lost with probability 

( 1-p ), but will supply an answer to the tester. For any of the k sites, this will 

happen with probability (1-p)q. For the other N-k sites, the aborted state is 

guaranteed to be entered, and the probability that the tester gets an aborted 

response 1s 4· Thus, the probability that the tester gets exactly i aborted responses 

IS 

min(i,N-k) N-k . N-k-. k i-. k-i+. 
Ti k = L: ( j )qJ(1-q) J(i-j)((l-p)q) J(l-(1-p)q) J. 

' j=max(O,i-k) · 
So. the probability of getting at least N-K+ 1 responses that say abort, given k 

messages sent is 
N 

Rk = L: Ti k· 
i=N-K+l ' 

Consequently, we can compute the probability of deciding aborted as 
N-1 

p A = ct>::'JRN + L: ct>k(l-<t>)Rk. 
k=O 

The expression for P cfail is thus quite complicated, and doesn't seem to be 

amt."nable to simplification. However, I have shown by experimentation with 

reasonable values of p, q, and ct> that values of N and K other than one (the single 

site case) can give either improvements in availability of the commit record's state, 

or can reduce availability. A sample graph of the variation of P cfail as N varies 

owr odd numbers of sites from 1 to 15, holding p, q, and ct> all constant at 0.9, 

and with K=(~+l)/2, is shown in figure 18. Improvements result because the 

expected number of sites to respond completed is about pqN (as it would be if <1> 

were one), then as N becomes large, the probability that K= ol.N (where ~<pq) 

sites thus respond asymptotically goes to one. Similarly, as K gets small relative to 

~. Pc increases. Reductions in availability result because as N gets large, failures 

at the requester begin to take over. These two opposing factors lead to the case 

that, at least in the simple model, there are optimum values of N and K which 

minimize P cfail· 

Pafail is not so complicated. The state of a possibility for which no 

complete is ever attempted is more accessible as N gets large, and as K gets large. 
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Fig. 18. G rnph of P cfail as the number of sites varies 
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The overall availability of a possibility depends on the likelihood that 

opera1 ions that are controlled by it will fail to finish before attempting to 

complete. This likelihood is strongly application dependent, and cannot be 

determined by the system. If it were known, however, a reasonably optimum 

choice of N and K could be made. 

One factor ignored so far is the delay and cost of message traffic needed 

to achieve a particular level of reliability and availability. It is clear that one can 

improve p and q by increasing potential delay (by, for example, retransmitting 

requec;ts periodically). Similarly, increasing N can increase the message traffic in 

the network, and possibly indirectly add queueing delay. Varying K can reduce or 

increase the delay before deciding that a commit record is complete, while 

affecting the delay for deciding the same kind of commit record is aborted in the 

opposite direction. 
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